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Abstract. In this paper we introduce a g-fractional variant of nonlinear Langevin
equation of different orders with g-fractional antiperiodic boundary conditions. The
nonlinearity in the proposed problem involves an integral term (a Riemann-Liouville
type g-integral) and a non-integral term. Some existence results for solutions of the
given problem are established by means of classical tools of fixed point theory. An

illustrative example is also presented.
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1. INTRODUCTION

Nonlinear boundary value problems of fractional differential equations have received
considerable attention in the preceding decades. In the literature one can easily find
a variety of results on the topic, ranging from theoretical analysis to asymptotic
behavior and numerical methods for fractional equations.

An important feature of a fractional order differential operator, distinguishing
it from an integer-order differential operator, is that it is of nonlocal nature and
takes into account memory and hereditary properties of some important and useful
materials and processes.

The fractional calculus has evolved as an effective mathematical modeling tool in
several real world phenomena occurring in physical and technical sciences (see [1]).
More details and examples on the topic can be found in the papers [2] and [3] and
references therein.

The subject of g-difference equations has gained considerable attention over the
years since its inception by Jackson [4]. One of the advantages to consider g-difference
equations is that these equations are always completely controllable and appear in
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the g-optimal control problems (see [5]). For further details, we refer the reader to
references [6] and [7].

Fractional ¢-difference (or g-fractional) equations, regarded as fractional counterparts
of g-difference equations, have been studied by & number of authors (see [8] - [10]). For
some earlier work on the topic, we refer to [11] and [12], whereas the basic concepts
on g-fractional calculus can be found in the recent text [7].

Antiperiodic boundary conditions occur in the mathematical modeling of a variety
of problems of applied nature. An account of classical and fractional antiperiodic
boundary conditions can be found in the papers [13] and [14] and references therein.
However, the concept of fractional g-difference antiperiodic boundary conditions has
not been introduced yet. ;

The Langevin equation involving fractional derivatives of different non-integer
orders provides a more flexible model for fractal processes. Some recent results on
Langevin equation can be found in the papers [15] and [16]. We recall that the ordinary
Langevin equation does not provide correct description of the dynamics of systems
in complex media. Notice that Langevin equation involving g-fractional derivatives
of different orders has not been studied so far. i

The objective of the present paper is to study a new boundary value problem for
the g-fractional nonlinear Langevin equation of different orders involving an integral

-term (a Riemann-Liouville type g-integral) and a non-integral term, with g-fractional
antiperiodic boundary conditions. More precisely, for given numbers 0 < f < 1 and
0 < 7 < 1, we consider a full g-fractional antiperiodic boundary value problem for
the Langevin equation given by

(1.1) ':Dg(cﬂg + N)z(t) = pf (¢, z(t)) + Hgﬂ'(t--"(t)): 0<t<1,0<g<l],

(1.2 2(0) = a(1), *DJa(0) = ~*D}a(1),

where “Df and °D7 denote the Caputo type fractional g-derivative, Ig,o(:) = Ig (.)
denotes the Riemann-Liouville integral with 0 <. < 1, f,g are given continuous
functions, A # 0, and p, d are real constants.

The paper is organized as follows. Section 2 deals with some general concepts and
results from g-fractional calculus, as well as an auxiliary lemma for a linear variant of
the problem (1.1), (1.2). In Section 3, we present some existence results for solutions
of the problem (1.1), (1.2) by applying Krasnoselskii’s fixed point theorem, Leray-
Schauder alternative and Banach’s contraction mapping principle.
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2. PRELIMINARIES ON FRACTIONAL ¢-CALCULUS
In this section we discuss some general concepts and results from g-fractional
calculus. We first recall the necessary motation and definitions, and introduce the
terminology of g-fractional calculus (see (7, 17, 18]).
For a real parameter g € R\ {1}, a g-real number denoted by [a], is defined by

T
[a]g = 1_":, a€R.

The g-analogue of the Pochhammer symbol (g-shifted factorial) is defined as

k-1
@9o=1, (a;q)k = [J(1-ad’), k€ NU{co}.
i=0

The g-analogue of the exponent (z — y)* is defined as

k-1
@-9@=1, @-9)®=]](z-v¢), keN, z,yeR.
j=0

The g-gamma function y(y) is defined as
1—q)w-1)
Lo(y) = ((1—_"2—,_7,
where y € R\ {0,~1, -2, ...}. Observe that Ty(y + 1) = [y],T,(v).

