Известия НАН Армении. Математика, том 49, н. 6, 2014, стр. 43-50.

Dedicated to Academician Norair U. Arakelian

POWER SERIES WITH H.-O. GAPS; TAUBERIAN THEOREMS

T. GHARIBYAN AND W. LUH

Institute of Mathematics Armenian National Academy of Sciences Universität Trier, Trier, Germany

E-mails: gtatev@instmath.sci.am; luh@uni-trier.de

Abstract. Let $\sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be a power series with radius of convergence 1, and let $s_n(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ denote its partial sums. For a given triangular matrix $A = [\alpha_{n\nu}]$ we consider the A-transforms $\sigma_n(z) = \sum_{\nu=0}^{n} \alpha_{n\nu} s_{\nu}(z)$, and prove two Tauberian theorems of the following type: from certain summability properties of $\{\sigma_n(z)\}$ outside the unit disk and a condition on the entries $\alpha_{n\nu}$ the convergence of a

MSC2010 numbers: 30B30, 40E05, 40E15, 30B40.

subsequence $\{s_{n_k}(z)\}$ is concluded.

Keywords: Tauberian theorem; Hadamard-Ostrowski gap; overconvergence.

1. INTRODUCTION

1.1. Overconvergence and H.-O. gaps. Let be given a power series with radius of convergence 1:

(1.1)
$$f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}, \quad \overline{\lim}_{\nu \to \infty} |a_{\nu}|^{1/\nu} = 1,$$

which represents a holomorphic function in the unit disk $\mathbb{D} = \{z : |z| < 1\}$. As usual, we denote its partial sums by

$$(1.2) s_n(z) = \sum_{\nu=0}^n a_{\nu} z^{\nu}.$$

Such a series is called overconvergent if there exists a domain G which is not contained in \mathbb{D} and a subsequence $\{p_k\}$ of natural numbers such that $\{s_{p_k}(z)\}$ converges compactly on G. Then $\{s_{p_k}(z)\}$ is called an overconvergent subsequence of (1.1). If G intersects \mathbb{D} , then $\{s_{p_k}(z)\}$ generates an analytic continuation of f. (Note that there are other definitions of overconvergence.)

¹The research of the first author was supported by German Academic Exchange Service (DAAD), Kennziffer A/10/02530

The phenomenon of overconvergence was discovered by Porter [16] more than a century ago and thoroughly has been investigated by Ostrowski in [11] - [14]. For a good treatise on the theory of overconvergence we refer to Hille's book [5, Section 16.7]. One of Ostrowski's main results is an interdependence between overconvergence and existence of certain gaps in the sequence of coefficients $\{a_{\nu}\}$.

We say that the power series (1.1) has a sequence $\{p_k, q_k\}$ of H.-O. gaps (short for Hadamard-Ostrowski gaps) if p_k and q_k are natural numbers satisfying

$$p_1 < q_1 < p_2 < q_2 < \dots, \qquad \lim_{k \to \infty} \frac{q_k}{q_k} > 1$$

and

$$\overline{\lim_{\substack{\nu \to \infty \\ \nu \in J}}} |a_{\nu}|^{1/\nu} < 1 \quad \text{for} \quad J = \bigcup_{k=1}^{\infty} \{p_k, \dots, q_k\}.$$

We summarize the main results on overconvergence in the following theorem. Theorem O (Ostrowski [11], [13]).

- (a) If the power series (1.1) possesses H.-O. gaps $\{p_k, q_k\}$, then any sequence $\{s_{n_k}(z)\}$ with $n_k \in [p_k, q_k]$ converges compactly in a domain which contains every point on |z| = 1 in which f is holomorphic.
- (b) Every overconvergent power series possesses H.-O. gaps.

