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1. CLASSES OF FUNCTIONS OF BOUNDED GENERALIZED VARIATION

In 1881 C. Jordan [17] introduced a class of functions of bounded variation and
applied it to the theory of Fourier series. Hereinafter this notion was generalized by
many authors (quadratic variation, $-variation, A-variation etc. (see, e.g., [2, 18, 27,
. 29]). In two dimensional case the class of functions of bounded variation (BV) was
introduced by G. Hardy [16].

Let f be a real and measurable function of two variables on the unit square. Given
intervals A = (a,b), J = (c,d) and points z,y from I := [0, 1) we denote

f(A!y)=f(biy]_.f(aly)l f(x,J)=f(z,d)—f(z.c)
and
f(A,J) = f(a,c) - f(asd) = f(b»c) e f(bsd)'
Let E = {A:} be a collection of nonoverlapping intervals from I ordered in arbitrary
way and let 2 be the set of all such collections E. Denote by £, the set of all
collections of n nonoverlapping intervals I C I. '
For the sequences of positive numbers

A= (N} A ={N)L

1The research of U. Goginava was supparted by Shota Rustaveli National Science Foundation
grant no.31/48 (Operators in some function spaces and their applications in Fourier analysis).
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and I? = [0,1)? we denote
A;,
AV 1) T AUPAUD E‘ :-———1—”(/\: )l (E={A:}),

AVa(fi %) = s:p;ggE If(?: 1 w=,

(18 viatri1) = s 35 Mgl

Definition 1.1. We say that a function f has bounded (A*, A%)-variation on I? and
write f € (A1, A?) BV (I?), if
(AL, A%) V(f; I2) == AVA(SF; %) + A*Va(f; %) + (A'A%) Vi (£ I2) < oo

If A! = A? = A, then we say that f has bounded A-variation on I? and use the
. notation ABV(I?).

Wg;ayﬂmtaﬁlﬂcﬁmfhﬂawmb—ﬂmmp audum’tefe
PABV (I?), if

PABV(f; I?) := AVA(f; I%) + AVa(f; I?) < oo.

A= {M}withd, =1 0orif0<c< A <C<o0, n=12,... the classes
ABYV and PABYV coincide, respectively, with the Ilardy class BV and with the class
PBYV functions of bounded partial variation introduced by Goginava [6]. Hence it
is reasonable to assume that A, — oo and since the intervals in E = {A;} are
ordered arbitrarily, we can assume, without loss of generality, that the sequence {A,}
is increasing. Thus, we assume that

(1.1) l<hq<h<..., limi=oo, ;(1/:‘\“)=+m.

In the case where A, = n, n =1,2.., we will use the term harmonic variation
instead of A-variation and will write H instead of A, that is, HBV, PHBV, HV( ),
ete.

The notion of A-variation was introduced by Waterman [27] in one dimensional
case, and by Sahakian [23] in two dimensional case; the notion of bounded partial
A-variation (PABV) was introduced by Goginava and Sahakian [12].

Dyachenko and Waterman [5] introduced another class of functions of generalized
bounded variation. Denoting by I' the set of finite collections of nonoverlapping
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rectangles Ay := [ax, Bi] X [k, 0x] C I?, we define

AVia(f) = aup PZ U%Jl
k

Definition 1.2 (Dyachenko and Waterman, [5]). Let f be a real function on I2. We
say that f € A*BV, if

A*V(f) = AVA(F) + AVa(f) + A*Via (f) < oo

In [13], the authors have introduced new classes of functions of generalized bounded
variation and investigated the convergence of Fourier series of functions from that
classes.

For the sequence A = {A,}32, we define

A*i(f) = sup, sup Y LRI
{w}cI {L}en g M

A*Va(f):= sup sup |f(31|J,‘{|.
micrieay A

Definition 1.3. We say that a function f belongs to the class A¥BV, if

A*V(f) = A*VA(F) + A*Va(f) < co.