Definition 2.1. Let f be a function defined on [0, b], b> 0 and let a € (0,b) be an
arbitrary fized point. The Riemann-Liouville type fractional g-integral is defined by

7)) = [ S )i, £,
' provided that the integral exists.
Remark 2.1. The g-fractional integration possesses the semigroup property:
(Ralfaf)®) = (IE1)(®); 7.8 €RY, ae (0,b).

Before giving the definition of fractional g-derivative, we recall the concept of g-
derivative. We know that the g-derivative of a function S(t) is defined as

ar)) = L9=1@ 40, (Do1)(0) = s, 1))

Furthermore, we define DAf = f; D3f =Dg(D371f), n=1,2,....
18
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Definition 2.2. ([17]) The Riemann-Liouville type fractional g-derivative of order B
of a function f(t) is defined by

T2 1) @), B <0,
(2'1) (Dg,nf)(t) = f(zL =0,
: (DA IIA-Pf)@), B >0,

where [f] is the smallest integer greater than or equal to S.
Remark 2.2. The following relations hold (see [18], Lemma 6):

(i) (D?Jé‘.f)(t) =f(t), 0<a<t.

() 1L, (z — a)¥) = r%_?—_f{—l’r;(z-a)‘ﬂ*"), 0O<a<z<bBfeR)e(-1,0).
Definition 2.3. ([17]) The Caputo type fractional q-derivative of order B € R* of a
function f(t) is defined by (°DE.f)(t) = (12 "DIP 1) (2).

Remark 2.3. For 0 <a <t and 8 € R\ N, the following relations hold (see [17]):
(a): (CDEX F)(t) = (D& Do f)(t);
(v): (°DiaIt.1)(t) = f(2);
(c): (Ifa°DELF)(E) = £(t) — TSI 4D k(a/t;q)s;
To define the solution of the problem (1.1), (1.2), we need the following lemma.

Lemma 2.1. For a given h € C([0,1],R), the unique solution of the boundary value
problem

22) { °DB(°DY + A)z(t) = h(t), 0<t<1, 0<g<],
‘ 2(0) = -=(1), °DJ=(0) = —°Dja(1)
is given by ;
b T = (8-1)
o) = [ B [F oI by - da(w)) d
L (1—2¢m) (1 qu)(P-1
@) 4rq(7+1) i L )r A7) "‘“’”’(': : -

Proof. Applying the operator I to the g-fractional Langevin equation in (2.2), we
get

(2.4) °DYx(t) = IFh(t) — Ax(t) — bo.
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Next, we apply the operator I to the both sides of (2.4) with ¢ € [0, 1] to obtain

(—1) — qm)B-D)
@5) z(t)= / (t Ffz')r; [ (u Pc:('% h(m)dqm—,\z(u))dqu_

gL
Using the boundary conditions (2.2) in (2.5) and solving the resulting system of
equations for bp and by, we get

(1;)_@ h(u)dqu, :

W=y T
R L B )(‘7—13 (u — gm)E-1) .
=3k T (/: gry L R

(1- qu)f-D
h :
-y e
Substituting the obtained values of by and b into (2.5) we get (2.3). This completes

the proof of Lemma 2.1. O

3. THE MAIN RESULTS

Let € = C([0, 1], R) denote the Banach space of all continuous functions from [0, 1]
into R, endowed with the usual norm defined by ||z|| = sup{|z(t)|, ¢ € [0,1]}.
We use Lemma 2.1 to define an operator U : € = € by

— qu)r-1) L (B-1)
e = [ 2 ,,; - (¢ f (o)™ S, zm)dgm

( T'q(B)
+6 / u-— I‘q(ﬂ+() g(m,z(m))d,m- Aa:(u))d,,u
1 — 927 (6-1)
+aa b, e rq‘(‘;) 200

3.1)
+5 f ‘lrmo g0, (00)d)

(r— e —
ol f (1—qu) 1) / (u — gm)® l]f(m,:z:(m))dqm

T ol T
+3 fo —-I%_Tg(m, 2(m))dgm — Ma(u) ) dgu.

