Hssecrust HAH Apmernn. Maremaruxa, Tou 49, u. 6, 2014, ctp. 66-82.
INTEGRALS OF CHEBYSHEV POLYNOMIALS OF THIRD AND
FOURTH KINDS: AN APPLICATION TO SOLUTION OF
BOUNDARY VALUE PROBLEMS WITH POLYNOMIAL
COEFFICIENTS

E. H. DOHA AND W. M. ABD- ELHAMEED

Cairo University, Giza, Egypt
King Abdulaziz University, Jeddah, Saudi Arabia

E-mails: eiddoha@frcu.eun.eg ; walee_9@yahoo.com

Abstract. Two ncw formulac expressing cxplicitly the repeated integrals of Chocbyshov
polynomials of third and fourth kinds of arbitrary degree in terms of the same polynomials
are derived. The method of proof is novel and essentially based on making use of the power
series representation of these polynomials and their inversion formulae. Using the Galerkin
spectral method, we show that these formulac can be used to solve some high-order boundary
value problems with varying cocfficients, and propose two Galerkin-type algorithms for solving
tho integrated forms of some high-order boundary value problems with polynomial coefficients,
A numerical example is discussed, which shows that thepmponaddgoﬁthmuammmmm
and efficient compared with the analytical ones.
MSC2010 numbers: 42C10; 33A50; 65L05; 65L10.
Keywords: Chebyshev polynomials of third and fourth kinds; power form; inversion
formula; high-order boundary value problem.

1. INTRODUCTION

. Spectral methods have been extensively used in applied mathematics and scientific
computing to obtain numerical solutions of ordinary and partial differential equations
(see Boyd [5] and Canuto et al. [6]). These numerical solutions are written as expansions
in terms of certain "basis functions which may be expressed in terms of various
orthogonal polynomials. Spectral methods have advantage that they take on a global
approach, while finite-element methods use a local approach, and as a consequence,
spectral methods have “good” error properties and converge exponentially.

The classical Jacobi polynomials PP (z) play an important role in mathematical
analysis and its applications (see Abramowitz and Stegun [3], Andrews et al. [4]
and Boyd [5]). In particular, the Legendre, the Chebyshev and the ultraspherical
Polynomials, which are special classes of Jacobi polynomials, have already played an
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important role in the spectral methods for solving ordinary and partial differential
equations.

The Chebyshev polynomials have become increasingly important in numerical
analysis, from both theoretical and practical points of view. It is well-known that
there are four kinds of Chebyshev polynomials. They all are special cases of the
classical Jacobi polynomials. A large number of books and research articles deal with
the first and second kinds of Chebyshev polynomials Tn(z) and Un(z) and their
various applications (see Boyd [5], Doha et al. [14], Julien and Watson [17], and
references therein). However, there is only a few number of publications devoted to
the Chebyshev polynomials of third and fourth kinds V;, () and Wy, (z) (see, e.g., Doha
et al. [13] and Eslahchi et al. [16]). This motivates our interest to such polynomials.

The study of both high even-order and high odd-order boundary-value problems
(BVP’s) is of interest. For instance, the third order equations are of mathematical and
physical interest, since they lack symmetry and, in Mﬂon, contain an important
type of operators which appears in many commonly occurring partial differential
equations, such as the Kortewege-de Vries equation. Another important example is
the sixth-order boundary-value problem, which arise in astrophysics. Due to their
great importance in various applications in many fields, high-order boundary-value
problems have been extensively discussed by a number of authors (see, e.g., [15, 19,
22, 24, 25, 26]). In a series of papers [1, 2, 9, 10, 11, 13], the authors dealt with
such equations by using the Galerkin or Petrov-Galerkin methods. Using compact
combinations of various orthogonal polynomials, they have constructed suitable bases
functions which satisfy the boundary conditions of the given differential equation.

