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1. INTRODUCTION

Tight wavelet frames are different from the orthonormal wavelets because of re-
dundancy. By sacrificing orthonormality and allowing redundancy, the tight wavelet
frames become much easier to construct than the orthonormal wavelets. Tight wavelet
frames provide representations of signals and images in applications, where redundancy
of the representation is preferred and the perfect reconstruction property of the
associated filter bank algorithm, as in the case of orthonormal wavelets, is kept.

In recent years there has been a considerable interest in the problem of constructing
wavelet bases on locally compact Abelian groups. For example, Dahlke [4] introduced
multiresolution analysis and wavelets on locally compact Abelian groups, Lang [12],
by following the procedure of Daubechies [5], has constructed compactly supported
orthogonal wavelets on the locally compact Cantor dyadic group € via scaling filters,
and these wavelets turn out to be certain lacunary Walsh series on the real line.
Later on, Farkov [6] extended the results of Lang [12] on the wavelet analysis on the
Canlor dyadic group € (o the locally compact Abelian group G, which is defined
for an integer p > 2 and coincides with € when p = 2. Concerning the construction
of wavelets on the half-line R, Farkov [7] has given the general construction of all
compactly supported orthogonal p-wavelets in L#(R*) and obtained necessary and
sufficient conditions for scaling filters with p® many terms (p,n > 2) to generate a
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P-MRA analysis in L?(R*). These studies were continued by Shah and Debnath in
(15-17], where they have given some new algorithms for constructing the wavelet and
Gabor frames on the positive half-line R+. More results in this direction can also be
found in [8, 9] and in the references therein.

A field K equipped with a topology is called a local field if both the additive and
multiplicative groups of K are locally compact Abelian groups. The local fields are
essentially of two types (excluding the connected local fields R and C). The local fields
of characteristic zero include the p-adic field Q,. Examples of local fields of positive
characteristic are the Cantor dyadic group and the Vilenkin p-groups. Even though
the struclures and metrics of local fields of zero and positive characteristics are similar,
their wavelet and multiresolution analysis theory are quite different. Local fields
have attracted the attention of several mathematicians, and have found innumerable
applications not only in the number theory, but also in the representation theory,
division algebras, quadratic forms and algebraic geometry. As a result, local fields are
now consolidated as a part of the standard repertoire of contemporary mathematics.
For more details we referr to [14, 19].

Recently, R. L. Benedetto and J. J. Benedetto [3] developed a wavelet theory for
local fields and related groups. Jiang et al[11] pointed out a method for constructing
orthogonal wavelets on a local field K with a constant generating sequence and
derived necessary and sufficient conditions for a solution of the refinement equation to
generate a multiresolution analysis of L?(K). Subsequently, the tight wavelet frames
on the local fields were constructed by T.i and Jiang in [13]. They have obtained a
necessary condition and sufficient conditions for tight wavelet frame on local fields in
the frequency domain. Behera and Jahan [1] have constructed wavelet packets and
wavelet frame packets on a local field K of positive characteristic, and show how to
construct an orthonormal basis from a Riesz basis. Further, Behera and Jahan [2] have
given a characterization of scaling functions associated with given multiresolution
analysis of positive characteristic on a local field K. Recently, Shah and Debnath [18],
by following the procedure of Daubechies [5], have constructed tight wavelet frames
on a local field K via extension principles.

Finally, E. Hermandes and Weiss (see [10]) have given a general characterization
of all tight wavelet frames in L?(R) by means of the Fourier transform. As for the
corresponding counterpart for a local field K, such a result is not yet reported. So
in this paper, we give a complete characterization of tight wavelet frames on local
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fields of positive characteristic, using the Fourier transform with different machinery
as that of used in [10]. :

Thepaperismganizadasfouthecﬁon&wediscussmmepmuminwfum
about local fields of positive characteristic and also some results which are required
in the subsequent section. A characterization of tight wavelet frames on local fields
of positive characteristic is given in Section 3.

