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1. INTRODUCTION

This paper is devoted to the study of properties of the C*-algebras generated
by semigroups of composition operators acting upon Fock space of C*, n > 1.
Representations of a C*-algebra of measures generated by Heisenberg groups are
also considered.

The main novelty of the analysis carried out in this paper lies precisely in the fact
that we analyze the cyclic representations of the C*-algebras with the approach of
uniqueness of analytic functions, which is crucial in solving approximation problems
in nonharmonic analysis (see, [8], [16], [17]).

Semigroups appear in many areas of analysis (harmonic analysis, representation
theory, operator theory, ergodic theory, etc.) The properties of semigroups of holo-
morphic flows have been extensively studied during the past several decades. Here we
mention two known facts that are related to our work in this paper. In [4], Berkson,
Kaufman and Porta proved the strong continuity of these flows on Hardy spaces. A
complete description of semigroups of holomorphic flows on C was obtained in f11],
by using an approach and techniques, which are quite different and independent of
operator-theoretic considerations.
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It was Grothendieck (see [9]), who initiated the study of approximation properties
of operator algebras associated with discrete groups, whose fundamental ideas have
been applied to the study of groups. In this case one discovers that some important
properties of groups can be expressed in terms of approximation properties of the
associated operator algebras. Also, various important properties of the groups can be
expressed in terms of analytic properties of these algebras. An illustration of nontrivial
interaction between analytic and geometric properties of groups and a short survey
of approximation properties of operators algebras associated with discrete groups can
be found in [6].

Throughout the paper we use the following notation: the points of C* are denoted
by z = (21,-..,2n), Where 2 € C. If 2 = 7 + iy, z = (2152 Zn); ¥ = (Y1 -2 ¥n)s
thenwewritez=z+t’y.'Ihevectorsz=3?zandy=&za.rethemals.ndimaginary
parts of z, respectively. R" stands for the set of all z € C* with Sz = 0. Also, we
denote

|| = (1214 +l2nl)M2, [R2| = (jo1 [ +--+ |2a )12, |92] = (3 P+ +lyal) 2,
=l (5t =nti+- o+ ztn.

The Bargmann-Fock space 32 (C™) is defined to be the Hilbert space of entire functions
on C" equipped with the inner product.

{f,9) = (21)" f f(2)g(@)e~ 3= du(2),
where v denotes the n-dimensional Lebesgue measure on C™. The norm in 32(C") is
defined by ||f]| = V/{F, 7} (se, [2], [3], [18)).

The reproducing kernel for the Fock space is given by K,(z) = e/*¥)/2, where
(z,w) = X, 2W;. It is well known that ||Ky| = el*I’/4. The Bargmann-Fock
spaces has been studied by many authors and it is rooted from mathematical problems
of relativistic physics (see [15]) or from quantum optics (see [13]). In physics the
Bargmann-Fock space contains the canonical coherent states, so it is the main tool
for studying the bosonic coherent state theory of radiation field (see [14]).

The Bargmann-Fock spaces has also been proved invaluable in the theory of wavelets.
In fact, the Bargmann transform is a unitary map from L?(R) onto the Bargmann-
Fock space F%(C), transforming the family of evaluation functionals at & point into
canonical coherent states, which are nothing but the Gabor wavelets.

In the last years there was an increasing interest to the characterization of composition
operators acting upon Fock space. For instance, bounded and compact composition
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operators acting upon Fock space F2(C™) were described in [7]. In the recent paper
[19], boundedness and compactness of densely defined operators on Fock space 3%(C)
were characterized in terms of Berezin transform.

Motivated by [5], [6], [11], [18], [19], it is rather natural to study the approximation
properties of C*-algebras generated by semigroups of composition operators acting
upon Fock space.

The paper is organized as follows. Section 2 is devoted to the study of composition
operators on Fock space of C™ which induce holomorphic flows. In Section 3, we
obtain sufficient conditions for representations of a C*-algebra of composition flow
to be cyclic in Fock space of C™. In Section 4, similar conditions are obtained for a
C*-algebra of measures generated by Heisenberg groups.