An alternative approach is to integrate the differential equation g times, where ¢
is the order of the equation. The advantage of this approach is that the underlying
equation resulted an algebraic system that contains a finite number of terms. Doha et
al. [12] have followed this approach, to solve the integrated forms of third- and fifth-
order elliptic differential equations using general parameters of the generalized Jacobi
polynomials. Some other papers were concerned with obtaining analytical formulae
for the g times repested integration of some orthogonal polynomials (see, e.g. Doha
[7, 8], and Phillips and Karageorghis [21]).

In this paper, we derive two new formulae that express explicitly the repeated
integrals of Chebyshev polynomials of third and fourth kinds in terms of the same
polynomials. Then using these formulae, we develop two QGalerkin-type algorithms,
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(C3GM) and (C4GM), for solving the integrated forms of some high even-order

differential equations with polynomial coefficients.
The paper is organized as follows. In Section 2, some properties of Chebyshev

polynomials of third and fourth kinds are given, and some new relations of these
polynomials are stated and proved. In Section 3, we derive two new formulae which
express explicitly the repeated integrals of Chebyshev polynomials of third and fourth
" kinds in terms of the same polynomials. In Section 4, we present two Galerkin-

type algorithms for solving the integrated forms of some high-order boundary value
problems with polynomial coefficients. Tn Section 5§, a numerical example is discussed

to demonstrate the accuracy and efficiency of the algorithms proposed in Section 4.
2. SOME PROPERTIES OF CHEBYSHEV POLYNOMIALS OF THIRD AND FOURTH KINDS

Chebyshev polynomials V;,(z) and Wy (z) of third and fourth kinds are polynomials
in z, which can be defined by one of the following two equivalent forms (see Mason

and Handscomb [20]):
cos(n + 2 n
W (z) = (ﬂ+§)3 2" 3~ 3
“'( ) 8’-“5 ( JP ( ):

where z = cos 8, and P{*?) (2) is the classical Jacobi polynomial of degree n.

and

It is clear that
(2.1) Wa(z) = (-1)" V().
The polynoamils V,(z) and W,,(z) are orthogonal on (—1,1) with respect to the

1 + 1-—
weight functions % and ‘/ ita’ respectively, that is, we have
(2.2)

[ 1 VEEE Vu(0) V(o) o = i i V=Z Wa) Win(e) s = {: i =
and can be generated by using the following two recurrence relations:

(2.3) Va(z) = 22 Vo1 (2) — Vioa(z), n= 2850,

with Vo(2) = 1, Vi(z) = 22 — 1, and

Wa(z) = 22 W,y (z) - Wa-a(z), n=2,3,...,
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with Wo(z) = 1, Wi(z) = 2z + 1. Below the following special values will be of
importance:

(2.4) Va(l) = (=1)" Wa(-1) =1,
(2.5) Wa(l) = (-1)*Vi(-1)=2n+1,

g-1 :
26)  DVa(l) = (—1)"DIWa(—1) = [] BB R+ o5y
k].;[{l 2k+1

1.

(n—k)(n+k+1)‘ ¢S
2k+3

The following two theorems and lemma are needed in the sequel.

Theorem 2.1. The ezplicit power form of the polynomial V,(z), n > 1 is given by

the formula .

1
(27) DTWa(l) = (1™ DIVs(-1) = @n+1) [
k=0

(2] 3]
(2'3) Vn(z) = Z Cn ke z“_zk + E bﬂ.k zﬂ—zk—l'
k=0 k=0
where
= D (n—K)ron—2 _ (=1)*H (n— k —1)Ign—2k-1
29)  anp="—p mo2R 0 Der= R (m 2k 1) \

Proof. We proceed by induction on n. Assume that the relation (2.8) holds for
(n —1) and (n — 2). Then starting with the recurrence relation (2.3) and applying
the induction hypothesis twice, we obtain