The notion of continuity of functions in A-variation plays an important role in the
study of convergence of Fourier series of functions of bounded A-variation.

Definition 1.4. We say that a function f is continuous in (A1, A?)-variation on I*
and write f € C (AY,A?) V, if
Jim ALVA (f) = lim AZV;(f) =0
and
Jim (A7, A%) Via (f) = lim (A%,A7)Via(f) =0,
where AS, == (M} = {Minting i=12
Definition 1.5. A function f is continuous in A¥-variation on I? and write f €
CA#V, if
s # =

where Ap = {Ae} o -
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Definition 1.6. We say that a function f is continuous in A®-variation on I? and

write f € CA*V, if
Jlim AnVa (f) = lim AxVa(f)=0; Tim ALVia(f)=0.

Now, we define
# v =
v, (ﬂ's-f) = Bup sup 'f(fi’yi)ll “—112:“':
: (W, (Ti}EN g
= J
#(m,f)i= sup suwp ) |f(z5d5), m=12,....
2 {25} {In}EOm E P ’
The following theorems hold.

#
Theorem 1.1 (Goginava, Sahakian [13)). {2:}" BV c HBV.

Theorem 1.2 (Goginava, Sahakian [13]). Suppose
00 & orr
Zul (f,n)log(n+1) <o, 8=1,2.

n=1 n?
#
Then f € { E(:Tn} BV.
Theorem 1.3 (Goginava [10]). Let a5 € (0,1), a+ 8 <1 and

= vf (£;29)
Zlm <oco, s8=1,2.
Jﬂ

Then f € C {nl~C+A}*y,
" Theorem 1.4 (Goginava [10]). Let @, 8 € (0,1) and a+ 8 < 1. Then
c {:‘1-(““5')}"‘E Ve it} (i} v.

The nex! theorem shows, thal for some sequences A the classes A*V and CA#V

coincide.

Theorem 1.5. Let the sequence A = {\,} be as in (1.1) and

.|

Then A*V = CA#V.

Proof. Assume the opposite, that there exists a function f € A*V for which lim inf A¥V (f) >
0 (see Definition 1.5). Without loss of generality, we can assume that hmmfA?I-;:(,f) =
54 . n—+co
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5 > 0 and that § = 1. Then, taking into account that the sequence {A¥Vi(f)} is
decreasing, we have

(1.3) Jim A%VA(f) =1
Let a natural k and the numbers £ > 0, go € (1,¢) be fixed.
According to (1.2) and (1.3) there exist a natural N’ > k such that

(1.4) %ﬂ‘ﬂm,, A*Vi(f)>1—¢ for n> N

Then for a natural N > 2N there are a set of points {y;}7; and a set of nonoverlapping
intervals {8;}7%% € Q such that

(1.5) Z [f(ah y‘)l —

AN+ z
Adding, if necessary, new terms in (1.5) we can assume that

2ip
Jé=(0,1).
i=1
Denote
If (5=i-1,v2i-1)! l.f (ﬁmym)l

Since N > 2N’ :mp]ies that N+2i-12>2(N+1), ﬁ'om {(1.4) and (1.6) we have

4 If(a""'l’ W-—-l)] & If(aﬂi—llyﬂi—l)l AN+2{_.1
i : > gol
@) weudys Z i => pe TL > gl
and

io 3 1o ;
(18) .I; = E |f(62hy2$)| 1 Z If(amly'h)’ i AN-{-‘H S QDIﬂ-

$=1 ‘\N'H =1 /\N+2{. ’\N'-H

Consequently, by (1.5) we get
(1.9) I' =1+ I} > g + I2) = goI > go(1 — ).
Now, we take a natural M to satisfy

2o +1)
AM se[u 1]