2. HOLOMORPHIC FLOWS INDUCED BY A BOUNDED COMPOSITION OPERATOR ON
FOCK SPACE OF C"

In this section we describe the holomorphic flows induced by a bounded composition
operator on Fock space of C". To this end, we first recall some basic definitions and
results.

Let G be a domain in C", and let H(G) be the set of holomorphic functions on
G. A one-parameter family (¢, 2) of nonconstant functions from G to G satisfying
_ 9(0,2) = zand @(t+8,2) = ¢(s, (t,2)) forall 5,¢ > 0 and z € G is called a semigroup

flow (see [11]). The family (C,, ):>0 of composition operators on H. (G) is given by

(Ceu )(2) = f(p(t, 2))

for every ¢ > 0 and f € II(G). Notice that since ©(t,z) is a flow, the semigroup
property Co,,,, = C,,C,,, is satisfied,

The next result, which was established in [7], contains the boundedness and compactness
of composition operator on Fock space of C™.

Lemma 2.1 ([7]). Let ¢ : C* — C™ be a holomorphic mapping. If for f € F2(C),
Co(f) := f(p(2)) is bounded on F2(C™), then ¢(z) = Az + B, where A isann xn
matriz and B is an n X 1 vector. Furthermore, lA]l < 1, and if |A¢| = [¢| for some
§ €C™, then (A¢, B) = 0; if C,, is compact, then || Afl < 1.

Conversely, let p(z) = Az+ B, where A is ann xn matriz and B is annx 1 vector.
Tj (A%, B) = 0 whenever |A¢| = [¢], then C,, is bounded on F2(C™); if 1Al <1, then
Cy is compact on F3(C™).
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The main result of this section is the following theorem.

Theorem 2.1. Suppose that ¢(t,z) : C* — C" is an one-parameter fomily of
holomorphic mapping satisfying ¢(0,2) = z and @(t + 3,2) = @(s, (i,2)) for all
s,t 2 0 and z € C". If the family (C,,)i>0 is bounded on F2(C"), then o(t,z) =
etz + (eFo —I)~1(eF - I)B or ¢(t,2) = z + Dt, where F is an n x n matriz, and
B and D are n x 1 vectors.

Proof. By Lemma 2.1 we have p(l,z) = A(l)z + B(L), where A(l) = (asj(L))nxn is
an n X n matrix satisfying [|A(t)|| < 1 and B(t) = (bi;(t))nx1 is an n x 1 vector, ay(t)
and by;(t) are differentiable functions of ¢.

From the semigroup property of the flow, we have

A(t + 8)z + B(t + 8) = A(t)(A(s)z + B(s)) + B(t) = A(t)A(s)z + A(t) B(s) + B(t).
Equating the coefficients of z, we get :

(2.1) At +8) = A(t)A(s)
and
(2.2) B(t + s) = A(t)B(s) + B(t)-

Sinca (0, z) = z, we have A(0) = I, where [ is the unit matrix, and B(0) = O, where
O is the zero vector. The differentiability of A(t) and equality (2.1) imply A(t) = e™*,
where F is an n X n matrix. Actually, we have
') = lim AC8D—AQ) _ Lo g
O e Bhus it ho
Next, the equality

ADD) —AQ) .
G T A(t)A (0).

A(t + 8) = A(s)A(t) = A(t)A(s)
implies A'(t) = A(t)A’(0) = A'(0)A(t). If ef*o # I for some ty > 0, then from (2.2)
we have

(2.3) B(t + 8) = e B(s) + B(t),

(2.9) B(s +t) = eM*B(t) + B(s).

Teking s = to in (2.3) and (2.4), we get B(t) = (™% — I)~(e™* — I) B(to).

If et = I, then from (2.3) we obtain B(s+t) = B(t)+ B(t). Thus, B(t) is a continuous

linear vector function in ¢ with B(0) = 0!. So, we can conclude that B(t) = Dt for

some n X 1 vector D in C™. This completes the proof of Theorem 2.1. O
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3. CYCLIC REPRESENTATIONS OF C™-ALGEBRAS OF COMPOSITION FLOW

In this section we deal with the C*-algebra:
€r, :=C"({Cp, : g €T}),

where C, (f(2)) = f(¢(t, 2)) and I is a discrete semigroup flow of C".