=54 [3)-1
(2.10) Va(z) =2 2 an—1,kz" 2k — E An-gpz™ 2k 24
k=0 k=0
(274 [#1-1
+2 E 57;—1.&3"_“_1 L} z bn_z’kzn—ﬂk—ai
k=0 k=0

which can be written in the form
Vn(z) = Z 1% Z’
1 2

where
(25%]
n—2k
1

E = —0Gn-2,4-10n +2an-102" + z {201k — On-2k1} =
1 A =

Gy

D =2bp-102" + Y {2bn1 — ba-zx-1} "5,
2 k=1
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1, neven,
i {0, n odd.
It is not difficult to show that

2%_10_%0' —On— 2*_1—0»“‘, 2%—3,,k—an—2k—1'—ank| 1<k<[l’l-—1
2bn—1,0 =bn,0, 2bn-1 — bp-2,k-1="bnk, 1Sk < [Er] ’

and therefore we can write (31
Z = Ean,k 2:ﬂ—2.i."
1 k=0
and
(3]

Z G Ebn.ks"_“'l,
2 k=0
where an x and by x are given in (2.9). This completes the proof of Theorem 2.1, O
The next theorem was proved in Doha et al. [13].
Theorem 2.2. For all k,m € Z*, we have

m

(1) V@)= 3 3 (7) Vesmen(e).
a=0

In particular, the following inversion formula holds
1 m
(2.12) ™ = — Vin—2s(z).
2 ( 8 ) = )

Lemma 2.1. For every nonnegative integer r and a natural n > r, we have

~_ (Y (@n-j-1) (=) gl(n—r—1)
EJ'(ﬂ ita—-nr—) fAlg-Nia+qg-rn1

(2.13)
=0

Proof. Setting

My oS (W (=i 1)
mar = 25 % = TG

and using Zeilberger’s algorithm (see, e.g., Koepf [18]), we conclude that My or
satisfies the following difference equation of order one:
(‘l‘ + 1)(" el il 1) Mu.q.r-i-l i (q i r)("' +q— ‘l") Mu.q.r = 0: Mn,qﬂ = .Ei__l)lfl,

" ﬂr+q
which can be solved to obtain

=1)"gl(n—r—1)!
My or= (
(g (n+qg-m)

Lemma 2.1 is proved. a
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Remark 2.1. The counterparts of Theorems 2.1 and 2.2 for the polynomials Wn(z)
can easily be deduced with the aid of relation (2.1).

3. FORMULAS FOR REPEATED INTEGRALS OF CHEBYSHEV POLYNOMIALS Vi (z)
' AND Wy (z)

The objective of this section is to state and prove two theorems, which express
explicitly the repeated integrals of Chebyshev polynomials V;,(z) and Wy (z) in terms
of the same polynomials.

Given a natural number g, the ¢-times repeated integral of the third kind Chebyshev
polynomial V,,(z) is denoted by

times
. q times

e e,
1@ (z) = f Va(z) (dz)? = f f f Vi) e o
Theorem 3.1. The following formula holds.

(3'1) I{ 9 (z) E Anrg Vw—]-q—zr (=) + Z Bnra Vu+q—2r—l(5) + 1Il'l}'—-l.(z)n
r=0

where
o (=1)"(n—r1)lq! (=) (n—r—1)lql
“oa s 2ri(g-n)ln+g-7)’ 207l (g—r -1 (n+g—1)’

and m4—1(z) is a polynomial of degree at most (g —1).

Bnjrg =

Proof. Integrating the relation (2.8) g-times, and using the equality

(2) it+e
-/ z (dz)il = ( +1) +1T¢_1(2$),

we get
(2] (2]
Il('tq)(z) — Z e“lkl' 3"1—2*—1 + E fmkﬂ z _M-I + "Te-l (w)'
k=0 k=0

where
(=1)F 2" (n — k)| (-y++an e — k1)l
(32)  emke= "o —orrgr * ™M T Hm-2kte-11

and 74—1(z) is & polynomial of degree at most (g — 1).
Taking into account the relation (2.12), we can write