Observe that the problem (1.1), (1.2) has solutions if and only if the operator equation
& = Uz has fixed points. In the sequel, we need the following assumptions:
(41) f,9:[0,1] x R = R are continuous functions such that |f(t, z) — f(t,y)] <
Lilz —y| and |g(t,z) — 9(t,9)| < Lalz—yl, V¢ €[0,1], Ly, Ly >0, z,y € R;
20
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(Az) There exist 91,92 € C([0, 1], RY) with |f(t, z)| < 9.1(t), |g(t,z)| < Da(t), V(i z) €
[0,1] x R, where [|d:]| = supye(o,y |[0:(8)], i =1,2.
For the sake of brevity, we introduce the following quantities:

SR 1
MY T NG D)
3:2) S W +C+7+]) t 0T,

p? e 2rq(7 -+ 1)’

: 1
(3.3) = L[]P’(4I‘q('}' +1)Te (B +1) & ZI‘q(ﬂ .Ii,-r + 1))

Al
ol (41"q('r+ Dle(B+¢+1) ¥ 2rq(ﬁ+c+"}'+1))] R 2T, (v+1)’
where L = max{Ly, L3}.

Our first existence result is based on the Krasnoselskii’s fixed point theorem ([19]).

Lemma 3.1 (Krasnoselskii). LetY be a closed, convez, bounded and nonempty subset
of a Banach space X, and let 81,82 be operators such that

(i) 81z + 82y €Y wheneverz,y€Y;

(ii) 8, is compact and continuous;

(iii) 82 is a contraction mapping.

Then there exisis z € Y such that z = 81z + 852.
Theorem 3.1. Let f,g: [0, 1] xR — R be continuous functions satisfying assumptions
(A1) and (A2). Furthermore let Q < 1, where Q is given by (8.8). Then the problem
(1.1), (1.2) has at least one solution on [0, 1].

Proof. With p;, pa, ps given by (3.2), we consider the set B, = {z € C: ||z|| < r},

where
IpI||191IIn1 + [6ll19allp2
— [Alps
Now we show that the conditions of Lemma 3.1 are satisfied. To this end, we define

the operators U; and Uz on B, by

(¢ — qu)=D) u — qm) =D
o) = [ %(p [ S s, o))

(u — qm) B+~
+4 f rf{;+ ) g(m z(m))d,m — Az(u)) dqu, t€|0,1],

1] (-
(Us2)() = oo / QP o, o)

r 2

rh+n\° Lq(B)
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1 (1 = qu)(ﬁ"'c_'n

+6 | —fq{—ﬁro—'g(“: z(“))dq“)

1 [ a—quo o (u— gm)®D
2 S el Ty

U () (B+¢-1)
[ F:(";L 55— 9(m a(m))dgm —~ Xa(u))dgu, ¢ [0,1).

For z,y € B,, we find that
[Usz + Uzyll < |plllF1]ler + 16][|F2]ls2 + [Alrus < 7

implying that U;z + Ugy € B,. It is clear that the continuity of the operator U;
follows from that of f and g. Also, observe that U; is uniformly bounded on B, since

Lol 8119l Dl
Mozl < F g+ D) P T+ CHr+D T Ty + 1)

Next, we show the compactness of the operator U;. In view of (A;), we set

sup  |f(¢,2)| = fi, sup  |g(t,z)| = g-
(t,z)€[0,1]x B,. (t,z)€[0,1]x B,
Hence, we have
D (s — au) =1 — (2 — gu)7=1) 7 (w— am)(B-D
I(ts2)(ea)-(ts) )l < of e (i [ = em

T (B+¢-1) ta — qu)(7-1)
+15]g1 j; L“—I,:’-(B)To—d,,m+|z|r)dqu+ j;. (—tg-%;—lx

 (u — qm)(B-) % (4 — grn)(B+-1)
x(lplfl : “—I?'—"‘(;-)—d.mﬂayg, ! %—@m+].\]r)d,u,

which is independent of z and tends to zero as t; — ;. Thus, U, is relatively compact
on B;. Hence, by the Arzelé-Ascoli Theorem, U; is compact on B;.
22
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Now, we show that U, is a contraction. In view of (41), for z,y € B, we can write

(8
sz — syl < sup { mrn (A S5 et - f v

te[0,1]

] [ LI 0 - o)

