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Abstract.® In this paper we study the uniqueness problems on meromorphic
functions sharing a nonzero finite value or fixed points. Our results improve or

generalize those given by Fang and Hua [7], Yang and Hua [18], Fang and Qiu
[9], Cao and Zhang [2].
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1. INTRODUCTION AND MAIN RESULTS

Let C denote the complex plane and let f(z) be a non-constant meromorphic
function defined on C. We assume that the reader is familiar with the standard notions
used in the Nevanlinna value distribution theory, such as T(r, f), m(r, f), N(r, f) (see
[10, 12, 19, 20]). Let S(r, f) denote any quantity that satisfies the condition S(r, f) =
o(T(r, f)) as r — oo outside possible an exceptional set of finite linear measure. A
meromorphic function a(z) is called a small function of f(z) if T(r,a) = S(r, f).

Let f(z) and g(z) be two non-constant meromorphic functions, and let a(z) be a
small function of f(z) and g(z). We say that f(z) and g(z) share a(z) CM (counting
multiplicities) if f(z) — a(z) and g(z) — a(z) have the same zeros with the same
multiplicities, and we say that f(z) and g(2) share a(z) IM (ignoring multiplicities) if
the multiplicities are ignored. We denote by Ni)(r, 725) (or Ni)(r, 725)) the counting
function for zeros of f — a with multiplicity < k (ignoring multiplicities), and by
N, 755) (or Ni(r, 755)) the counting function for zeros of f —a with multiplicity
>k (ignoring mult.iplicities) Also, we set

N, k(rs ) N(r: ) + N(ﬂ(rs ) + N(s(fa ) 2 R Wu (‘l’, 5T a)
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We say that a finite value 2 is a fixed point of f if f(20) = 20 or 2o is & zero of

f(z) -z

The following theorem is well known in the value distribution theory (see [1, 3]).
Theorem A. Let f(z) be a transcendental meromorphic function, and let n > 1 be
a positive integer. Then f™f' = 1 has infinitely many solutions.

Fang and Hua [7], and Yang and Hua [18], respectively have obtained a unicity

theorem corresponding to Theorem A.
Theorem B. Let f and g be two non-constant entire (resp., meromorphic) functions,
and let n > 6 (resp., n > 11) be a positive integer. If f™(2)f'(z) and g"(2)g/(2) share
1 CM, then either f(z) = c1e°* and g(z) = cze™**, where ¢, ¢z and ¢ are three
constants satisfying 4(c1ca)"* c® = —1, or f(2) = tg(2) for a constant t such that
b,

Corresponding to the uniqueness of entire or meromorphic functions sharing fixed

points, Fang and Qiu [9] obtained the following result.
Theorem C. Let f and g be two non-constant meromorphic (resp., entire) functions,
and let n > 11 (resp., n > 6) be a positive integer. If f™(z)f'(2) and g"(2)g’(2) share
z CM, then either f(z) = c:e"-" and g(z) = Gae"‘“’, where ¢;, c3 and ¢ are three
constants satisfying 4(c1c2)"t1c® = —1, or f(2) = tg(2) for a constant t such that
=1,

For more results in this direction, we refer the reader to [4] — [9], [11],[13] - [16),
[18], [21] - [24]. Cao and Zhang [2] extended Theorems B and C as follows.
Theorem D. Let f(z) and g(z) be two transcendental meromorphic functions, whose
zeros are of multiplicities at least k, where k is a positive integer, and let n >
max{2k — 1,k + 4/k + 4} be a positive integer. If f*f® and g"g® share 2 CM,
and f and g share co IM, then one of the following two conclusions holds:

(1) ff® = gng®;

(2) f = c1€°% g = c2e°% where c1, c2, ¢ are constants such that 4(c1e)" 2 = —1.
Theorem E. Let f(z) and g(z) be two non-constant meromorphic functions, whose
zeros are of multiplicities at least k, where k is a positive integer, and let n >
max{2k — 1,k + 4/k + 4} be a positive integer. If f*f® and g"g*® share 1 CM,
and f and g share co IM, then one of the following two conclusions holds:

(1) frf®) = gng®);

(2) f = cse’; g = cae™ where cs, c4, d are constants such that (—1)*(caey)™+1d3* = 1.
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In this paper we show that in Theorems D and E the condition " f and g share oo
IM"can be removed. Specifically we prove the following results.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions with
o(f) < +00, whose zeros are of multiplicities at least k, where k is a positive integer,
and let n > max{2k+1,2(o(f) — 1)k — 3, k+4/k +8} be a positive integer. If f*f)
and g"g™® share z CM, then one of the following two conclusions holds:

(1) frf® = gng®);

(2) f= cre®®, g = cze_"", where c1, ¢z and c are constants such that 4(c1c3)"H1 3 =
-1.