I9@) =Y +) +me(2),
il 2
Tl
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whare (3] [2t3=t]-k
| S ensa Yy CunbsaVote-ae-n(od
1 k=0 i=0

B e

T z Cin—2k+q—1 Vntq-2k—2i-2(%),

k=0 i=0
(2] [=H=2] -k
E = E enk,g E Cin—2k+q Vntg—2k—2i-1(z)+

2 k=0 i=0
(2] [245=2] -k
an,k.q Z Ci,n—2k+q—1 Vn—g—2k—2i-3(Z),
k=0 =0

the coefficients ep 4, and fn,k,g 8re given in (3‘2) and

Expanding 3 and Y, and collecting similar terms, after some algebra we get
1 2

q g
I9(z) = Z Anrg Vate—2r(Z) + Z Bn,rq Vatg-2r—1(2) + 7g_1(2),
=0

r=0
where
(3.3) Anrg =) {eniaCranta-2 + frja Cr—j=1,ntg—-2i-1},
=0
(3.4) Bigrg™ Y (O Cofntasad & Tt o Creitaia g1}
=0

' Next, it is not difficult to show that
(=1¢2 % —r)(n—j—1)
tn+g—g—n)l{r-st °

(8:5) enjqCrsinte-2 + Fasig Cr—j—1,n4q-21-1 =

and
Pt g—r)(n—j—1)!
Bntg—j—r)(r—j)

Finally, substituting the relations (3.5) and (3.6) into (3.3) and (3.4), and using (2.13),
for Aprq and By ., we obtain
A (=1)r2=2(n—r)lgl

M rlg-)l(n+g-n)

i i (1)1 29(n—7 —1)lq!
M rl(g—r—=1)In+q-1)"’
and the result follows. Theorem 3.1 is proved. a
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Remark 3.1. Note that the relation (3.1) may be written in the following equivalent
form:

2q .
(3.7) IO@) = 3" Boiq Varg—il@) + m1(@), n2q21,
i=0
where
(—1)i (ﬂ g)l e
(3.8) Bogg= Q! (3)! (a5 n+q or if i is even,
- s o) if 4 is odd,

(F) (a- (—’i—))i(ﬂ+q R

and mg—1(z) is a polynomial of degree at most (g — 1).

Using the arguments of the proof of Theorem 3.1 and formula (2.1), we can obtain
a formula that express explicitly the repeated integral of Chebyshev fourth kind
polynomial Wy,(z) in terms of the same polynomial. The corresponding result is
stated in the following theorem.

Theorem 3.2. Let J? (z) be the g-times repeated integral of the polynomial Wy (z):

K@ = [ W@y,

- then
2q
J‘l(lq) (ﬁ) = Z Sn.l'.q Wn+q-i (:F) 5 i’q—l 1
i=0
 where
(3.9) Sniq = (=1)' Ensg,

and 7q—1(x) is a polynomial of degree ai most (q —1).

4. AN APPLICATION 10 A HIGH-ORDER T'WO POINT BOUNDARY VALUE PROBLEM

In this section, we are interested in applying the formulas, obtained in Section 3,
to solve the following high-order boundary value problem:

(41) ()" u®(2) +vp(z) u(z) = f(z), z€(-1,1),n21,
subject to the nonhomogeneous Dirichlet boundary conditions
(4.2) u@(+1) =%a;, 0<j<n—1,

where p(z) is a given polynomial and v is a real constant.
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It is worth to note that if we use the transformation:
2n—1
y(@) =u(z)+ ) &',
i=0

where &, 0 < i < 2n—1, are coefficients to be determined such that y(z) satisfies

the homogeneous boundary conditions

(4.3) yP(£1)=0, 0<j<n-—1,

then the equation (4.1) takes the form

(4.4) (-1)"y(z) + 7p(z) y(z) = 9(z), z€(-1,1), n21,

where

2n-1
9(@) = f@@) + Y, ma',
i=0

and 74, 0 < i < 2n — 1 are some constants that are determined in terms of &;. Fo
3. For

* details we refer to Doha et al. [13].

