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1. INTRODUCTION

Throughout the paper the letters N, Z and R denote the sets of all natural, integer
and real numbers, respectively. The letter k stands for a positive integer. For any a,
b € Z (a < b), define Z(e) = {a,a +1,---} and Z(a,b) = {a,a+1,--- ,b}. Also, the
symbol * denotes the transpose of a vector.

Recently, the difference equations have widely occurred as the mathematical models
describing real life situations in many fields, such as: probability theory, matrix theory,
electrical circuit analysis, combinatorial analysis, queuing theory, number theory,
psychology and sociology, etc.

For the general background of difference equations, one can refer the monograph
[1, 8]. Since the last decade, there has been much progress on the study of qualitative
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properties of difference equations, which includes results on stability, attractivity,

oscillation and other topics (see, [6, 11, 12, 16], and reference therein).
In this paper we consider the following 2n-th order p-Laplacian difference equation

(L1)  A™ (Yien+19p (A1) = (=1)" (3, viy1, 845, %i-1), n € Z(1), i € Z(1,k),

with boundary value conditions:
(1.2) Ulon=Ugpn=:"=U =0, U1 =Uk42 =" = Upyn =0,

where A is the forward difference operator: Aw; = w4y — u;, Aly; = A™1(Aw),
7% is nonzero and real-valued for each i € Z(2 — n,k + 1), p,(s) is the p-Laplacian
operator: ¢y, (s) = |s|P~2s(1 < p < 00), and f € C(R* R).

We may think of (1.1) as a discrete analogue of the following 2n-th order p-
Laplacian functional differential equation

a3 [roe (S22)] = cors.ut+ D, -1), te o,

with boundary value conditions:
(14) u@)=v(@)=--=u"V(a)=0, u@®) =vw'(b)=---= u™=1)(p) = 0.

Note that equations of type (1.3) arise in the study of solitary waves [15], in lattice
differential equations and periodic solutions [9], and in the study of functional differential
equations.

In recent years, the boundary value problems for differential equations were in the
focus of a number of researchers. By using various methods and techniques, such as
the Schauder fixed point theory, the topological degree theory, the coincidence degree
theory, a series of existence results of nontrivial solutions for differential equations
have been obtained (see, [4, 9]). Another important and powerful tool that was used
to deal with problems on differential equations is critical point theory (see [7, 13]).
However, only since 2003, the critical point theory has been employed to establish
sufficient conditions for the existence of periodic solutions of difference equations.
By using the critical point theory, Guo and Yu [10] and Shi et al. [14] have found
sufficient conditions for the existence of periodic solutions of second-order nonlinear
difference equations. We also refer to [16] for the discrete boundary value problems.

Compared to the first- or second-order difference equations, the study of higher-
order equations, and in particular, 2n-th order equations, has received considerably
less attention (see, [2, 3, 5] and references therein).

134



EXISTENCE AND NONEXISTENCE RESULTS FOR A 2N-TH ORDER ...

The authors [2] studied the following 2n-th order difference equation:

n

(1.5) onA’ (i - 5)A%u(i - 5)) =0

in the context of the dlscret.e calculus of variations, and Peil and Peterson [12] studied
the asymptotic behavior of solutions of (1.5) with 4;(i) =0for 1 < j < n—1. In 1998,
Anderson [3] considered (1.5) for i € Z(a), and obtained a formulation of generalized
zeros and (n,n)-disconjugacy for (1.5). In 2004, Migda [11] studied an m-th order
linear difference equation. In 2007, Cai and Yu [5] have obtained some criteria for the
existence of periodic solutions of the following 2n-th order difference equation:

(1.6) A" (Yi—nA™Uip) + f(i,us) =0, n € Z(3), i € Z,

in the case where f grows superlinearly both at 0°'and at co. In 2007, Chen and
Fang [6], using the critical point theory, have obtained a sufficient condition for the
existence of periodic and subharmonic solutions of the following p-Laplacian difference
equation:

(1.7 A (pp (A1) + f(5, i1, %, 8i-1) =0, i € Z.

The study of boundary value problems (BVP) to determine the existence of solutions
of difference equations has been a very active research area in the last twenty years.
For the surveys of recent results in this area, we refer the reader to the monographs
[1, 8]. However, to the best of our knowledge, results on solutions to boundary
value problems of higher-order nonlinear difference equations are very scarce in the
literature. Furthermore, since the equation (1.1) contains both advance and retardation,
not surprisingly, there are only few papers dealing with this subject.