Theorem 1.2. Let f(z) and g(z) be two non-constant meromorphic functions with
o(f) < +00, whose zeros are of multiplicities at least k, where k is a positive integer,
and let n > max{2k—1,2(c(f) — 1)k — 1,k +4/k+ 5} be a positive integer. If £
and g"g(*¥) share 1 CM, then one of the following two conclusions holds:

(1) frf® = gng®;

(2) f = cae® g = cae™% where ca, ¢4 d are constants such that (—1)*(czcq)™+1d?* = 1.

To prove Theorems 1.1 and 1.2, we need the following results.

Proposition 1.1. Let f(z) and g(z) be two non-constant meromorphic functions
with o(f) < 400, and let n and k be two positive integers such that n > max{2k +
1,2(c(f) — )k —3}. If frf®gngk) = 22, then f = c1e%", g = ce~°%, where 1, &2
and c are constants such that 4(cicp)"1c? = —1.

Proposition 1.2. Let f(z) and g(z) be lwo non-constanli meromorphic funciions
with o(f) < +o0, and let n and k be two positive integers such that n > max{2k —
Lk +1,2(c(f) — 1)k — 1}. If fof®gng®) = 1, then f = cge?®, g = cqe™%*, where
cs, ¢4 and d are constants such that (—1)%(cacs)"t1d?* = 1.

2. PRELIMINARY LEMMAS

Lemma 2.1 (see [19]). Let f(z) be a non-constant meromorphic function and let
ao(2), a1(2), - - -, an(2) (# 0) be small functions of f. Then

T(r,anf™ 4 an-1f™"* + -+ + ag) = nT(r, f) + S(r, f)
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Lemma 2.2 ([19], p- 21). Let f(z) be a non-constant meromorphic function in the
complez plane. If the order of f(z) is finite, then
m(r, f?') = O(logr), T — c0.
Lemma 2.3 ([19], p. 65). Let h(z) be a non-constant entire function and let f(z) =
eh(®). Let \ and p be the order and the lower order of f(z), respectively. We have

(i) If 4 < oo, then p is a positive integer, h(2) is o polynomial of degree p, and ) = L.
(ii) If s = oo, then h(2) is transcendental and A\ = p.

Lemma 2.4. Let f(2) be a non-constant meromorphic function of finite order, and
let k be a positive integer. Suppose that f*) £ 0, then

1
N(r, ﬂ_lk}) < N(r, 2)+ KN (r, ) + Oogr).
Proof. Since f is of finite order, by Lemma 2.2, we have
m(r, Tff:) = O(logr).

Now we use mathematical induction to prove that m(r, %—) = O(logr). Suppose
that the conclusion is true for k = m. For k= m + 1 we have
flm+1) fm o f(m) ) il
— + —.
Fr Syl Ty

Then we can write

f{m+1)

mir, L) < mir, (———)’) +mir, —) e, f—) +0(1)

! ‘"‘ U
= mir (ﬁ’ L2 + 0togr) < mtr, LY (Z‘_’ )+mir, 22 + Ofiogn
= O(logr).
Moreover, we have
(%)
m(r, %) < m(r, T{lk_}) + mi(r, ;T) = m(r, }(l—k)) + O(logr).

Hence

T(r, f) - N(r, 31,-J < T(r, f®) — N(r, ﬁ%) +O(logr).
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Therefore
1
N(‘l", T(ﬁ) < T(rl f(k)} = T('\ f) +N(‘l’, %) + 0(103 f‘)

= m(n, f®) + N(r, f¥) - T(r, 1) + N, -}) + O(logr)

(k)
< mlnf)+mr, If— )+ N(r, f) + KN(r, f) — T(r, )+ N(r, }) +0(logr)

1
= N(r, ?) =3 k}v(r’ N+ O(log ).
This completes the proof of Lemma 2.4.