1.2. Summability of power series. Let $A = [\alpha_{n\nu}]_{\nu,n=0}^{\infty}$ be an infinite triangular matrix with complex entries $\alpha_{n\nu}$, where $\alpha_{n\nu} = 0$ for $\nu > n$. Such a matrix generates a transformation of a power series. The A-transforms of the series (1.1) are given by

(1.3)
$$\sigma_n(z) = \sum_{\nu=0}^n \alpha_{n\nu} s_{\nu}(z).$$

The matrix A is called p-regular ("regular for power series") if for all series of type (1.1) the sequence $\{\sigma_n(z)\}$ converges compactly in \mathbb{D} . This property can be characterized by the entries of A only. The following conditions are necessary and sufficient for p-regularity (see [7]):

(1.4)
$$\lim_{n\to\infty} \alpha_{n\nu} = 0 \quad \text{for all } \nu \in \mathbb{N}_0,$$

(1.5)
$$\lim_{n\to\infty} \sum_{\nu=0}^{n} \alpha_{n\nu} = 1,$$

(1.6)
$$\sup_{n} \sum_{\nu=0}^{n} |\alpha_{n\nu}| r^{\nu} < \infty \quad \text{for all } r \in (0,1).$$

POWER SERIES WITH H.-O. GAPS; TAUBERIAN THEOREMS

In common use of summability theory the matrix A is regular if and only if the conditions (1.4), (1.5) and instead of (1.6) the following stronger property

$$\sup_{n} \sum_{\nu=0}^{n} |\alpha_{n\nu}| < \infty$$

hold. Observe that if A is regular, then A is also p-regular, but not conversely.

If A is p-regular, then the following properties of the sequence (1.2) can easily be obtained by straightforward estimates:

(1.7)
$$\overline{\lim_{n\to\infty}} \Big\{ \max_{|z|=R} |\sigma_n(z)| \Big\}^{1/n} \le R \quad \text{for all } R \ge 1;$$

if (1.1) has H.-O. gaps $\{p_k, q_k\}$, then

(1.8)
$$\overline{\lim_{k \to \infty}} \left\{ \max_{|z|=R} |\sigma_{q_k}(z)| \right\}^{1/q_k} < R \quad \text{for all } R > 1.$$

2. A TAUBERIAN THEOREM

The following Theorem is our main result.

Theorem 2.1. Suppose that $A = [\alpha_{n\nu}]$ is a p-regular matrix with the property that there exists a subsequence $\{n_k\}$ of N and a constant $\gamma \in (0,1)$ such that

(2.1)
$$\lim_{\substack{\nu \to \infty \\ \nu \in J}} \left| \sum_{\mu=\nu}^{n_k} \alpha_{n_k \mu} \right|^{1/\nu} = 1, \quad \text{where} \quad J = \bigcup_{k=1}^{\infty} \left\{ [\gamma n_k], \dots, n_k \right\}.$$

Let a power series of type (1.1) be given and $\sum_{\nu=0}^{n} \alpha_{n\nu} s_{\nu}(z)$ be its A-transforms. Suppose that for an R>1 there exists a closed arc $\Gamma\subset\{z:|z|=R\}$ with

$$(2.2) \qquad \overline{\lim}_{k \to \infty} \left\{ \max_{\Gamma} \left| \sigma_{n_k}(z) \right| \right\}^{1/n_k} < R.$$

Then the considered power series has H.-O. gaps of the type $\{[\delta n_k], n_k\}$ for some $\delta \in (0,1)$. If f has an analytic continuation, then $\{s_{n_k}(z)\}$ is overconvergent.

Remark 2.1

(1) If the sequence $\{\sigma_{n_k}(z)\}$ converges compactly in a domain, which is not contained in \mathbb{D} , then (2.2) is trivially satisfied for suitably chosen R > 1 and arcs $\Gamma \subset \{z : |z| = R\}$. In the case where the matrix A has the property that there are constants c > 0 and $\gamma \in (0,1)$ with

(2.3)
$$\left|\sum_{\mu=\nu}^{n} \alpha_{n\nu}\right| \ge c \quad \text{for all } \nu \text{ with } [\gamma n] \le \nu \le n$$

and all sufficiently large n, then (2.1) is satisfied. In section 3 we list a number of well known summability methods which are generated by matrices and satisfy (2.3).