(1.10) M>N+2(ip+1) and p |f(z)| <e,

and hence using (1.4), we can find a set of points {Zj}j':l snd a set of nonoverlapping
intervals {A; 1, € 0 such that
1784zl o
: 1—
(1.11) ; e
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Denote by Q the set of indices j = 1,2,--- ,jo for which the corresponding interval
A; does not contain an endpoint of the intervals d;,i = 1,2,..., 2ig, that is, A; lies
in one of the intervals d;,i = 1,2,...,2ip. Then the number of indices in [1, jo] \ @

does not exceed 2ip + 1, and by (1.10) we get

8zl
setane M+
Consequently, by (1.11) we have .
— If(A !zj)l 1 e 1
(1.12) J: ;reza _L—/\M-H >1-—2¢
Denoting
fo fo
Q1={3"EQ’AJCU52¢—1}’ Qn={jEQ=AjCU5m}
ST i=1
and

J]_ = Z If()‘A L )f, Jg = E __!fE\A.f’zj)[’
JEQ: My JjEQ M+3

from (1.9) and (1.12) we obtain
(L+N)+L+N)=T+T2qp(l-)+1-2>g+1—3e.

Theretofore
1’{+.J’;:ZEL;_—-E or (I;+J,)2@_'%:El

which means that
AR VA () 2

go+1-—3¢
2
and hence {
Az 21,
gince € is any positive number and N’ > k. Taking into account that k is an arbitrary
natural number, the last inequality implies
3 # go+1
ALV > =151
which contradicts the assumption (1.3), and the result follows. Theorem 1.5 is proved.

It is easy to see that for any > 0 the sequence A, =n7, n=1,2,... satisfies the
condition (1.2) with g = 2. Tlence Theorem 1.5 implies the following result.

Corollary 1.1. If 0 <y < 1, then {n"}*V = C {n7}* V..

This, combined with Theorem 1.4 implies the next result.
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Corollary 1.2. Let a,8 € (0,1) and a+ 8 < 1. Then
{'-1-(¢+3)}# vce it} {;*-#}v.

2. WALSH FUNCTIONS

Let P be the set of positive integers, and N=PU{0}. We denote the set of all
integers by Z and the set of dyadic rational numbers in the unit interval I = [0,1) by
Q. Each element of Q is of the form £ for somep,n €N, 0<p<2". By a dyadic
interval in I we mean an interval of the form I}, := [I2=%,(l+1)2~¥) for some
l€N,0<1<2VN, Given N € N and z € I, we denote by Iy (z) the dyadic interval
of length 2~¥ that contains z. Finally, we set Iy := [0,2~") and Tn := I'\In.

Let rg (=) be the following function

n@={ 2 BB eanon@, zer

The Rademacher system is defined by
rn(z) =19 (2"2), z €I, n=12..

The Walsh functions wg, w;, ... are defined as follows. Denote wp (z) =1 and if k=
2™ 4...4 2™ ig a positive integer with ny > ng > --- > ny 2 0, then

wg (2) = 1n, (2)---1p, (2).

The Walsh-Dirichlet kernel is defined by

-1
D,,(z)=2wg(z), n=12,...
k=0

Recall that (see [15, 25])

(21) Dan (z) = {
and

(2.2) Danym (%) = Dan (z) + won (2) Dm (2), 0<m <27, n=0,1,...
It is well known that (see [25]) |

on, ifz€0,27")
0, ifze[2™1)

(2.3) Dy (t) = wn () Y njwys (8) Das (t), i n=1) n;2
5=0 =0

and

2.4) D, (2)| 2 ﬁ 9l < g,
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where
(2.5)
QGiven z € I, the expansion

Gn =272 4204 ... 422490,

[~ -]
(2.6) z=_ 23~

where each zx = 0 or 1, is called & dyadic expansion of z. If z € I\Q, then (2.6) is
uniquely determined. For z € Q@ we choose the dyadic cxpansion with h.m TE =0.
The dyadic sum of z,y € I in terms of the dyadic expansion of z andyls defined by

zty=) lox — yu| 27 *HD, ]
k=0
We say that f (z,y) is continuous at (z,y) if
2.7 o f(@+hy+d) = f(z).