"“ — qm)(B-1
2 f : Pq(')r; lel J, %|f(m»z(m))-f(m,v(m))|dqm

(B+-1
+lal [ & P“"(;Lo Jotm, z(m)) — g(m, y(m)|dgm + Il(w) ~ y(u)l)dqﬂ}

(1 —qu)6-1
S i 11{ T\ ]] T8 Lile) —yw)ldu

(B+¢
+5] / ‘lr“(‘g+ s  Lafe(u) — (o) ldew)

(]. )("f"'l) (“ m)
-[ B ) ( f T.8) Ll|3(m)-y(m)]d4m

% (B+¢-1)
) [ BT Lo m) — y(m)ldgm + [Al() — y(u)l)dqﬂ}

o T8+

1 1
= [L[""I(m(w Dh,B+1) T M+ + 1))

1 1 N
+|6|(4Pq(7+ DB+ +1) | MqB+C+7+ 1)-) o 1)] llz =yl

=Qflz -,

where we have used (3.3). Hence, taking into account that by our assumption 2 < 1,
we conclude that U is a contraction mapping. Thus all the assumptions of Lemma
3.1 are satisfied. So the conclusion of Lemma 3.1 applies and the problem (1.1), (1.2)
has at least one solution on [0, 1]. This completes the proof of Theorem 3.1. 0

The second existence result is based on the Leray-Schauder alternative (see [20]).

Lemma 3.2. (A nonlinear alternative for single valued maps). Let E be a Banach
space, C be a closed, convex subset of E, and V' be an open subset of C with 0 € V.
Suppose that U : V — C is a continuous, compact (that is, U(V) is a relatively
compact subset of C) map. Then either U has a fized point in V, or there is az € OV
(the boundary of V in C) and & € (0,1) with z = sU(z).
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Theorem 3.2. Let f,g: [0,1] xR = R be continuous functions and let the following
assumptions be fulfilled:
(As) There exist functions vy, V3 € C([0,1], R*), and nondecreasing functions 1)y, :
Rt = R* such that |f(t,2)| < vi(@)¥a(l|z]) and |g(t,2)| < va(t)ya(l|z])
Y(t,z) € [0,1] X R.
(Aq) There ezists a constant w > 0 such that

5 lelllllen (w)m + 0]l|2a |92 (w) 2
Nﬂs

Then the boundary value problem (1.1), (1.2) has at least one solution on [0, 1].

1
, where |A|# —.
H3

Proof. Consider the operator U : € — € defined by (3.1). It is easy to show that U
is continuous. We complete the proof in the following steps.

(i) U maps bounded sets into bounded sets in C([0,1],R). Indeed, for a positive
number ¢, let B, = {z € € : ||z|| £ &} be a bounded set in C([0,1],R). Since
|f(m, z(m))| < v1(m) - Y1 (llz]]) and |g(m, z(m))| < va(m) - Y(||z]|), we have

— qu)Or- 1) u (8-1)
)] < sup { [ SR o [ o,

te(0,1]

U (o (B+<
+el | ("—r%)ro—'g("" o(m)ldgm-+ Nl + gt

(Il [ S i+ i e o, o(w))+

(r-1) % (4 — am)(B-D)
e (] e R

U (4 — (B+¢-1)
+la [ LTS ;;{m,z(m))u,mp”z(un)dq“}

< lelllvalis(llzlpa + (81|l (llz)pz + M [|z]lus,

and the result follows.

(4) U maps bounded sets into equicontinuous sets of C([o,1],R).

Indeed, let 1,23 € [0,1] with ¢; < ¢ and z € B,, where B, is a bounded set of
24
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C([0,1],R). Then we can write

ll(U=z)(t2) — (Uz)(t1)]

< | [ m e el ) [ il
+ 1 f e ﬂfg'l’w(mm(ewwwlus da

+ [Mlagerd (I e (el

v et vz(m)tbz(E)dqu«\IS)dqu

Sy
+ B (ol [ LSBT s

+ 14 j £ ;"’(‘J‘;’Jr - D (uale)dgn)-
It is clear that the right hand side of the above inequality tends to zero independently
of z € B, as i3 — t; — 0. Since U satisfies the above assumptions, it follows from the
Arzelé-Ascoli theorem that U : € — € is completely continuous.
(1) Let z be a solution and z = klz for x € (0, 1). Using the arguments of the proof
of boundedness of U, for ¢ € [0, 1] we can write

lz(£)] = [s(uUz)()]| < |olllvalir(llzl)pa + [6lllvallballzll)pz + [M|2llws.
Consequently, we have

lpIIIleI%(IIxII)m + [6lllvaliva(ll=ll)pa
— |Alus

In view of (A4), there exists w such that ][zﬂ # w. We set

ll=ll <

V={zel:|z|]| <w}

and observe that the operator U : V — C([0,1],R) is continuous and completely
continuous. From the choice of V, there is no z € 8V such that z = xU(z) for some
& € (0,1). Consequently, we can apply Lemma 3.2, a nonlinear Leray-Schauder type
alternative, to conclude that U has a fixed point z € V which is a solution of the
problem (1.1), (1.2). This completes the proof of Theorem 3.2. O