We first recall some definitions from the theory of C*-algebras (see, [1]). A bounded
linear map  : X — Y between C*"-algebras X and Y is called a *-homomorphism
if it preserves the algebraic operations and satisfies 7(z*) = m(z)* for any z € X.
A representation of a C*-algebra € is a *-homomorphism of € into the C*-algebra
L(H) of all bounded operators on some Hilbert space H. It is customary to refer
themapp:C—rt(H)assrepreaentatiunofﬂonH.Aninvmiantsubspacemt
of the C*-algebra p(C€) is called a cyclic subspace if it contains a vector £, such that
{p(€)¢, & € H} is dense in M. A representation p is called a cyclic representation if
itself is & cyclic subspace for p. Let A be a complex set and f(z) be some holomorphic
function. If f(A) = 0 implies f(z) =0, then A is called a uniqueness set for f-

The main result of this section is the following theorem.

Theorem 8.1. Let A = {Mx}32, be a sequence of nonnegative real numbers. Suppose
that p(p(t,2)) is analytic on t and z separately, where o(t,z) is as in Theorem
2.1. Furthermore, suppose that 0 < t € A is the uniqueness set of some bounded
holomorphic function in the right half plane. Then p is a cyclic representation of (&
on F%(C).

Proof. To prove that p is a cyclic representation of the C*-slgebra €x,, it is enough
to show that span{p(Cr,)f} is dense in F2(C™) for some fixed f € F2(C™). Without
loss of generality, let g be a function in F2(C”) such that
(3.1) £ (p(p(t, 2)))| = lg(p(t, 2))] < e,
where the function (¢, 2) is as in Theorem 2.1 and a < 1/2 is some fixed positive
constant. If the conditions of the theorem are satisfied, but span{p(Cr,)f} is not dense
in 32(C"), then by the Hahn-Banach Theorem, there exists a nontrivial bounded
linear functional L which annihilates {p(Cr;)f}. Thus,
L(f(p(p(t, 2)))) = L(g(p(t, 2))) = 0.

Define

1 : e

L) = G . 90t 207 H au(a),
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and observe that L(w) is an analytic function in the right half plane C; = {w: Rw >
0}. Tt follows from (3.1) that L(w) is bounded in C... Since by assumption 0 <t € A

is the uniqueness set, we can conclude that L(w) = 0. This completes the proof of
Theorem 3.1. a

The following example illustrates Theorem 3.1.
Example. The mapping p defined by p,f = et f is a cyclic representation of €, on
F3(C). Indeed, in this case we take f(z) = e*,
1 =
i S e ae™ " z+4b —4z?
(w) @m)" fC“ e mﬂ dlat du(z),

and

oo
A={Ak:Ak>0 Z L =+ }
] IR § oD ¢ .

Then using the arguments of the proof of Theorem 3.1 and [10], we can conclude that
L(w) =0, and the result follows. ;

4. CYCLICITY OF SEGAL-BARGMANN REPRESENTATION.

In this section we study the cyclicity property of Segal-Bargmann representation.
To this end, we first recall some basic facts on C*-algebras generated by Heisenberg
groups (see [5]). The Heisenberg group H,, is given by C™ x R with multiplication
' (a,t)(b, 8) = (a +b, 8+ t + Sb.a/2),
where Sb.a/2 = (b.a —a.b)/2i. It is well-known that the Lebesgue measure on C* xR
is bi-invariant Haar measure on Hy,. In [5], Coburn focused on the Segal-Bargmann
representation on Fock space. The representation is given by p(a, t) = e“Wa, where

(Waf)(2) = ka(2)f(2 — a)

and kq(z) = exp{(2, a)—|a|?/2} is the normalized reproducing kernel. In representation
theory, p is often extended to M(Hy,) and L*(Hy), the convolution algebra of bounded
regular complex valued Borel measures on H, and its closed two-sided ideal of
measures that are absolutely continuous with respect to left Haar measure, respectively.
It is represented as follows:

(1) o) = [ plathio(a?)
The equation (4.1) determines an operator on F3(C") by

(o(0)f19) = jH (o(a, O, 9)do(a, 1),
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where f and g are arbitrary functions in F3(C") and (-,-) denotes the usual inner

product on L3(C™).
The cut-down of p to M(Hy), L*(H,) is defined as follows:
(4-2) plo) = fc_ Wado(a).