- (2) Suppose that the condition (2.1) is satisfied. Then the matrix A is not efficient for the analytic continuation of all function elements of type (1.1). More precisely, there exist power series (1.1) such that $\sigma_n(z) = \sum_{\nu=0}^n \alpha_{n\nu} s_{\nu}(z)$ converges compactly in \mathbb{D} , but not in any bigger domain (however, a subsequence $\{\sigma_{n_k}(z)\}$ may have this property). If $\lim_{n\to\infty} |a_n|^{1/n} = 1$, then $\{\sigma_n(z)\}$ and all its subsequences are compactly convergent only in \mathbb{D} . For a detailed discussion of this problem we refer to [1], [2], [7], [8] (see, also, [3], [4]).
- (3) Theorem 2.1 may be considered as a Tauberian theorem: From summability . properties (here condition (2.2)) together with a so-called Tauberian condition (here (2.1)) convergence properties are derived. However, in contrast to classical Tauberian results, in Theorem 2.1 convergence of a subsequence is concluded.

Proof of Theorem 2.1. Suppose that an $\varepsilon > 0$ is given and consider the circle |z| = R and its closed subarc Γ . Then, by (1.7) there exists an n_0 such that for all $n \ge n_0$

$$\max_{|z|=1} \left| \frac{\sigma_n(z)}{z^n} \right| \le e^{\varepsilon n}, \quad \max_{|z|=R} \left| \frac{\sigma_n(z)}{z^n} \right| \le e^{\varepsilon n}.$$

In addition, by (2.2) there exists a $k_0 \ge n_0$ such that for all $k \ge k_0$

$$\max_{\Gamma} \left| \frac{\sigma_{n_k}(z)}{z^{n_k}} \right| \leq \frac{e^{\varepsilon n_k}}{R^{n_k}}.$$

Let r with 1 < r < R be given. Then, according to Nevanlinna's N-constants theorem (see Hille, [5, p. 409]), there exists a universal $\Theta \in (0, 1)$, which depends only on the geometrical configuration, such that for all $k \ge k_0$

$$\max_{|z|=r} \left| \frac{\sigma_{n_k}(z)}{z^{n_k}} \right| \leq e^{(1-\Theta)\varepsilon n_k} \cdot \frac{e^{\Theta\varepsilon n_k}}{R^{\Theta n_k}} = \left(\frac{e^\varepsilon}{R^\Theta} \right)^{n_k}.$$

Therefore, if $\varepsilon > 0$ is chosen sufficiently small, we obtain for those k

$$\max_{|z|=r} \left| \sigma_{n_k}(z) \right| \leq (qr)^{n_k},$$

where 0 < q < 1 (but qr > 1). We have

$$\sigma_{n_k}(z) = \sum_{\nu=0}^{n_k} a_{\nu} z^{\nu} \cdot \sum_{\mu=\nu}^{n_k} \alpha_{n_k \mu},$$

and Cauchy's inequality gives for $0 \le \nu \le n_k$ and all $k \ge k_0$

$$|a_{\nu}| \cdot \Big| \sum_{\mu=\nu}^{n_k} \alpha_{n_k \mu} \Big| \leq \left(q \cdot r^{1-\nu/n_k} \right)^{n_k}.$$

If we now choose δ with $\gamma \leq \delta < 1$ so near to 1 that $r^{1-\delta} < \frac{1}{q}$, then for all ν with $[\delta n_k] \leq \nu \leq n_k$ and $k \geq k_0$ we get the estimate

$$|a_\nu|^{1/\nu}\cdot \Big|\sum_{\mu=\nu}^{n_k}\alpha_{n_k\mu}\Big|^{1/\nu}\leq q\cdot r^{1-\delta}<1.$$

But then (2.2) implies

$$\overline{\lim_{\stackrel{\nu\to\infty}{\nu\in J}}}|a_{\nu}|^{1/\nu}<1\quad\text{for}\quad J=\bigcup_{k=1}^{\infty}\big\{[\delta n_k],\ldots,n_k\big\}.$$

Therefore the power series under consideration has H.-O. gaps of the type $\{[\delta n_k], n_k\}$. In the case where f has an analytic continuation, Theorem 0 implies that $\{s_{n_k}(z)\}$ is an overconvergent subsequence of the series. Theorem 2.1 is proved.