Now we are going to prove the uniqueness of solutions of problem (1.1), (1.2), using
Banach’s contraction principle (that is, Banach fixed point theorem).
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Theorem 3.3. Suppose that the assumption (A;) holds and that
(3.5) 0= (LA+|AMus) <1, A=|plp+ [6|pa,

where 1, 2 and ps are given by (5.2) and L = max{Ly, L3}. Then the boundary
value problem (1.1), (1.2) has a unigue solution.

Proof. Define N = max{Ni, N3}, where N; and N; are finite numbers given by
: NA

N, = 8UPye[o,1] |f(t, 0)' and Nz = SUPie(o,1) ]g(t, 0)]. Selectmg o> ﬁ' we show

that UB, C B,, where B, = {z € € : ||z|| < o}. Indeed, using the inequalities

If(‘sl 3(3)) < |f(8,$(8)) — f(si 0)' + If(slo)l < Lio+ Ny,

and

la(s, z(s))| < |g(s,2(s)) — 9(s,0)| + |g(s,0)| < Lag + Ny

for ¢ € B,, we can write (see (3.4))

(t — qu) ("‘U “ (u— gm)B-1)
l(u=)| < |pl(Z1o+ N1) :upl]{ / Totr) s T,00) dqru)d,u
qu) 8-

(1-
ﬂ*chn/ o e
+1 (1 — qu)r- (u — qm)(B- 1)
f q(‘T) ./u Pq(ﬂ) dqu}

¢ (y-1) u (B4+¢-1)
il {f ([ g

te(n,1)
(1 — qu)(B+¢-D)
4Pq('r+1)/ TB+0

L1 A-aui ll (u — gm)(B+¢-1)
f Te(7) f: I'$+c) d"’")d'“}

(t qu)('r—lll (1 - qu)(*-1)
Hjle 2, {f T / T T }
< (Lo + N)A + |Nops < o,

showing that UB, C B,.
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Next, for z,y € €, we have
Uz — Uyl

(t — qu)(r-1) s (8-1) -
tE[O 1 { .[ I",(')y) B %h(ﬂ‘l z(m)) — f(m, y(m))|dqm

(
+6] f . ;;gL 5 ly(m.s(m)) 9(m, y(m))|dgm + P [z(u) — y(u)]) dgu

+arrry (o o) oo
1 [ CS LI, 0) — (o))

" TB+Q)
(1—1) o (8-1)
+3 f Cm (1ol [ T —| o m) — £y
+9] ¥ (u— qm)(ﬂ+c 1)
<z -yl

Taking into account that by our assumption £ < 1,, we conclude that the operator
U is a contraction. Therefore, by Banach’s contraction principle, the problem (1.1),
(1.2) has a unique solution. This completes the proof of Theorem 3.3. O

4. AN EXAMPLE

Consider a boundary value problem for integro-differential equations of fractional
order given by
wD eDY/3(Dy/* + J)a(t) = 3£(t,2()) + 3198, 2(®)), t.a€(01),

' 2(0) = ~z(1), °D¥z(0) = —°DY=(1),

where f(t,z) = W(Mt"'l'l-ﬂji['""’l) andg(t z) = ttan"'z 4+ 13 +6.
It is clear that
|f(t,2) — f(t,9) < glz -l 9@t %) — g(t,9)| < le -yl
With f=y=¢=¢q=1/2, A=1/16, p=1/3, k=1/T, Ly =1/8, Ly =1/4, we
find that  ~ 0.2905925472 < 1.
Clearly L = max{L;, Ly} = 1/4. Thus all the assumptions of Theorem 3.3 are
satisfied. Hence, by the conclusion of Theorem 3.3, the problem (4.1) has a unique

solution.
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