2. PRELIMINARIES ON LOCAL FIELDS

Let K be both a field and a topological space. Then K is called a local field if
both K+ and K* are locally compact Abelian groups, where K* and K* denote the
additive and multiplicative groups of K, respectively. If K is any field and is endowed
with the discrete topology, then K is & local field. Further, if K is connected, then
K is either R or C. If K is not connected, then it is totally disconnected. Hence by
a local field, we mean a field K which is locally compact, non-discrete and totally
disconnected. The p-adic fields are examples of local fields. For more details we refer
the monographs [14, 19]. In the rest of the paper, we use the symbols N, Ny and Z
to denote the sets of natural, non-negative integers and integers, respectively.

Let K be a fixed local field. Then there is an integer ¢ = p”, where p is a fixed
prime element of K and r is a positive integer, and a norm | - | on K such that for
all z € K we have [z| > 0 and for each 2 € K\ {0} we can write |z| = ¢* for
some integer k. This norm is non-Archimedean, that is, |z + y| < max {|z|, |y|} for
all 2,y € K and |z + y| = max{|z|,|y|} whenever |z| # |y|. Let dz be the Haar
measure on the locally compact topological group (K, +). This measure is normalized
so that [, dz = 1, where D = {z € K: |z| < 1} is the ring of integers in K. Define
B = {z €K: |z| <1}. The set B is called the prime ideal in K. The prime ideal in K
is the unique maximal ideal in D, and hence as result B is both principal and prime.
Therefore, for such an ideal B in D, we have B = (p) = pD.

Let D* = D\ B = {z€K:|z| =1}. Then, it is easy to verify that D* is a
group of units in K* and if z # 0, then we may write z = p*z’,2’ € D*. Moreover,
B* = p*D = {z € K: |z| < g~*} are compacl subgroups of K*, and are known as
the fractional ideals of K* (see [14]). Let U = {a;}7_5 be any fixed full set of coset
representatives of B in D, then every element z € K can be expressed uniquely as
z =Y 52, cep’ with ¢z € U. Let x be a fixed character on K+ that is trivial on D
but is nontrivial on B~1. Therefore, x is constant on cosets of D, implying that if

124



A CHARACTERIZATION OF TIGHT WAVELET FRAMES ...

y € B¥, then x,(2) = x(y2) for z € K. Suppose that x,, is any character on K, then
clearly the restriction xu|D is also a character on D. Therefore, if {u(n) : n € Np} is
a complete list of distinct coset representatives of D in K+, then, as it was proved in
[19), the set {Xu(n) : 7 € No} of distinct characters on D is & complete orthonormal
system on D.

We now impose a natural order on the sequence {u(ﬂ)}ne&. We have D/B =
GF(q) =T, where GF(q) is a c-dimensional vector space over the field GF(p) (see

[19]). We choose a set: {1 = €9, €1, €2, ..., €c_1} C D* such that span {1 = e, €1, €2, ..., €c—1}
& GF(q). For n € Ny satisfying :

0sn<g n=a+ap+..4a.1p°%, 0<ar<p and k=0,1,..,c—1,

we define
(2.1) u(n) = (a0 + @161 + ... + Go160-1)p L.
Also, for n =bp + b1g+ ... + bsg*,n > 0, 0 < by < g, we set
u(n) = u(bo) + p~ u(b1) + ... + p*u(bs).
Then, it is easy to verify that for £ € Ny :
{u(k) : k € No} = {—u(k) : k € No} = {u(k) + u(&) : k € No},

and u(n) = 0 iff n = 0 (scc [19]). Hercafter we use the notation Xn = Xu(n), n > 0.
Also, by 2 we denote the test function space on K, that is, each function f in Q is
a finite linear combination of functions of the form 1x(z — k), h € K, k € Z, where
1, is the characteristic function of B¥. Then, it is clear that  is dense in LP(K),
1 < p < oo, and each function in § is of compact support and so is its Fourier
transform. The Fourier transform of a function f € L(K) is defined by

f€) = jx 1(2) Xe(@)d.
Note that
) = j; £(2) xe@)dz = [K £(2) x(~€2)dz.