Motivated by the above results, we use the critical point theory to give some
sufficient conditions for the existence and nonexistence of solutions for the BVP (1.1),
(1.2). We study both the superlinear and sublinear cases. The main idea used in this
paper is to transfer the existence of solutions of the BVP (1.1), (1.2) into the existence
of the critical points of some functional. The proofs are based on the celebrated
Mountain Pass Lemma in combination with variational technique. The purpose of
this paper is two-folded. On one hand, we further demonstrate the powerfulness of
critical point theory in the study of solutions for boundary value problems of difference
equations. On the other hand, we complement the existing results. The motivation
for the present work stems from the recent papers [7, 9].
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For the basic concepts of variational methods, we refer the reader to monographs
[8, 13]. Let
5 =max{y:i€Z(2—n,k+1)}, y=min{y:{i€Z(2-n,k+1)}
Our main results are as follows.
Theorem 1.1. Assume that the following hypotheses are satisfied:

" (1) 1 <0 for any i € Z(2—n,k+1);
(Fy) there exists a functional F(i,-) € CX(Z x R?, R) with F(0,-) =0, such that

8F (i — 3!112 va,v3) | BF(gx,m) = £, v1,v2,v8), Vi € Z(1, k);

() there exists a constant My > 0, such that for all (i,v,v3) € Z(1,k) x R?
F (i, v1, OF (i,v1,
] o

. Then the BVP (1.1), (1.2) possesses at least one solution.

Remark 1.1. Assumption (F3) implies that there exists a constant M; > 0, such
* that

(F3) |F(@,v1,v2)| < My + Mo(lva| + [val), V(i,v1,12) € Z(1, k) x R,

Theorem 1.2. Suppose that (F1) and the following hypotheses are satisfied:

() 7: > 0 for anyi € Z(2—n,k+1);

. (F3) there ezists a functional F(i,-) € C*(Z x R?, R), such that

F(i, vy, i i
Jim b o) g v} +3, Vi € Z(1,k);

r—0 TP
(Fs) there ezists a constant B > p, such that for any i € Z(1, k)

OF (i, v1, OF (i, vy, {
0< (:9:11 L (B:: "’)vn<ﬁF(s.u1,u,), St

Then the BVP (1.1), (1.2) possesses at least two nonirivial solutions.

Remark 1.2. Assumption (F}) implies that there exist constants a; > 0 and ag > 0,
such that s

(F) Fliv,)>a (VT+93) —as, Vi€ Z(L,K).

Theorem 1.3. Suppose that (v'), (Fi1) and the following assumption are satisfied:

(Fu)ﬂlerem:istcaﬂatantaR>Uand1<a<2,mchﬂmtfori€2'(1.k) and

VAT + a 2 Rl
OF (i, v1,v9) OF (i,v1,v2) a
0< 7] gasel v S
8y Lk Ovg < 2
136
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Then the BVP (1.1), (1.2) possesses at least one solution.

Remark 1.3. Assumption (Fg) implies that for each i € Z(1, k) there exist constants
a3 > 0 and a4 > 0, such that

(F§) F(i,v1,v2) < a3 (v} +2) ¥ + oy, Wi, 01,02) € 2, k) x R2.

Theorem 1.4. Suppose that (), (F) and the following assumption are satisfied:
(Fs) vaf(i,v1,v2,v3) > 0, for va # 0, Vi € Z(1,k).

Then the BVP (1.1), (1.2) has no nontrivial solutions.

Remark 1.4. As it was mentioned above, results on the nonexistence of solutions of

problem (1.1), (1.2) are very scarce. Hence, Theorem 1.4 complements the existing
results.

The rest of the paper is organized as follows. In Section 2 we establish the variational
framework for the BVP (1.1), (1.2), and transfer the problem of existence of solutions
of BVP (1.1), (1.2) into that of the existence of critical points of the corresponding
functional. Some related fundamental results are also recalled. Finally, in Section 3

we prove our main results, by using the critical point method.

2. VARIATIONAL STRUCTURE AND SOME LEMMAS

In order to apply the critical point theory, we first establish the corresponding variational
framework for the BVP (1.1) with (1.2), and state some lemmas, which are used in
the proofs of our main results. We start with some basic notation.

Let R* be the real Euclidean space of dimension k. Define the inner product on
R* as follows:

. k
(2.1) (w,9) = _ujv;, u,v€R",
j=1

which induced the norm || - ||:

o
(2.2) llull = (Zu,?) , u€R".
j=1

On the other hand, for all u € R* and s > 1, we define the norm |[u/|; on RF as

follows:
i

k o
(2.3) l[ulls = (Z Iﬂsl') -
=1
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Since the norms ||ul|y and [[u||2 are equivalent, there exist constants c;, ¢z (c2 >
c1 > 0), such that
(2.4) allullz £ lulls < ezllulla, v € R