As a corollary of Theorem 2.1 we have the following result.

Theorem 2.2. Let a power series of type (1.1) be given which has an analytic continuation. Suppose that $A = [\alpha_{n\nu}]$ is a p-regular triangular matrix and that for a sequence $\left\{p_k\right\}_{k=0}^{\infty}$ with $\lim_{k\to\infty}\frac{p_{k+1}}{p_k}>1$ transformations

$$\tau_n(z) = \sum_{\nu=0}^n \alpha_{n\nu} s_{p_{\nu}}(z)$$

are compactly convergent in a domain which is not contained in the unit disk. If

(2.4)
$$\lim_{\substack{\nu \to \infty \\ \nu \in J}} |\alpha_{kk}|^{1/\nu} = 1 \quad \text{for} \quad J = \bigcup_{k=1}^{\infty} \{p_k + 1, \dots, p_{k+1}\}$$

is satisfied, then $\{s_{p_k}(z)\}$ is an overconvergent subsequence of the considered power series.

Proof. Without loss of generality we can assume that $p_{k+1}/p_k \ge \lambda > 1$ for all $k \in \mathbb{N}_0$. We define a triangular matrix $B = [\beta_{n\nu}]$ in the following way:

for
$$n \neq p_k$$
: $\beta_{n\nu} := \begin{cases} 0 & \text{if } \nu \neq n \\ 1 & \text{if } \nu = n \end{cases}$

$$\text{for } n = p_k: \qquad \beta_{p_k \nu} := \begin{cases} 0 & \text{if } \nu \neq p_\mu \\ \alpha_{k \mu} & \text{if } \nu = p_\mu \end{cases} \quad (\mu = 0, \dots, k).$$

The matrix B is obviously p-regular. We consider

$$\sigma_n(z) = \sum_{\nu=0}^n \beta_{n\nu} s_{\nu}(z)$$

and obtain

$$\sigma_{p_k}(z) = \sum_{\mu=0}^k \beta_{p_k p_{\mu}} s_{p_{\mu}}(z) = \sum_{\mu=0}^k \alpha_{k\mu} s_{p_{\mu}}(z) = \tau_k(z)$$

as well as $\sum_{\mu=\nu}^{p_k} \beta_{p_k\mu} = \alpha_{kk}$ for all ν with $p_{k-1} < \nu \le p_k$.

Therefore, the matrix B satisfies a condition of type (2.1), while the sequence $\{\sigma_{p_k}(z)\}$ has property (2.2) for a suitably chosen R>1 and an arc $\Gamma\subset\{z:|z|=R\}$. It follows that $\{s_{p_k}(z)\}$ is an overconvergent subsequence. Theorem 2.2 is proved. \square

3. EXAMPLES

We discuss some examples of well-known summability methods that are defined by triangular matrices and satisfy the requirements of Theorem 2.1. Especially we are interested whether the property (2.1), which acts as a Tauberian condition in this result, can be realized. Whenever in addition a power series (1.1) is considered, for which the corresponding transformations satisfy a property of type (2.2), then a Tauberian result as in Theorem 2.1 can be concluded for this series.

1. Nørlund means N_c. Let $c = \{c_n\}$ be a sequence of real numbers with $c_0 > 0$ and $c_n \ge 0$ for $n \ge 1$, and let $C_n = \sum_{\nu=0}^n c_{\nu}$. Then the Nørlund means are generated by the triangular matrix $A = [\alpha_{n\nu}]$ given by

$$\alpha_{n\nu} = \frac{c_{n-\nu}}{C_n}$$
 if $0 \le \nu \le n$.