Lemma 2.5 ([18]). Let f(z) and g(z) be two non-constant meromorphic functions,
n and k be two positive integers, and a be a finite nonzero constant. If f and g share
a CM, then one of the following conclusions holds:
(‘l) T(f" f) < Ng(‘!‘, 1/;) =t NQ("! 1/9)"' Nﬁ(’:f) v Ng(‘l", 9)+S(r’f)+s(ri9)! the same
inequality holding for T'(r, g);
(i) fg = a¥;
(i51) f = g.

3. PROOFS OF PROPOSITIONS 1.1-1.2

Proof of Proposition 1.1. We first prove that

(3.1) F#0, g#0.
We have
(3.2) fri®gng® = 23,

Suppose that zg # 0 is a zero of f, say of multiplicity [, then 2 is a pole of g, say of
multiplicity 8. Then we have nl + [ — k = ns + s + k, implying (n 4 1)(I — 5) = 2k,
which is impossible since by assumption n > 2k + 1.

Now suppose that z = 0 is a zero of f, say of multiplicity ;. If z = 0 is not a pole
of g, then 2z = 0 must be the zero of z? of multiplicity nl; + 1, — k > 2, which is a
contradiction. If z = 0 is a pole of g, say of multiplicity s;, then we have

(n+1)(l—81)=2k+2,
which is impossible since by assumption n > 2k + 1. So f has no zeros. Similarly, it
can be shown that g also has no zeros. Thus (3.1) is proved.
Next, we prove that

(3.3) N(r,f) = O(logr), N(r,g)=O(logr).
157



XIAO-BIN ZHANG

To this end, we rewrite (3.2) as follows

2
(34) s g:gw J
From (3.4) we deduce that
3.5) N S 1) = N —).
Since N(r, f*f®) = (n+1)N(r, ) +EN(r, f), using (3.5) and Lemma 2.4, we obtain
(3.6) (n+1)N(r, f) + kN(r, f) < kN(r, ) + O(logr).
Similarly we get
(3.7) (n+ 1)N(r,g) + kN(r,g) < kN(r, f) + O(logr).

A combination of (3.6) and (3.7) yields
(3.8) N(r, f) + N(r,g) = O(logr).
Thus we obtain (3.3), which means that both f and g have at most finitely many
poles. Now we prove that
(3.9) o(f) = a(g).
It is easy to show that both f and g must be transcendental meromorphic functions.
Note that nT'(r, f) = T'(r, f*) =
(3.10) =T(r, ff®/f®) < T(r, ff®) + (k + 1)T(r, ) + S(r, ),
and T(r, /) = T(r, 727) <
(3.11) <T(r,g"9™®) +S(r,9) < (n+k +1)T(r, 9) + S(r, 9)-
Combining (3.10) and (3.11) we get
(n—k—1T(r,f) < (n+k+1)T(r,9) + S(r, /) +5(r, ).
Since n > 2k + 1, we have T(r,f) = O(T(r,g)). Similarly we obtain T'(r,g) =
O(T(r, f))- Thus (3.9) is proved. Note that o(f) < +o00. Let
LM s

| T T

where p(2) and g(2) are polynomials with deg(p(z)) = p and deg(q(z)) = g, while
h(z) and h,(z) are non-constant entire functions. By Lemma 2.3, h(z) and h; (z) are
polynomials with deg(h(z)) = deg(hi1(2)) = h = o(f). Then we have

x enh(z} 2 eﬂh:(s)
—rm T em
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By mathematical induction we get
o * _ e(n+1)h(z) Pk(z] 7 " _ e(“"’nh‘("]Qk(z)
pn-l-EJ(z) LY R (z)
where Pj(z) and Qx(2) are two polynomials with deg(Pi(z)) = k(h — 1 + p) and

deg(Qi(2)) = k(h—1 +g). By (3.2), we get h(2) + h1(2) = C, where C is a constant.
Furthermore, we have

deg(Pk(2)) + deg(Qx(2)) = deg(p™+**1(2)) + deg(q™+*+(2)) + 2,
implying that

(3.12) 2k(h - 1) = (n+1)(p+q) + 2.