In what follows, we take p(z) = z#, p € Z2°, and instead of the problem (4.4
subject to (4.3), consider its integrated form: i
(4.5)

(2n) 2n—1
Uy +r [ U@ = b+ Y azh, ze(-11)
= L]

yD(£1)=0, 0<j<n-1, h(z)= f 2 9(z)(dz)®,

where a; are arbitrary constants, and
i q times

[ vexear =T [ Jwerziaz.

Define the following spaces

Sy = span{Vy(z), V1 (z), Va(2), ..., Vn(2)},

S = span{Wo(z), Wi (z), Wa(), ..., Wi (z)},

J_m ={v(z) €Sy : DIu(£1)=0,0<j<n-1},

Xn={0(z) €Sy : DiH(£1)=0, 0<j<n-1)}.
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Then the Chebyshev third and fourth kinds Galerkin procedures for solving (4.5)
consist of finding 3 (z) € Xy and 7(z) € Xy to satisfy

(2n)
(1" 13 (@), (@) g ) +7 ( i Z”yﬁ(w)(ﬁ)‘“’.v(z))

wy (z)

(4‘6) n-1
= (h(!‘) + Z b W(s).u(z)) , 0Sk<N-2n, Yuz)e€E Xy,
i=0 wy(x)
and
(1" T (2), 5(a)) o0y + 7 ( f 2 7y () (dz) O, v(za)
(4.7) wa(z)

2n—1
= (h(z)+ z E;M(z),ﬁ(z)) , 0<k<N-2n, Vi(z)eXn,
=0 wa(z)

wheroun(@) = /22, wn(e) = {22, (ule) ol = [ o) ule)ole) s
" is the inner product in thc weighted space Lm‘(m)( 1,1), and b;, by, i = 1,2 arc some .
constants.

We can construct two kinds of bases functions as compact combinations of the
Chebyshev polynomials of third and fourth kinds by setting

n
48)  drn(@) =Vi(@) + Y dmk Vism(z), 0SkSN-—2n,n21,
m=1

2n
49)  Vkal@) =Wi(2)+ Y dmk Wism(a), 0<kSN-2n,n21,
m=1

where the coefficients {dm} and {dmx} are chosen such that ¢y,n(z) € Xi4an and
V(@) € Xit2n. In view of relations (2.4)-(2.7), the boundary conditions (4.3) lead
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to the following linear system to determine the constants {dm.x}:

( 2n+1

14 E dmx =0,

2n+1

Y ()™ (2k+2m+1) dmk = —(2k+1),

m=1

2n+l g-1

J i:_[(k—a)(k+a+1)+ E dm,k H(k+m—s)(ﬁ+m+3+1)=o’
a=0 m=1 a=0
-1 2n+1
0k +1) [Tk (b +o+ D+ - (1™ dme 2K+ 2m + 1)
a=0 m=1

q-1

[I(k+m—s)(k+m+s+1)=0,

s=0

i 0<k<N-2n, and 1<g<n-1

The determinant of the above system is different from zero, hence {ds .} can be
uniquely determined to obtain
(—1)?(;) (k+ l)m

i, T g
. T D (2n) B+ Dmpa L.
(k+ﬂ+2)u,.x 5 if m is odd,
and hence the basis functions @k, (z) take the form:
2 (=)™ (%) (k+1)m
(4.11) Pr.n(z) = Z_ ( ()k ll,;) _'E 1;:“) Vier2m (z)+
Y )™ (2) (m—n) (k+ 1),,,
"E (k +n+ 1)m+1 +l(z)'
Similarly, the constants dn x can be uniquely determined to obtain
(4.12) Am s = (-1)™ dm i
and hence
2 (=)™ () (k+1)m
(£13) wuate)= 3 e E e )+
n-l o jym+l(n vt
s IGEOTCES N

(k +n+ 1),,;4.1
76
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It is obvious that {¢gn(x)} and {¢xn(z)} are linearly independent. Therefore we
have

XN =span{gkn(z): 0< k<N -2n}, Xy =span{pna(z): 0<k< N —2n}.