‘T'he properties of the Fourier transform on the local field K are quite similar to those of
the Fourier analysis on the real line (see [14, 19]). In particular, if f € L*(K)NL?(K),
then f € L2(K) and || f]l2 = || f|l2. For a given ¢ € L?(K), define the wavelet system

(2.2) X(¥) = {9, : j €Z,k € No},
125



F. A. SHAH AND ABDULLAH

where ¥;x = ¢??¢(p. — u(k)). The wavelet system (2.2) is called a wavelet frame, if
there exist positive numbers 0 < A < B < oo such that for all f € L?(K)

(2.3) AP < S Y KA w5012 < BIFIP
JEZ kENy

The largest constant A and the smallest constant B satisfying (2.3) are called the
lower and upper wavelet frame bounds, respectively. A wavelet frame is a tight wavelet
frame if A and B are chosen so that A = B, and the wavelet frame is called a
Parseval’s wavelet frame if A= B = 1, that is, for all f € L?(K)
(2.4) 2 2 1wl = A1,
FEZ keNg
and in this case, every function f € L?(K) can be written as
F@) =) 3 (fis)su(@).
FEZ keNp
Since Q2 is dense in L?(K) and is closed under the Fourier transform, the set

={re 2 : suppf C K\{0}}
is also dense in L?(K). Therefore, it is enough to verify that the system X () given
by (2.2) is a frame and tight frame for L2(K) if (2.3) and (2.4) hold for all f € Q0.
In order lo prove Lhe main resull Lo be presenled in nexi section, we need Lhe
following lemma whose proof can be found in [13].
Lemma 2.1. Let f € Q° and ¢ € L*(K). If ess sup{Yjez o (7€) 2:¢ € B-1\D} <
00, then

@5 X W= [ |feof I (%8)| de + Ry(),

JEZ keNy
where

Ry(f) =X [ F@b (e) [Zf (e+p-fua>)¢(pae+uan]

jEZ leN
(2.6) =5 % [ F@b #6) F (6+577u(h) F o6 + uDyce.
JEZ leEN

Furthermore, the iterated series in (2.6) is absolutely convergent.
Remark 2.1. The left hand side of (2.5) converges for all f € 00 if and only if
Ysez ¥ (pP€) 2 is locally integrable in K\ Ujez E§, where E; is the set of regular
points of | (p’f)l which means that for each z € Ej, we have

[ PO+ PP asn oo
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3. THE MAIN RESULT

In this section, we establish our main result concerning the characterization of the
wavelet system X (¥) given by (2.2) to be a tight frame for L?(K).
Theorem 3.1. The wavelet system X (¥) given by (2.2) is a tight wavelet frame for
L?*(K) if and only if ¢ satisfies

(3.1) [P @) =1 forae ce31\D
JEZ
and
@32) Y PE)PEIE+um)) =0 forae £€B\D, meqNo+Q,
JENg
where gNo = {¢k: k=0,1,2,..} and Q@ ={1,2,..,q—1}.
Proof. Let

ty(u(m),§) = > ¥ (p7€) § (p~*(€ + u(m))).
keNg
Assume f € 00, then for each I € N, there exists k € Ny and a unique m €
gNp + Q such that | = ¢*m. Thus, by virtue of (2.1) we have that {u(l)}ien =
{p~*u(m)} (k. m)enox (aNo+-G) - Since the series in (2.4) is absolutely convergent, we
can estimate Ry (f), defined by (2.6), s follows:

B - X [[T0% ) {51 e 45su0) Te ) |
leN

JEZ

i 2 LE& (»’¢) { Y. Y, fle+p 7 ulm) ¥ (it +p-'=u(m))} dé

jez kENo megNo+Q

= ./:l: E{ Yo Y Y F(e+pulm)d (pFRE) b (pIRE + pRu(m)) o dk

k€No megNo+@ J€L

= L 7@ {Z} S FE+pum) 3 b (ETrE) Dok (0 +u(m)))} d¢

JEZ megNo+Q keNo

- ] 7© {Z S Fle+pYuim) tw(u(m).pfa} dé.
- J€Z megNo+Q
Let us collect the results we have obtained: if ¥ € L?(K) and f € 020, then
5 Kl = jx ORI (7€) 1P

JEZ keNg jez
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(33) +[FOX X Fe+pruim)ttutm).pie)ie
J€Z meqa+Q

The last integrand is integrable, and so is the first when ., |q§ (v7¢) ]2 is locally

integrable in K\ Ujez Ef. Further, equation (3.2) implies that

ty(u(m),€) =0 for all m € gNo + Q.

Combining all together with (3.1) and (3.2) we get

Z: Z l(fi "lb.f.k)lz = "ﬂl;r Vfe Q0.

FEZ keNg
Since 2° is dense in L?(K), we conclude that the wavelet system X (¥) given by (22)
is & tight frame for I2(K). Conversely, suppose that the system X(¥) given by (2.2)
is a tight wavelet frame for L?(K), then we need to show that both equations (3.1)

and (3.2) are satisfied. Since {¥;,k(z) : 7 € Z,k € Ng} is a tight wavelet frame for
L*(K), then for all f € 2° we have
(3.4) 22 Al =713

JEZ keNp
By remark 2.1, 3¢z |% (p%€) | is locally integrable in K\ Usez E§. Therefore, for
each &g € K\ Ujez Ef, we consider
£1(6) = ¥ du(€ - £0),
where f = f1 and ®ar(€ — &) is the characteristic function of & + BM. Then, it

follows that f(cf)f(& +p~9u(l)) =0 for L € N, since £ and £ + P~7u(l) can not be in
éo + BM simultaneously, and hence ||f1]|3 = 1. Furthermore, we have

33 KAl = AR = A3 =1

JEZ kENg

= fw,, > |9 )| de + Ru12).

jez
By letting M — oo, we obtain

- (39) 1= 36 06| + Jim Ry(r).
jez
Now, we estimate Ry(f;) as follows:

Ry(f) = ,% f F1(©)9 (p%€) {Z fi (€+p9u(l)) % (pi€ + 'u(I))} dg
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RARI< S5 [ 7000 6%6) s €+7900) b (o + 0) |

JEZ leN

=250 [ JAG0 (5 +u) $(0 96+ u)| .
JEL leN
Note that
[0 €+ un| <3 (o] + [pe+unf)
Therefore, we have

(36)  [Ry(AI<Y D4 /x 11e™98) A (079(6 +u) I1$(€) P

JEZ leN
Since u(l) #0 (I € N) and f; € 09, there exists a constant J > 0 such that

A1) f (pit+ P u(l))) =0, V[j|>J
On the other hand, for each |j| < J, there exists a constant L such that
A t+pu@) =0, Vi>L.

This means that only a finite number of terms of the series on the right hand side of
(3.6) are non-zero. Consequently, there exits a constant C such that

|Ry(£1)] < CllAIZIIE = Co™ 13,

implying
Jim |Ry(fi)] =0.
Hence equation (3.5) becomes
o 2
Y|P )| =1.
JEL

Finally, we must show that if (3.4) holds for all f € 02°, then equation (3.2) is true.
From équa]itiea (3-3), (3.4) and just established equality (3.1), for all f € Q° we have
L f F©F (6 +p?u(m)) ty(u(m), )t = 0.