By (3.8), if N(r, f)+N(r, 9) # 0, then p+g > 1, and from (3.12) we obtain n < 2k(h—
1)—3 = 2k(o(f) —1) — 3, which contradicts the assumption that n > 2k(o(f)—1)—3.
Therefore N(r, f) + N(r, g) = 0, showing that both f and g are entire functions and
p = ¢ = 0. From (3.12) we obtain that h = 2 and k = 1, and from (3.2) we have
h'(z) = laz, hi(z) = laz and h(z) = c2® + I3, hy(z) = —c2? + ls. So, we can rewrite
fandgasf=c1e"2 and g = cze™®", where ¢, ¢ and ¢ are constants such that
4(cica)"tic? = —1.

This completes the proof of Proposition 1.1.

Proof of Proposition 1.2. By the same reasoning as in the proof of Proposition
1.1, we get

(3.13) 2k(h—1) = (n +1)(p + g)-

In view of f*f(Klgng(¥) = 1 if N(r, f)+ N(r,g) # 0, then p+g > 1, and from (3.13)
we obtain n < 2k(h—1)—1 = 2k(o(f) —1) —1, which contradicts the assumption that
n > 2k(e(f) —1) — 1. Therefore N(r, f) + N(r, g) = 0, showing that both f and g are
entire functions and p = g = 0. From (3.13) we obtain that h = 1. Thus h(2) = dz+1s
and hi(z) = —dz+ls. Finally, we rewrite f and g as f = cze?® and g = cqe~%*, where
ca, ¢4 and d are nonzero constants, and deduce that (—1)*(cscq)™+*d?* = 1. This
completes the proof of Proposition 1.2.

4. ProoF OF THEOREM 1.1

Let F = f*f®), G = g"g®), F* = F/z, and G* = G/z. Then F* and G” share 1
CM. In view of Lemma 2.5, we consider three cases.
Case 1.
T(r, F*) < Na(r,1/F*)
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(4.1) +Na(r,1/G*) + Na(r, F*) + Na(r, G*) + S(r, f) + S(r, 9).

We deduce from (4.1) that
T(r, F) < Na(r,1/F) + Na(r,1/G) + 2N(r, f) + 2N(r, g) + 3logr + S(r, f) + S(r,g).

Obviously,
(4.2) N(r,F) = (n+1)N(r, f) + kN(r, f) + S(r, f).
Also, we have
nm(r,f) = mr,F/f®) <m(r,F)+m(r,1/f®) + S(r, f)

m(r, F) +T(r, f¥) - N(r,1/f®) + S(r, f)
(4.3) < m(r, F)+T(r, f) + kN(r, f) - N(r,1/f®) + S(r, ).
It follows from (4.2), (4.3) and Lemma 2.1 that
(n—-1)T(r,f) < T(r,F)=N(r,f) = N(r,1/f®)+5(r, f)
< Na(r,1/F) + Na(r,1/G) + 2N{(r, ) + 2N(r, g)
—N(r, f) = N(r,1/f®) + 3logr + S(r, f) + S(r, g)

< 2N(r,1/f) +2N(r,1/g) + N(r,1/g) + kN(r, )
+N(r, f) + 2N(r, ) + 3logr + S(r, f) + S(r, g)
(4.4) £ %(T(r, ) +T(r,9)) + (k +4)T(r, ) + 3logr + S(r, f) + S(r, g).
Similarly we obtain

(n—VT(r,0) < 2(T(r, 1)
(4.5) +T(r,g)) + (k + 4)T(r, f) + 3logr + S(r, )+ S(r,9).
Combining (4.4) and (4.5) we get
| (n = 1T, )+ T(r,g))

46)  <(G+k +4)(T(1 ) +T(r,9)) + logr + S(r, £) + S(r, ).

Noting that T'(r, f) > logr + O(1), T(r, g) > logr + O(1) and n > k+4/k + 8, we
get a contradiction from (4.6).

- Case 2. We have f*f()gng(*) — 52 and by Proposition 1.1 we get conclusion (2) of
the theorem 1.1.