Thus, the variational relations (4.6) and (4.7) are respectively equivalent to the
following:

(2n)
((_1)“ yn(2), Ben (z))‘llh (=) s ( j zH ya(z)(dz)(h)s ¢k.ﬂ(a))

wy (:)

(4.14) M
= (htz) +3 b.-w(z).m,.,(z)) , 0<k<N-2n,
i=0 wi(z)
and
(2n)
(1 T3 (=), Yn () ) + ( / z“ﬁ?v(z)(dz)fm,wk,..(s))
(4.15) wa()

2n—1
= (h(z) +> 5 Wa(z).\bk.,.(:c)) , 0Sk<N-2n.
t=d wa ()

Noting that the constants b;, b;, 0 <1 < 2n—1, should not appear if we take k=>2n
in (4.14) and (4.15), we can write

(an)
(D" U3 (2): 1 (@) 4, oy + ( [t ua(z)(dz)i’"’.m.n(s))

(4.16) B,
= (h(z), P;n (), (z)? 2n<EkEZN,
and
(1" 3 2, Ben(@)) o + (/ ) 2 R ) ), i ..(z))
(4.17) et wa(z)

— (h(z)l‘lxbk.ﬂ(m))m{,} , 2n< k< N.
T
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Denoting
'i'l = (h(z)' ¢kvﬂ (z))‘“l (=) h" = (h;m hrﬂln-l-l' ey h?l)ri
2 = (h(z)r ¢k.n(z))m(=}' En = U_‘gm ’_"gvﬂh LY | Eﬁ)Tn
N-2n
V(@)= D & bmnl@) " = (cBy ¢y - 1 CR-20)
i
ﬁ?\’(z) = E m w’“-ﬂ(z)t c" = (631 (?ilt ree 95'1.\'—2n)T|
m=0

An = (akj)an<k <N, Bn = (b%s)2ns<k.i<n,

He— (rgj)gﬂskljsﬂ, Sn = ("2_1)21'!51:;51\’:

the equations (4.16) and (4.17) can be written in the following equivalent matrix

forms:
(An+7Bn)c™ =h",

and

(Rn+78n) & =h",
where the nonzero elements of the matrices An, Ba, R, and S, are given explicitly
in the following two theorems.

Theorem 4.1. Let the basis functions ¢k, (x) be defined as in (4.11), and let
G% ! (_l)n (¢j—2n,n(‘c)! ¢k,n (I))Wl (=)

and c
n)
by = ( z* ¢,_h,,.(z)(da:)(’“),¢;.,.,(z))

el wy (z)
XNion = spaﬂ{¢o.n(z)- H1n(),-- ., ¢nn(2)},
and the nonzero elements of the matrices A, and B, are given by

2n
(418) af; =(-1)"x Z dm,j—2n Bj—k+m—2n,k;
m=0

B 4n

2n
(4.19) o, =~ e
) om "g g g 8 dm.:—zﬂ dﬂ+5+m—-i-—k—2l,k Eﬂ+:'+w-2n—2-.i.2m

where dm k and Ep i are as in (4.10) and (3.8), respectively.
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Theorem 4.2. Let the basis funclions Yi,q(z) be defined as in (4.13), and let

rzj = ('_1)“ (ﬂ’j-—h.n(z): 'pk.n (z))w:(s} ’

and

(am)
oy = ( =“%—zn,n(z)(dm)""’,%.n(z))

wa(z)

XN+2!| = Smn{%.n(z): 'pl.l'l (z)l ] !';’N.n(z)}!
and the nonzero elements of the matrices R, and S, are given by

2n
i = (D1 Y dnjoan G ktmean ks
m=0

2Zn p 4n

m

8y = on E ZZ (i) dm,j—2n utj+m—i—k—2s,k Sptj+m—2n—20,4,2ns
m=0

where dmkx and Sk.n,q ore as in (4.12) and (3.9), respectively.