The condition $\lim_{n\to\infty} \frac{c_n}{C_n} = 0$ is necessary and sufficient for the regularity of N_c , and it is also well-known that all Nørlund methods are ineffective for analytic continuations of any power series. For $0 \le \nu \le n$ we get

$$\frac{c_0}{C_n} \le \sum_{\mu=\nu}^n \alpha_{n\nu} \le 1,$$

and by the regularity condition we have $\lim_{n\to\infty} \frac{C_{n-1}}{C_n} = 1$. Hence $\lim_{n\to\infty} (C_n)^{1/n} = 1$, which implies that for all Nørlund means the condition (2.1) is satisfied for all subsequences $\{n_k\}$ of N.

Hence a Tauberian result as in Theorem 2.1 holds for all power series whose N_c transformations satisfy condition (2.2).

(Actually the N_c method was first introduced by Russian mathematician Voronoi in 1902 (see [17]); independently of Voronoi the definition was given by Nørlund in 1920 (see [10]).)

- 2. Cesàro means C_{α} . These are special regular Nørlund means which for $\alpha \geq 0$ are generated by the sequence $c_n = \binom{n+\alpha-1}{n}$.
- 3. Weighted means R_c . (Also known as Riesz means or Nørlund-type means.) Let $c = \{c_n\}$ be again a sequence of real numbers with $c_0 > 0$ and $c_n \ge 0$ for $n \ge 1$,

and let $C_n = \sum_{\nu=0}^n c_{\nu}$. Then the R_c means are generated by the triangular matrix $A = [\alpha_{n\nu}]$ given by

 $\alpha_{n\nu} = \frac{c_{\nu}}{C_n}$ if $0 \le \nu \le n$.

Here the condition $\lim_{n\to\infty} C_n = \infty$ is necessary and sufficient for the regularity of R_c . As in the case of Nørlund means we have for $0 \le \nu \le n$

$$\frac{c_0}{C_n} \le \sum_{\mu=\nu}^n \alpha_{n\nu} \le 1.$$

Therefore condition (2.1) is satisfied if $\{C_n\}$ is not "too fast" increasing sequence, that is, if $\lim_{n\to\infty} (C_n)^{1/n} = 1$. In this case Theorem 2.1 applies also to this method.

4. Hausdorff means H_X. This is a wide class of summability methods, containing many well-known methods as special cases.

Let χ be a real-valued function of bounded variation on [0,1] satisfying

$$\chi(t) = \chi(t+)$$
 for all $t \in [0,1)$.

The H_{χ} means are generated by the triangular matrix $A = [\alpha_{n\nu}]$ with

$$\alpha_{n\nu} = \binom{n}{\nu} \int_{0}^{1} t^{\nu} (1-t)^{n-\nu} d\chi(t)$$

and the regularity conditions are $\chi(0) = 0$, $\chi(1) = 1$ (see [15]). The best known Hausdorff means are the Cesàro means C_{α} ($\alpha > 0$), where

$$\chi(t)=1-(1-t)^{\alpha},$$

the Hölder means H_{α} ($\alpha > 0$), where (Γ denotes the Gamma function)

$$\chi(t) = \frac{1}{\Gamma(\alpha)} \cdot \int\limits_0^t \left(\ln \frac{1}{s}\right)^{\alpha-1} ds,$$

and the Euler means E_r (0 < r < 1), where

$$\chi(t) = \begin{cases} 0 & \text{for } 0 \le t < r \\ 1 & \text{for } r \le t \le 1. \end{cases}$$

The (upper) order of a regular Hausdorff mean is defined as

$$\rho = \rho(\chi) = \inf \left\{ s : \chi(t) = 1 \text{ for all } t \in [s, 1] \right\}.$$

Obviously C_{α} and H_{α} have order $\rho = 1$, while $\rho = r < 1$ for the Euler means E_r .

If a power series has an analytic continuation, then all H_{χ} means with $\rho < 1$ are efficient for those series and also an estimate (depending on ρ) for the summability domain can be given. On the other hand, all H_{χ} means of order $\rho = 1$ are inefficient

for analytic continuation (for details see [9, section 2], [15, chapter IV, 2]). Especially for Cesàro and Hölder means we have inefficiency for any power series.