Clearly, ||u|| = ||u/lz- For the BVP (1.1), (1.2), consider the functional J defined

on RF as follows:

k k
(2.5) J(u)= & S v Al - D F(,uisa, wi), w= (us,u,--- ,ux)* € R,
i=1

i=l-n
whereul_,,=u,_“=...=uo=0, Uk41 =1Uk42 =+ = Ugyn = 0 and
OF (i — 1,v3,v3) 6F(i,vl,vg)= e
8"}3 + avz f(! 131.‘&,1)3).
It is easy to sce that J € C'(R¥, R), and for any u = {u;}f.; = (u1,%,...,ux)*, by
uBing Uj—n =Ug—p =""" =1upg =0, Uk+1 =Uk42 =""* = Ugn =0, and

Ar = g(—l)f (7 ) n-s

we can compute the partial derivatives of J by formula:
ar _
Oy
Thus, u is a critical point of J on R* if and only if
A" (Yient19p (A"0-1)) = (1" f (i, w2, 5, ui-1), © € Z(1, k),
and so, we can reduce the existence of solutions of the BVP (1.1), (1.2) to the existence
of critical points of J on R¥. That is, the functional J is just the variational framework
of the BVP (1.1), (1.2).
Let D be the (k+n) X (k + n) matrix defined by

(_l)nan ('ri—-n'l'l'PP (An"'i-l)) = f(ilu(+huilui-1), Yie Z(l, k).

1 =1 0 =400
=1 2 =1 0 0
e e i
RO Rl o B et |
0o 0 0 .. -1 2

Clearly, D is positive definite. Let Aj—p,A3—p,"++ ,Ax be the eigenvalues of D.
Applying matrix theory, we see that A; > 0, j =1—n,2 —n,--- ,k, and, without
loss of generality, we can assume that
(2.6) 0<M-nS<A3n < oS A

Let E be a real Banach space. We assume that J € C*(E,R), that is, J is a
continuously Fréchet-differentiable functional defined on E. The functional J is said to
138
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satisfy the Palais-Smale condition, (PS)-condition, for short, if any sequence {u.m} €
FE for which {J (u“))} is bou.nded and J’ (ﬂ“}) —+0asl— o0 possesses a convel'gent
subsequence in E.

Let B, denote the open ball in E of radius p centered at 0, and let 8B, denote its
boundary.

Lemma 2.1 (Mountain Pass Lemma [13]). Let E be a real Banach space and let
J € C(E, R) satisfy the (PS)-condition. If J(0) = 0 and

(J1) there exist constants p, a > 0 such that JlsB, 2 a,

(Ja) there ezists e € E \ B, such that J(e) < 0.

Then J possesses a critical value ¢ > a given by

(2.7) c= inf ; max J(g(s)),
where
(2.8) ' = {g € C([0,1), E)|g(0) =0, 9(1) =e}.

Lemma 2.2. Suppose that the conditions (v'), (F1), (Fs) and (Fi) are satisfied.
Then the functional J satisfies the (PS)-condition.

Proof. Let u() € R* and | € Z(1) be such that {J (u®)} is bounded. Then there
exists a positive constant M3, such that

My <J (u“}) < M,, VIEN.
By (F}), we can write

—My<J (u(l}) = % i Yit1 [A“ugnl —EF (‘l "-‘{+h'“§n)

i=1—

<3y [ T (i), - an (n)] _alz[ \/( 1421)3_*_(“50)“]34-02!:

i=l—-n

< 23 [(0) 2] ot o]+

<L} b0 - et o0 s

where z) = (A“"lu(flﬂ, A1) .. A""ug’).. Taking into account that

L
l|:(n"?= Li: (An-auﬁl_ 431»:—2“51)_)2]2'f p [J\k i ( An—iu‘(”)a] <A "u{'i “p'
i=]1—n 2

i=l—n
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O (u0) <2 O - o ot

T el Jad ool s

Since B > p, there exists a constant Mz > 0 to satisfy ||u®?| < Ms, I € N.
Therefore, {u{"} is bounded on RX. As a consequence, {u(")} possesses a convergence
subsequence in R¥, implying the (PS)-condition. Lemma 2.2 is proved. u]

3. PROOFS OF THE MAIN RESULTS
In this Section, we prove our main results by using the critical point theory.
Proof of Theorem 1.1. By (F3), for any u = (u1,u2,-+ ,ux)* € R, we have

k k
J(u)=;? Z Vi1 |AMui]? — ZF(i.mﬂ.w)

i=l-n

%{ Z (A" tugy — A™ 11u)] +Mo2(|m+zl+|u.l)+mk

'?Lg (z*Dz)% + 2M02 s + Myk < -c'1’A _allzllP + 2Mol|ul + Mk,

where z = (bﬂ lul_m A" ug_m ’ ﬂ"_lﬂg) . Since

k k

el = [E (A"-’m—A"-“w)’r > [AH > (av)’ §>A._,. Il

i=l—n i=l-n

we have
J(w) < 2EAE, [lull? + 2MoVE|[ul + Mk — —oo as [lul —+ +oo.
The above inequality means that —J(u) is coercive. By the continuity of J(u), J
attains its maximum at some point, which we denote by 4, that is,
J(#%) = max {J(u)|u € R”} ;
Clearly, 4 is a critical point of the functional .J, and the result follows. This completes
the proof of Theorem 1.1. O