The proofs of Theorems 4.1 and 4.2 are similar, so it suffices to prove only Theorem
4.1.

* Proof of Theorem 4.1. The basis functions ¢x,n(z) we choose such that ¢x,n(z) €
Xnyan for k =0,1,...,N. On the other hand, it is clear that {¢xn(z)}o<k<n are
linearly independent and the dimension of Xy 2, is equal to N + 1. Hence, we have

xN—l—ﬂn = spm{%.n(z)a ¢1.ﬂ(3)= saey ¢N.n(w)}-
To obtain the nonzero elements (af;) for 2n < k,j < N, we use formula (4.8) to get

2n 2n
apy = (-1) Z‘agmm diy (Vi-antm (2): Vieri () (o) o

which in turn, with the aid of the orthogonality relation (2.2), yields

2n
ag; = (-1)"n Z Gm j—-2n Gj—2nim—-kks F=Fk+8,820.

m=0

Thus, the formula (4.18) is proved. To prove (4.19), observe that since

(2n)
b% = ( zt ¢J—9ﬂ-.ﬂ(z) (dz)(h] ’ ¢k.n(z)) )

) wy (z)
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we can use the formulas (2.11) and (4.8) to obtain
2n u
z* ¢j-an(2) = 2'IT Z: ): (’:) dm,j-2n Viti+m—2n—24(Z),
m=0 s=0

and therefore relation (3.7) gives

)
O b 6t () (d2) O

2n p 4n
= % Z }: z (’:) dm.j—2n Bpti+m—an—26,42n Vititm—i—2,(Z).
m=0 s=0 =0

Finally, using the orthogonality relation (2.2), we obtain
27n B 4n

i Z ZZ (’:) dm,j—2n Outj+m—i—k—28,k Byt jtm—2n—2s4,2n

"I'his completes the proof of Theorem 4.1. O

5. NUMERICAL RESULTS

In this section we give a numerical example to show the accuracy and the efficiency

of the proposed algorithms.

Example 1. Consider the following linear sizth-order boundary value problem (see,
Siddigi and Akram [23]):

(5.1)

¥¥(2)+(62+1) y(2) = (185225 2*+102*) cos(z)+(270-36 2%) sin(z), z € [-1, 1],

aubject to the boundary conditions:

y(—1) = 4cos(1), ¥(1) = —2cos(1),
¥y (-1) = cos(1) + 4sin(1), ¥y (1) = cos(1) + 2sin(1),
¥ (1) = —16.cos(1) + 2sin(1), ¥@(1) = 14cos(1) — 2sin(1).

The analytical solution of this problem is given by
y(z) = (22° — 5z + 1) cos(z).
Table 1 below contains the maximum pointwise error E of |u — upn| using our

algorithms C3GM and C4GM for various values of N, while Table 2 contains the
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TABLE 1. Maximum pointwise error for Example 1, N = 14,186, 18, 20, 22.

N C3GM C4GM
14 || 2.16553 x 10~ | 2.16799 x 10~

16 (| 7.205567 x 10~12 | 7.21269 x 10~12
18 || 1.65128 x 1014 | 1.70084 x 104
20 || 1.3765 x 10~15 | 1.38995 x 10~15

TABLE 2. Comparison between best error for Example 1 by different

methods
Best error C3GM C4GM Siddiqi and Akram [23]
G, 1.3765 x 10 ™® 1.38995 x 10~ ® 8.68 x 107

best errors obtained by our methods (C3CM and C4CM) and by the septic spline
method developed in [23].

Comparing the errors given in Table 2, we conclude that our two methods, C3GM
and C4GM, are more accurate than the method developed in [23].
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