Case 3. We have f" f(*) = g"g(%). This completes the proof of Theorem 1.1.

The proof of Theorem 1.2 is similar to that of Theorem 1.1, the only difference is

that instead of Proposition 1.1, we use Proposition 1.2.
160 -



UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING ONE VALUE ...
Acknowledgements. The author would like to thank the referee for valuable suggestions.

CIIHCOK JINTEPATYPHI

[ ‘zﬁB::::;]fﬂ a::vﬁ-h:?-remmho, “On the singularities of the inverse to a meromorphic function
[ Y H. Cao and X B'zn::Q;':'un; e T (198).
.H. .B. & :
of Trapaalitios aud AppHestions gm:&f meromorphic functions sharing two values”, Journal
i gghfhm amd M.L. Fang, “On the value distribution of f™'", Sci. China Ser. A., 38, 789-798
[4] R.S. Dyavanal, “Uniqueness and value-sharing i :
- functions”, é] é\;ath. Anal. Appl. 374, 335 345 (mflflﬂ’umﬂd polynomials of meromorphic
5] J. Dou, X.G. Qi and L.Z. Yang, “Entire functions i
Sei. Soe. (2) 34(2), 355-367 (2011), that share fixed-points”, Bull. Malays. Math.
(8] ;IEHL[ gﬁﬂg “Uniqueness and value-sharing of entire functions”, Comput. Math. Appl. 44, 823-
7] M.L. Fang, X.H. Hua, “Entire functions that s :
o Biquarterly 13(1), 44-48 (1996). baryrone) paluy O Nl Vi Magh.
[8] M.L. Fang, W. Hong, “A unicity theorem for entire functions concerning differential
polynomials”, Indian J. Pure Appl. Math. 32(9), 1343-1348 (2001).
[9] M.L. Fang and H.L. Qiu, “Meromorphic functions that share fixed-points”, J. Math. Anal. Appl.
268, 426-439 (2002).
[10] W.K. Hayman, Meromorphic Functions, Oxford University Press, London (1964).
[11] T. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions”, Complex Variables
Theory Appl. 46, 241- 253 (2001).
[12] L Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin,
New York (1993).
[13] X.M. Li and L. Gao, “Meromorphic functions sharing a nonzero polynomial CM”, Bull. Korean
Math. Soc. 47(2), 319-339 (2010).
[14] W.C. Lin and H.X. Yi, “Uniqueness theorems for meromorphic function concerning fixed-points”,
Complex Var. Theory Appl. 49(11), 793-806 (2004).
[15] S.H. Shen and W.C. Lin, “Uniqueness of meromorphic functions”, Complex Var. Elliptic Equ.
52(5), 411-424 (2007).
[16] J.F. Xu, F. Lil and H.X. Yi, “Fixed-points and uniqueness of meromorphic functions”, Comput.
Math. Appl. 59, 9-17 (2010).
[17] J.F. Xu, H.X. Yi and Z.L. Zhang, “Some inequalities of differential polynomials”, Math. Inequal.
Appl. 12, 99-113 (2009).
[18] C.C. Yang, X.H. Hua, “Uniqueness and value-sharing of meromorphic functions”, Ann. Acad.
Sci. Fenn. Math. 22(2), 395406 (1997).
[19] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Acad. Publ.
Dordrecht (2003).
[20] L. Yang, Velue Distribution Theory, Springer-Verlag, Berlin (1993).
[21] J.T.. Zhang, “Uniqueness theorems for entire functions concerning fixed-points”, Comput. Math.
Appl. 56, 3079-3087 (2008).
[22] T.D. Zhang and W.R. L, “Uniqueness theorems on meromorphic functions sharing one value”,
Comput. Math. Appl. 55, 20812992 (2008).
[28] X.B. Zhang and J.F. Xu, “Uniqueness of meromorphic functions sharing a small function and
ita applications”, Comput. Math. Appl. 81, 722-730 (2011).
[24] X.Y. Zhang and W.C. Lin, “Uniqueness and value-sharing of entire functions”, J. Math. Anal.
Appl. 343, 938-950 (2008).

ITocrynnaa 31 oxratpsa 2013

161



