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Abstract.’ Let 3% ; a,2" be a power series with radius of convergence 1, and let
an(2) = %cys” denote its partial sums. For a given triangular matrix A = [ans]

i
we consider the A-transforms on(z) = 3 anws.(z), and prove twa Tauberian
v=0

theorems of the following type: from certain summability properties of {on(z)}
outsido the unit disk and a condition on the entries o, the convergence of a
subsequence {an, (z)} is concluded.

MSC2010 numbers: 30B30, 40E05, 40E15, 30B40.
Keywords: Tauberian theorem; Hadamard-Ostrowski gap; overconvergence.

1. INTRODUCTION

1.1. Overconvergence and H.-O. gaps. Let be given a power series with radius
of convergence 1:

¢BY f@=Ya,  Tmlal=1,
v=0

_ which represents a holomorphic function in the unit disk D = {2 : |2| < 1}. As usual,
we denote its partial sums by

(1.2) 8n(2) = ia,z".
v=0

Such a series is called overconvergent if there exists a domain G which is not contained
in D and a subsequence {p; } of natural numbers such that {s,, (2)} converges compactly
on G. Then {s,,(2)} is called an overconvergent subsequence of (1.1). If G intersects
D, then {sp,(z)} generates an analytic continuation of f. (Note that there are other
definitions of overconvergence.)

1The research of the first author was supported by German Academic Exchange Service (DAAD),
Kennziffer A/10/02530
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The phenomenon of overconvergence was discovered by Porter [16] more than a
century ago and thoroughly has been investigated by Ostrowski in [11] - [14]. For a
good treatise on the theory of overconvergence we refer to Hille’s book [5, Section
16.7]. One of Ostrowski’s main results is an interdependence between overconvergence
and existence of certain gaps in the sequence of coefficients {a,}.

We say that the power series (1.1) has a sequence {px, gx} of H.-O. gaps (short for
Hadamard-Ostrowski gaps) if p; and g, are natural numbers satisfying

s Ok
<a<p<@p<... lim —=>1
n<a<p<q ’ 2

and
o0
E[a,!”"<l for’ © J= U{Pk:---,t}k}-
wEd k=1
We summarize the main results on overconvergence in the following theorem.
Theorem O (Ostrowski [11], [13]).

(a) If the power series (1.1) possesses H.-O. gaps {px,qi}, then any sequence
{8n.(2)} with ny € [px,qx] converges compactly in a domain which contains
every point on |z| = 1 in which f is holomorphic.

(b) Every overconvergent power series possesses H.-O. gaps.

1.2. Summability of power series. Let A = [an,[$%,_o be an infinite triangular
matrix with complex entries o, where ay, = 0 for v > n. Such a matrix generates
a transformation of a power series. The A-transforms of the series (1.1) are given by

(1.3) on(2) = i Ay 8y(2).
=

The matrix A is called p-regular ("regular for power series") if for all series of
type (1.1) the sequence {on(2)} converges compactly in M. This property can be
characterized by the entries of A only. The following conditions are necessary and
sufficient for p-regularity (see [7]):

14 i =
(1.4) uh_fgoaw—ﬂ for all v € Ny,
il i =
5) o Xl
n
(1.6) sup Z_Io:,w]r” <oco forallre (0,1).
" v=0
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In common use of summability theory the matrix A is regular if and only if the
conditions (1.4), (1.5) and instead of (1.6) the following stronger property
n
E:pgla,wl <oo

hold. Observe that if A is regular, then A is also p-regular, but not conversely.
If A is p-regular, then the following properties of the sequence (1.2) can easily be
obtained by straightforward estimates:
(1.7) Tim { max ]ar..(z)|} <R foralR>1;
n—+oo | [z]=R

if (1.1) has H.-O. gaps {pk,qx}, then
1/
(1.8) -""'W-"{II R[a“(z)|} “<R foralR>1

2. A TAUBERIAN THEOREM
The following Theorem is our main result.
Theorem 2.1. Suppose that A = [an,] is a p-reqular matriz with the property that
there ezists a subsequence {nk} of N and a constant y € (0,1) such that

(2.1) Jim Za..,,,. "=1, uwhere J=D{[m],...,n,.}.
k=1

veS
" Let a power series of type (1.1) be given and 3(2) = 3 nyu(2) be its A-transforms.
n v=0
Suppose that for an R > 1 there ezists a closed arc T' C {z: |z| = R} with
2.2) Tim { max o, (2)] }

Then the considered power series has H.-O. gaps of the type {[0nx],nx} for some
6 € (0,1). If f has an analytic continuation, then {sn,(2)} is overconvergent.