Proof of Theorem 1.2. By (F3), for any € = ;}ﬁz\f’fn. where X;_,, is as in (2.6),
there exists p > 0, such that

|F(i, v, 09)] < ;—’—pc{z\ff... (02 +2)¥ Vi e Z(1, %),
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for v/of +v3 < V2p.
For any u = (uy1,uz,--- ,ux)* € R* and lull < p, we have |u;| < p, i € Z(1,k).
It follmfromtheproofofthz'rheorem 1.1 that for any u € R¥,

J(ﬂ)—— Z Vit [AM P — ZF(t,um.m)

ﬁll—n
X 2,3 Y 5%
2 penTallul? L E, S Z (s + ) ®

> '——'c';«\l llulf? - —e;xl_,, llulf? = —«4:«1-,. ).
Teking a = -10’{’)«1_,,;;" > 0, we obtain
Ju)>a>0, Vue 8B,.

Atthesametimc.wehavealsoprovedthatthm-ccpdstoomtmtsn>0mdp>0
such that J|ss, > a, implying that J satisfies the condition (J;) of Lemma 2.1.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass Lemma
in critical point theory, we need to verify other conditions of this lemma. By Lemma
2.2, J satisfies the (PS)-condition. So; it remains to verify the condition (J3).

It follows from the proof of Lemma 2.2 that

70 < TEAF [ulP - arc? Julf + ask.

Since B > p, we can choose # large enough to ensure that J| (@) < 0.
Now we can apply the Mountain Pass Lemma to conclude that the functional J
possesses a critical value ¢ > a > 0, where

¢= lnf Slllp J(h(s)), ~

and
r'= {h € C(m- ]]1 Rk) | h(U) =0, h(l) = ﬁ'}'
Let % € R* be a critical point associated with the critical value ¢ of J, that is,
J(@) = c. Similar to the proof of Lemma 2.2 ((PS)- condition), we can conclude that
J(u) is bounded on R*. As a consequence, there exists & € R* such that
T(3) = e = e J(H(6):
Clearly, @ # 0. If i # 1, then the conclusion of Theorem 1.2 holds. Otherwise, i = i,

and we have ¢ = J() = Cmax = m[.gJ{] J(h(s)). That is,
,’E‘;‘:. J(u)= }{2.; ”:1[:'1':“ J(h(s)).
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Therefore,
: = , YVhel.

Cmax = afcj.(ﬁl?f] Ji (h(s))

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(@) < 0 imply that
there exists so € (0,1), such that J (h(80)) = Cmax- Choose h;, hy € T such that
{h1(s) | 8 € (0,1)} N {ha(s) | s € (0,1)} is empty, then there exists s;, 32 € (0,1) to
satisfy J (hy (81)) = J (h2 (82)) = Cmax- Thus, we get two different critical points of
J on R* denoted by

ul =h1 (81), tlz =h3 (89).

The above arguments can be applied to conclude that the BVP (1.1), (1.2) possesses
at least two nontrivial solutions. This completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. In view of above arguments, we only need to find at least
one critical point of the functional J defined by (2.5).
By (F}), for any u = (u1,ua, - ,ux)* € R¥, we can write

ik k
Jw)== 3 Y1 [AMf? = Y Fi, i, u)
Phsl—n i=1

> Tt o3 (Vo) -
% ok n““ﬂ’ —ag { L:l (V uf, + “i) ?P] ”} agk

k i) #r
Icf’\l—a"“"p — agc}” { [Z (udia +u?)] } - ask

f=1
> ZINE  ull? - 287ascf ul 2 — auk - 400 a5 [juf = +oo.

By the continuity of J, the above inequality implies that there exist lower bounds
of the values of J. This means that J attains its minimal value at some point, which
is just the critical point of J with the finite norm. Theorem 1.3 is proved.: O

Proof of Theorem 1.4. Assume the opposite, that the BVP (1.1), (1.2) has a
nontrivial solution. Then J has a nonzero critical point u*. Since

gi (=1)"A" (Yiens10p (APui1)) = £, i1, i, ui1),
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we get
k k
(31) Ef(‘- ultl-!'u;! "’:—l)u‘: = Z [(—1)”&" (’7i—n+lfpp (A"uf_l))] u:

=1

k
= Y wnlA"P <o
i=l—n
On the other hand, it follows from (Fg) that

k
(3.2) > £ by ud,uluf > 0.
i=1
This contradicts (3.1), and the result follows. Theorem 1.4 is proved. O
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