Observe that M(H,) and M(C") are involution Banach algebras with do* =
do(—a). The twisted convolution 7o on M(C™) is defined for any continuous on C*

function ¢ which vanishes at infinity as follows:
[, #a)itrio)ia) = L. L 9+ bxato/artarar )

where x,(z) = exp{iS(z,a)}. Denote by B(C") the linear span of all continuous
positive-definite functions on C™.
For bounded and continuous ¢ and f € F3(C"), the Berezin-Toeplitz operator T,

is defined by
TN = g [, Pl @3Nl do(s),

In [5], it is proved that 7, defined by (4.2), is a faithful representation of M(C™); on
52(C™). The following identities are also proved in [5]:

C*{p[M(C™)4]} = €*{p[M(H,)]} = closure{T,, : ¢ € B(C™)}.

Below we prove that both 7 and p are cyclic representations on 2(C™). To this
end, we need the Jensen's formula for entire functions of several variables,

Let e = (1, €2, ..., en) be & unit vector satisfying e; > 0 (j = 1,2, ..., n). Denote by
N(A, e, t) the number of points of A lying on the segment S(e, t) = {(e,¢, e3¢, ..., enf):
€] < £} of the complex affine straight line S(e) = {(e1£, e3¢, ..., enf) : £ € C}. For an
entire function f(z), by N(f,e,t) we denote the number of zeros of f(z) in S(e,?),
counted according to their multiplicity. Also, we denote

S(r,a) = (Tet, Befen, Tt gion-s, =),
where r = (ry, 73, ..., 7 satisfying r; > 0 (j = 1,2, ..., ). For an entire function f(2)
. (f(0) # Q), the Jensen’s formula is as follows (see [12], Chapter 4, Section 2.1-2.4):

O Ll

I AR
T '2?/0 fn log|f(r1e*:, ..., rne')|db; ...d8, — log | £(0)).
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Theomfn 4.1. The representations p and 7 defined by (4.1) and (7), respectively,
are cyclic representations of M(H,,) and M(C™)y on F2(C™), respectively.

Proof. Since both of the closures of M(H,) and M(C™), under the discussed representations
are equal to closure{T, : ¢ € B(C™)}, it is enough to show that
(4.3) closure{T,, : y € B(C™)} = F2(C™).

Let A = {Ac}3Z, be a sequence of nonnegative real numbers in R™, where A\ =
(A%, A2, .-s AR)- It is easy to see that the functions px 1= ei9(Aa)/2 — gi(AZa)/2 ) ¢ A
are in B(C™). Thus, to prove (4.3), it is enough to show that the closure of linear
span {T,, : A € A} coincides with F2(C™) for a suitable selected sequence A. Denote

r 1 an v
J(‘l’, f) T jo. (E/U- "‘j; N(fl S(rl a)?t)dal-"dan—l) dt!
and observe that if A satisfies the condition
» imeup 260 _ 4o,

r-++c0 T
then the closure of linear span {T,,, : A € A} coincides with F2(C"). Actually, if
(4.4) is fulfilled, but the closure of linear span {Tj, : A € A} # 32(C™), then by the
Hahn-Banach Theorem, there exists a nontrivial bounded linear functional L which
annihilates T}, , that is L(T,, f) = 0. Without loss of generality, let f(z) be a function
‘in 52(C") satisfying
(4.5) |£(2)] < e~*ekl,
where g is some fixed positive number. Define

L(w) = @‘,-,— /c“ (Ty. 77D 1 du(z)

1 < 41 B 4
= ——(Zfr)’“ -/c“ /cn ei{w.&s}f(a)e(xm)ﬁe—ﬂc] du(a)q(z)e‘if‘i du(z),
and observe that L(w) is an entire function.
By (4.5), with some positive constant A; we have
(46) (T £)(2)] < Are™ el

It follows from (4.6) that for sufficiently large » with some positive constant As
log|f(z)| < Aar®. Hence by the Jensen’s formula, we should have

limsup _J(r,z_f) < +o00,

r—+400 r
which contradicts (4.4). Thus, we conclude that L(w) = 0, and the result follows.
Theorem 4.1 is proved. a
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