!m.

Remark 2.1
(1) If the sequence {on,(2)} converges compactly in & domain, which is not
contained in I, then (2.2) is trivially satisfied for suitably chosen R > 1 and
arcs I C {2 : |z| = R}. In the case where the matrix A has the property that
there are constants ¢ > 0 and v € (0,1) with

(23) |3
p=v

and all sufficiently large n, then (2.1) is satisfied. In section 3 we list a number
of well known summability methods which are generated by matrices and

satisfy (2.3).

>c forallvwith [yn]<v<n
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(2) Suppose that the condition (2.1) is satisfied. Then the matrix 4 is not efficient
for the analytic continuation of all function elements of type (1.1).

More precisely, there exist power series (1.1) such that 0n(2) = 350 a,8,(2)
converges compactly in D, but not in any bigger domain (however, a subsequence
{0, (2)} may have this property). If limn—yo0 [an|*/™ = 1, then {g,,(2)} and all
its subsequences are compactly convergent only in . For a detailed discussion
of this problem we refer to [1], [2], [7], [8] (see, also, [3], [4]).

(3) Theorem 2.1 may be considered as a Tauberian theorem: From summability .
properties (here condition (2.2)) together with a so-called Tauberian condition
(here (2.1)) convergence properties are derived. However, in contrast to classical
Tauberian results, in Theorem 2.1 convergence of a subsequence is concluded.

Proof of Theorem 2.1. Suppose that an € > 0 is given and consider the circle

|z| = R and its closed subarc I'. Then, by (1.7) there exists an ng such that for all

n=ng
< e,

(z)l <e™, max a‘_n(fl
|z|]=R1 27

|x]=1
In addition, by (2.2) there exists a ko 2> ng such that for all k > kg

I on, (2) I

r 2Tk = Rﬂl

Let r with 1 < r < R be given. Then, according to Nevanlinna’s N-constants theorem
(see Hille, [5, p. 409]), there exists a universal © € (0, 1), which depends only on the
geometrical configuration, such that for all k > kg

o'n*_(z) (l_e]‘“* y ee&‘ﬂh 15 eg Ty
]:I:xr zZM ISE REne Eé_ .

Therefore, if £ > 0 is chosen sufficiently small, we obtain for those k
I?l&xr ,dmf (z)l < (Q'r)ms
where 0 < ¢ < 1 (but gr > 1). We have
Tk Nk
on, (2) = Ea,,z" ; E Cnypy
v=0 p=v
and Cauchy’s inequality gives for 0 < v < n; and all k > kp

Tk
[gyl . l Za"“‘l < (Q' rl—vfni)'llr.
p=v

46



POWER SERIES WITH H.-O. GAPS; TAUBERIAN THEOREMS

Ifwenowchooseéwith755<lsonem'tolthatrl“'.< i-,thenforallvwith

[0nk] < v < ny and k > ko we get the estimate
Tik 1/v
D Oy
p=v

law |/ - <g-r i<

But then (2.2) implies
(= <]
Tmle,['* <1 for J= U {[6nl, - .. ne}-
wEJ k=1
Therelore the power series under consideration has H.-O. gaps of the Lype {[Jm,], ng}.
In the case where f has an analytic continuation, Theorem 0 implies that {sn. (3)}
is an overconvergent subsequence of the series. Theorem 2.1 is proved. O
As a corollary of Theorem 2.1 we have the following result.

Theorem 2.2. Let a power series of type (1.1) be given which has an analytic
continuation. Suppose that A = [ay,] is a p-regular triangular matriz and that for a
sequence {p;,}:;o with lim 2::51. > 1 transformations
n
Ta(2) = E @y 8p, (2)
v=0

are compactly convergent in a domain which is not contained in the unit disk. If

=]
(24) lim |ow* =1 for J=|J{pe+1,....0041)
wEJ k=1

is satisfied, then {sp, ()} is an overconvergent subsequence of the considered power
series.

Proof. Without loss of generality we can assume that pg4+1/px = A > 1 for all k € Np.
We define a triangular matrix B = [B,,] in the following way:

0 if
for n # pi : ﬂ,...:={1 if:i:’
0 if
for n=py : Boww = {ak.u " :i;: (5=0,...,%k).

The matrix B is obviously p-regular. We consider
on(2) = Y Buv8u(2)
=0
and obtain . y
op.(2) = Zﬁmp,-’p,. (2)= Z kudp, (2) = Tr(2)
p=0 =0
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as well as Eﬂ;,ﬂm” = ayi for all v with px—1 <v < p.