If H_{χ} has order $\rho=1$, then there exist constants $\gamma\in(0,1)$ and c>0 such that for all sufficiently large $n\left|\sum_{\mu=\nu}^{n}\alpha_{n\nu}\right|\geq c$ for all $\nu\in[\gamma n,n]$.

This estimate is a special case of a result on the distribution of Hausdorff elements (see [9], Lemma 1), which was proved by probabilistic methods.

It follows that H_{χ} means of order $\rho=1$ satisfy condition (2.1) for any subsequence of N, and under the additional assumption (2.2) on the behavior of a power series a Tauberian result as in Theorem 2.1 holds.

Список литературы

- N. U. Arakelyan, "On efficient analytic continuation of power series", Math. USSR Sbornik (166), no. 5, 124, 24 - 44 (1984) (in Russian); Translation in Math. USSR Sbornik 52, no. 1, 21 - 39 (1985).
- [2] N. U. Arakelyan, "Approximation by entire functions and analytic continuation", Progress in Approximation Theory, Springer-Verlag, New York, 295 - 313 (1992).
- [3] N. U. Arakelyan and W. Luh, "Efficient analytic continuation of power series by matrix summation methods", Computational Methods and Function Theory, 2, no. 1, 137 - 153 (2002).
- [4] N. U. Arakelyan, W. Luh and J. Müller, "On the location of singularities of lacunar power series", Complex Variables and Elliptic Equations, 52, no. 7, 561 – 573 (2007).
- [5] E. Hille, Analytic Function Theory, vol. II, Chelsea Publishing Company, New York (1987).
- [6] W. Luh, "Summierbarkeit von Potenzreihen notwendige Bedingungen", Mitt. Math. Sem. Gießen, 111, 48 – 69 (1974).
- [7] W. Luh, "Kompakte Summierbarkeit von Potenzreihen im Einheitskreis", Acta Math. Sci. Hung., 28 (1-2), 51 – 54 (1976).
- [8] W. Luh, "Summability of power series by nonregular matrices", Acta Sci. Math. (Szeged), 66, 81 - 90 (2000).
- W. Luh and R. Trautner, "Hausdorff-Summability of power series the distribution of zeros of Hausdorff-transforms", Analysis, 13, 403 - 413 (1993).
- [10] N. E. N\(\textit{O}\)rlund, "Sur une application des fonctions permutable", Lunds Univ. Arsskrift. Avd., 2, (16) no. 3, 1 - 10 (1920).
- [11] A. Ostrowski, "Über eine Eigenschaft gewisser Potenzreihen mit unendlich vielen verschwindenden Koeffizienten", S.-B. Preuss. Akad. Wiss., Berlin, Phys.-Math. Kl., 557 – 565 (1921).
- [12] A, Ostrowski, "Über vollständige Gebiete gleichmäßiger Konvergenz von Folgen analytischer Funktionen", Abh. Math. Sem. Hamburg. Univ., 1, 327 – 350 (1922).
- [13] A. Ostrowski, "Über Potenzreihen, die überkonvergente Abschnittsfolgen besitzen", S.-B. Preuss. Akad. Wiss. (Berlin) Phys.-Math. Kl., 185 – 192 (1923).
- [14] A. Ostrowski, "Zur Theorie der Überkonvergenz", Math. Ann., 103, 15 27 (1930).
- [15] A. Peyerimhoff, Lectures on Summability, Lecture Notes in Mathematics, Springer, Berlin Heidelberg – New York –Tokyo (1970).
- [16] M. B. Portner, "On the polynomial convergents of a power series" [in Russian], Ann. of Math., 8, 189 – 192 (1906-07).
- [17] G.T. Voronoi, "Generalization of the notion of the sum of an infinite series", Proceedings of the 11th congress of Russian naturalists and scientists, St. Petersburg, 60 – 61 (1902).

Поступила 26 февраля 2014