We consider the double system {wn(z) X wm(y) : n,m € N} on the unit square

=[0,1) x [0,1).

If f € L* (I?), then

Fnum) = [ £ (2.9) un(a)um (s)dsdy
I2

is the (n, m)-th Walsh-Fourier coefficient of f.

The rectangular partial sums of double Fourier series with respect to the Walsh
system are defined by

M-1N-1

SM,N(zn W f) = Z E f(mv n) wm('t)wn(y)'
m=0 n=0
The Cestiro (C; c, B)-means of double Walsh-Fourier series are defined as follows

o‘::‘gl.(z) Y; f) z:z a_lAm:js‘J(zi v 1),

An—lAm 1 $=1 jml
where
A5 =1, AR = (a+ D 1;1 (a'l'ﬂ)’ a# =1,-2,....
It is well-known that (see [30])
: (2‘8) A: = i ﬂ:;'
k=0
(2.9) AS ~n®
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and

(2.10) o f) = [ 15,0 K3 o+ ) K -+ 1) duct,
12

where _

(2.11) K2 (z) := A:‘L g,qg:;m (z).

3. CONVERGENCE OF TWO-DIMENSIONAL WALSH-FOURIER SERIES

The well known Dirichlet-Jordan theorem (see [30]) states that the Fourier series
of a function f(z), 2 € T of bounded variation coﬁvarges at every point z to the
value [f (z+0) + f(z —0)] /2.

Hardy [16] generalized the Dirichlet-Jordan theorem to the double Fourier series.
He proved that if a function f(z,y) has bounded variation in the sense of Hardy
(f € BY), then S|f] converges at any point (z,y) to the value 1 3" f (z +0,y +0).
Here and below we consider the convergence of only rectangular partial sums of
double Fourier series.

Convergence of d-dimensional trigonometric Fourier series of functions of bounded
A-variation was investigated in details by Sahakian [23], Dyachenko [3, 4, 5], Bakhvalov

_[1], Sablin [22], Goginava, Sahakian [12, 13|, and others.

For the d-dimensional Walsh-Fourier series the convergence of partial sums of
functions of bounded harmonic variation and other bounded generalized variations
were studied by Moricz [19, 20], Onnewer, Waterman [21], and Goginava [7].

In the two-dimensional case the following result is known.

Theorem 3.1 (Sargsyan [24]). If f € HBV(I?), then the double Walsh-Fourier
series of f converges to f (z,y) at any point (z,y) € I? where f is continuous.

The authors have investigated convergence of multiple Walsh-Fourier series of
functions of partial A-bounded variation. In particular, the following result was proved
in [14].

Theorem 3.2 (Goginava, Sahakian [14]). The following assertions hold:
a) Iff e P{W‘-‘,.—“}BV(I’) for some € > 0, then the double Walsh-Fourier
series of f converges to f (z,y) at any point (z,y) € I* where f is continuous.
b) There ezists a continuous function f € P{l'o'z'i}BV(P) such that the quadratic
partial sums of its Walsh-Fourier series diverge at some point.
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The next theorem contains a similar result for functions of bounded A#*_variation.
Theorem 3.3. The following assertions hold:
a) If fe {l’oﬁ}#BV’ then the double Walsh-Fourier series of f converges to

£ (z,y) ot any point (z,y) where f i continuous.
b) For an arbitrary sequence an — 00 there erists a continuous function f €

{ e V¥ BY such that the quadratic partial sums of its Walsh-Fourier
series diverge unboundedly at (0,0).