J€EZ megNy+Q =
Also, by polarization, for all f,g € Q9 we have
@) T X [0 +rum) tylulm), pe) e =0.
J€Z meqlo+Q &
Let us fix mo € gNo+Q and & € K\Ujez Ef such that neither & # 0 nor £o+u(mo) #
0. Setting f = fi and g = g1 such that

F16) = g ®m(€ — &) and §1(€) = fi(€ — u(ma)),
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we obtain f1(€)d1 (€ +u(mo)) = ¢ @um(§ — &o)- Now, equality (3.7) can be written as
=gM 5 Ji,
(39 0= [ |, tlatmo),Ode +Jy

where
LA S fx 7€)1 (€ + p~u(m)) ty(u(m), pe)de.

JEZ megNo+Q
(,m)#(0,ma)

Since the first summand in (3.8) tends to ty(u(mq), o) a8 M — oo, we have to prove
that ;

n};lx:lw Ji =0.
Since u(m) # 0, (m € N) and f1,g1 € (2°, there exists a constant Jp > 0 such that

Fi®) a1 (€ +p%u(m)) =0 Vj> J.

Therefore, we have
B=% % [ F@n e+ ruim) olutm), ey
J=Jo meqho+@
<Y 2 @ [ [FEem @i+ um)|stum), o) de
J<Jo megNo+Q
Since
2|ty (u(m), €)1 < 3 W (075) P+ 3 (9 (p7*(€ + u(m))) I3,
keNo keNy
we have
Il < A2+ 5,
where
=Y T & [[Ae70]lo 6+ um)) P
_ 3<Jo megNo+Q@
with
= 2 &
Jurerae=3 3> [ ¥ 640" a = 1913 <o,
and
P= > ¢ fx |AGe)| 101 (7€ + w(m)] free + um)]ae

3%Jo megNo+Q

=> ¥ 7 |G 0 —umm)|la 6] rmr

I<Jo megNg+Q
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Thus J{* has the same form as J*) with the roles of f; and 41 interchanged. Next,
since f1(€) = g% B (€ — &), we can write

J(l) T Q’ ¥ p 2 i
: Jgn mquNEH'.' 1 -/p--fgo-p-:a—u-u |a: (e +u(m)))| [r(€)1de.

Now, if g1 (p~#(§ + u(m))) # 0, then we must have p—3¢+p~Ju(m) € &o+BM +u(my)

and [p~7u(m)| < ¢g~™, and hence [u(m)| < g~M~3. Thus, we have

(3.9)

=y q"q'ff

$<To ~3go+B-3+M

P > a1 (p79(6 +u(m)))| dt
megNo+Q

< Y ¥ 2,~M—j5 % 4o 296
EJE, q / S ikt [r(€)]*q~M~3q ¥ dg j;h f, _’£D+g_’+“[r(e)] dé
For given & # 0, we choose g7 < || = g=M to obtdin

(3.10) P& + BIHM c B-lo+M y i < g

as [p~7&| = ¢7g™™ < ¢”oq~M and B~#+M ¢ B-%+M_ Qp the other hand, for any
51 < ja < Jp, we claim that

(3.11) {p~960 + B~H+M)  (p=iag, 4 BH+MY g,

Indeed, for any z € p~71£y+B~1+M and y € p~92¢y+ B~ M, write z = p~H £y +z1
and y = p~#¢o +y1, then we have |z — y| = max{lp~#&0 — p#0l, |21 ~wl} =
g M % 0, implying that (3.11) holds. Combining (3.9) - (3.11), we obtain

JD < j; _Ja+"[1'(€)]ad£ —0 as M —o0.

This completes the proof of Theorem 3.1.
Example 3.1. Consider the functions

: -1 3 =1
w@={o 25 =i w@={§y7gs% "

and define 9(z) = () — ¥2(z). Since 1 (£) = 91 () and
wo-{4 763

we have
=5 S
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Next, for ¢ 0, wo soo that 3 |6 (%) * = 1, and since p~7¢ and p~4(¢ + u(m))
can not be in B~1\D simultaneously, we conclude that
39 (5%) S eI + u(m) = 0.
2
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