Therefore, the matrix B satisfies & condition of type (2.1), while the sequence
{07, (2)} has property (2.2) for a suitably chosen R > 1 and anarc I’ C {z: [2| = R}.
It follows that {sp, (2)} is an overconvergent subsequence. Theorem 2.2 is proved. (I

3. EXAMPLES

We discuss some examples of well-known summability methods that are defined
by triangular matrices and satisfy the requirements of Theorem 2.1. Especially we
are interested whether the property (2.1), which acts as a Tauberian condition in
this result, can be realized. Whenever in addition a power series (1.1) is considered,
for which the corresponding transformations satisfy a property of type (2.2), then a
Tauberian result as in Theorem 2.1 can be concluded for this series.

1. Ngrlund means Ng. Let ¢ = {cq} be a sequence of real numbers with ¢y > 0
and ¢, > 0 for n > 1, and let Cp, = 3_)_ ¢v. Then the Ngrlund means are generated
by the triangular matrix A = [e.,] given by

Oy = "2;" if 0<v<n.

The condition lim,, o a:'. = 0 is necessary and sufficient for the regularity of N, and
it is also well-known that all Ngrlund methods are ineffective for analytic continuations
of any power series. For 0 < v < n we get

S < Z ny <1,

n

p=v

and by the regularity condition we have limy, ;0 %f‘- = 1. Hence limp—yoc(Cp) /™ =
1, which implies that for all Ngrlund means the condition (2.1) is satisfied for all
subsequences {n;} of N.

Hence a Tauberian result as in Theorem 2.1 holds for all power series whose N,
transformations satisfy condition (2.2). i

(Actually the N, method was first introduced by Russian mathematician Voronoi
in 1902 (see [17]); independently of Voronoi the definition was given by Ngrlund in
1920 (see [10]).)

2. Cesaro means C,. These are special regular Nerlund means which fora>0
are generated by the sequence ¢, = ("*2~1),

3. Weighted means R.. (Also known as Riesz means or Ngrlund-type means.)
Let ¢ = {c,} be again a sequence of real numbers with ¢, >0andc, >20forn>1,
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and let C,, = ¥ )_o ¢y Then the R. means are generated by the triangular matrix
A = [on,] given by
clzm,=c,i if 0<v<n.

n

Here the condition lim,_,c Cp = 00 is necessary and sufficient for the regularity of
R.. As in the case of Ngrlund means we have for 0<v<n

n
Co Z:
r— < 1.
G“— vaﬂw_l

Therefore condition (2.1) is satisfied if {C,} is not “too fast” increasing sequence,
that is, if limp—00(Cn)*/™ = 1. In this case Theorem 2.1 applies also to this method.

4. Hausdorff means H,.. This is a wide class of summability methods, containing
many well-known methods as special cases.
Let x be a real-valued function of bounded variation on {0, 1] satisfying

x(t) = x(t+) forall te0,1).

The H, means are generated by the triangular matrix A = [an,] with
1

Ony = (:) f (1 — £)"dx(t)
0

and the regularity conditions are x(0) = 0, x(1) = 1 (see [15]). The best known
Hausdorff means are the Cesaro means C, (o > 0), where

x®)=1-01-8%
the Holder means H, (a > 0), where (" denotes the Gamma function)

i
1 1ye-1
X =5y ° uf (m3)" s
and the Euler means Ey. (0 < r < 1), where

() = 0 for 0<t<r
1 for r<t<1l.

The (upper) order of a regular Hausdorff mean is defined as
p=p(x) =inf {s: x(t) =1 for all ¢ € [,1]}.
Obviously C. and H, have order p = 1, while p = r < 1 for the Euler means E,.
If a power series has an analytic continuation, then all H, means with p < 1 are
efficient for those series and also an estimate (depending on p) for the summability

domain can be given. On the other hand, all A, means of order p = 1 are inefficient
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for analytic continuation (for details see [9, section 2], [15, chapter IV, 2]). Especially
for Cesaro and Hélder means we have inefficiency for any power series.
If H,, has order p = 1, then there exist constants y € (0,1) and ¢ > 0 such that

for all sufficiently large n I)::., O'-nvl > ¢ for all v € [yn,n].
This estimate is a special case of a result on the distribution of Hausdorff elements

(see [9], Lemma 1), which was proved by probabilistic methods.

It follows that H means of order p = 1 satisfy condition (2.1) for any subsequence
of N, and under the additional assumption (2.2) on the behavior of a power series a
Tauberian result as in Theorem 2.1 holds.
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