Proof. The assertion a) immediately follows from Theorems 1.1 and 3.1.
To prove the assertion b), observe first that for any sequence A = {)\,} satisfying
(1.1) the class C (1) NA#BYV is a Banach space with the norm

Iflxepv = Ifllc + A*BV (£),

and Sy.n(0,0, f), n = 1,2,..., is a sequence of bounded linear functionals on that

space. Denote
22N+lg _ 94 if z € [j272N, (27 +1)273N-1] |
eng(z) = § - (@2 -2j-2), if z€[(2j +1)272N1, (j+1)2-2V] ,
0, if z € I\ [j272N, (j + 1) 22V],
L e |
(3.1) on(@)= ) eni(@), =z€l,
i=1

9N (z,y) = @~ (z) on (y)sgnDgy (7)sgnDyy (¥), 2y €1,

where gy is defined in (2.5).
= 2]
Suppose A = {‘\“=ﬁ§h]'}m=1' where @, — oco. It is easy to show that for
§=1,2

b e |

A*V, (gn) <c ) %ﬁ-;o(}\") as N = co.

Therefore |lgn||s# 5y = 0 (N?) = nnN?, where ny — 0 as N — oo. Hence, denoting
GN = 8%, we conclude that Gy € A#BV and

(3.2) sj‘tp G~ uj\# By < 00,
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By construction of the function G we have

Sawsan (0,0;Gn) = f G (2,) Dax (2) Dgw (v) dzdy
I3

(33) = 1= [[ ow @ on 0)1Dac @)1Dg W)l dodl
n

2
o2 EITJ ( j o (z) Doy (z)idz)
I

Next, using (2.4), we can write
92N _q (G+1)27 W

[on@1Dny @ldz="Y [ oy @)D @) ds=
I i=1 j2-IN

23N -1 - U+1)2—’N 3’” LT
e J il 23N
=y Dny (22_N) / N, (2)dz 2 saxy Y- FZCN-
i=1 §2-3N j=1

Consequently, from (3.3) we obtain
(3.4) [Sen,an (0,0;GN)| 2 ﬂiN —00 as N — oo

According to the Banach-Steinhaus Theorem, (3.2) and (3.4) imply that there exists
#*
_a continuous function f € {lﬁ(ﬁi‘ﬁ} BYV such that
bup |Sn,wv (0, 0; f)| = +o0.

Theorem 3.3 is proved. a
As an immediate consequence of Theorems 1.2 and 3.3 we have the following result.

Theorem 3.4. Let the function f (z,y), (z,y) € I?, satisfy the condition

i v (f,n)log(n +1)
Then the double Walsh-Fourier series of f converges to f (z,y) at any point (z,y) € I?
where f is continuous.

<00, 8§=12.

4. CESARO MEANS OF NEGATIVE ORDER FOR TWO-DIMENSIONAL WALSH-FOURIER
SERIES

The problem of summability of Ceséro means of negative order for one dimensional
Walsh-Fourier series was studied in the papers [8], [26]. In the two-dimensional case
the summability of Walsh-Fourier series by Ceséro method of negative order for
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functions of partial bounded variation was investigated by the first author in [9],
[11]. In particular, the following results were obtained.

Theorem 4.1 (Goginava [9]). Zet f € Cw (I*)NPBV and e, >0, a+B < 1. Then
the double Walsh-Fourier series of the function f is uniformly (C; —a, —B) summable
in the sense of Pringsheim.

Theorem 4.2 (Goginava [9]). Leta, 8 > 0, a+f > 1. Then there exists a continuous
Junction fo € PBV such that the Cesdro (C; —a,—B) means o;%~P (0,0; fo) of the
double Walsh-Fourier series of fo diverge.

Theorem 4.3 (Goginava [11]). Let f € C ({i*-2}, {i*#}) V (I?) witha, B € 0,1).
Then the (C, —a, —B)-means of double Walsh-Fourier series converge to f (z,y), if f
is continuous at (z,y)-

Theorem 4.4 (Goginava [11]). Lete, B € (0,1), @+ 8 < 1. The following assertions

hold:
o) Iff € P{ Zrrigaryy } BV (%) for some e > 0, then the double Walsh-Fourier
series of the function f is (C; —a, —B) summable to f (z,y), if f is continuous
at (z,9).
b) There exists a continuous function f € P{l,'fa‘;—*f;}av(ﬁ) P
means ar;.‘fi?e (0,0; f) diverge.
In this paper we prove the following result.

Theorem 4.5. The following assertions hold:
a) et a,f € (0,1), @+ 8 < 1 and f € {n"~C+}* BY. Then the means
o;lf,';‘ﬁ (z,9; f) converge to f (z,y), if f is continuous at (z,y).
b) Let A == {n!~(@+P)¢.}, where & 1 00 as n — co. Then there ezists a
function f € C(I?) N CA*V for which the (C;—a,—B)-means of double
Walsh-Fourier series diverge unboundedly at (0,0).

Proof. The assertion a) immediately follows from Corollary 1.2 and Theorem 4.3. To
prove part b) of the theorem, observe first that

#
{n=AVE}" BY c o {ni-+mg, 1,
and since £, 1 oo is arbitrary, it is enough to show that there exists a continuous
function f € A#BV for which (C;—a, —f)-means of double Walsh-Fourier series

diverge unboundedly at (0, 0).
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Denote
ha (z,y) = on (z) on (v) sgnK s (2) sgnkgly (v),
where @,y is defined in (3.1), and the kernel K2 is defined in (2.11). It is easy to show
that for s = 1,2 and N — oo we have

: b |
{nl-{a+ﬂ)5“}# Vi (hy) < c(a, B) Zl ;—':Tlu?sg =0 (zmcam) ]
Hence 5
Ihnll e gy = 0 (22N(a+ﬂ)) — )
where 7y = 0(1) as N — co. Consequently, denoting

hn (zly)
Hp (z,9) = TN 2N(aHB)!

we conclude that Hy € C(I?) N A#BV and
(41) sup || BN [law 5 < o0

By construction of the function Hy, we have

ophe 0,0:Hx) = [[ Hy (0.9 K38 @) Kzh () dady
el

(4.2) = mmffhﬂ (z,v) Kga () Kz_ﬂﬁ (v) dzdy
n

s | o @) K3 @) de [[on ) KA )] .
I I

Now, using the following estimate from [26]:
2m—N
| Ko (z)| dz > e(@) 2™, Ne€N, m=1,.,N, 0<a<l,
gm=N-=1
we can write
gav_q (#1272

(4.3) f on (@) | K3 @)|dz= 3 j on (@) | K53 (2)] do

I =1 ja-N
93N _; i (j+1)2—2N i N _y p (G+1)272¥
- % [ ()| [ em@e-3 % fs ()| [ -
j=1 j2-3N Jj=1 j2-3N
1 G137 - g NIAT) G+
=3 |Kz @dz=35 3 > f | Kz (2)| dz

m=0 j=am j2-3N
63

=1 j2-3N



U. GOGINAVA, A. A. SAHAKIAN

I e fud 2N-1 e
U @l 3 ez et
2 m=0

m=0 gman

Similarly, we can prove that

@y [on@|h @[z c@P, NeN 0<p<i
I
Combining (4.3) and (4.4) we get e
c(a B
(4.5) |°'a-;?\r':§=ﬂar (0,05 HN)I 2 e — co a8 N.— oc.

Applying the Banach-Steinhaus theorem, from (4.1) and (4.5) we infer that there
exists & continuous function f € A¥ BV such that
sup o ? (0,0,3 )] = +oo.

Theorem 4.5 is proved. a
Taking into account the embedding A*BV C A#BYV, from Theorem 4.5 we obtain

the following result.

Corollary 4.1. Let o, € (0,1), a+B <1land f € {nl—(°+ﬁ)}'Bv_ Then the
means O’;_:.i_‘e (z,y; f) converge to f(z,y), if f is continuous at (z,v)-

A combination of Theorems 1.3 and 4.5 yields the following result.

Theorem 4.6. Let a,f € (0,1), a+ B8 <1 and

S ltitd)
22:'—,(1:W"_.3))<°° for s=1,2.

=1
Then the means o5 %" (z,y; f) converge to f (z,y), if f is continuous at (z,y).
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