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metric with isotropic mean Landsberg curvature is a weakly Landsberg metric.
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1. INTRODUCTION

Let (M, F') be a Finsler manifold of dimension n, TM be its tangent bundle and
(z',y") be the coordinates in a local chart on T'M.

An m-th root Finsler metric on M, denoted by F, is defined to be F' = ¥/A, where
A is given by A := ay,. i, (x)y"y™ ...y" with a;,. , symmetric in all its indices
(see [4], [9], [14] - [16]).

The theory of m-th root metrics has been developed by Sanda [14], and applied
to Biology as an ec(.:logica.l metric [2]. It can be regarded as a direct generalization of
Riemannian metric in the sense that the second root metric is a Riemannian metric.

Let (M, F) be a Finsler manifold of dimension n. Denote by 7(z,y) the distortion
of the Minkowski norm F; on T;Mjy, and let o(t) be the geodesic with o(0) = z
and ¢(0) = y. The rate of change of 7(z,y) along Finslerian geodesics o(t) is called
S-curvature. The Finsler metric F is said to have isotropic S-curvature and almost
isotropic S-curvature if S = (n+ 1)cF and S = (n + 1)cF + dh, respectively, where

e = ¢(z) and h = h(z) are scalar functions defined on M and dh = h,«(z)y’ is the
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differential of k [19]. Teking twice vertical covariant derivatives of the S—curva.tu:.e
gives rise to the B-curvature. The Finsler metric F is called weakly Be:wald metric
{f E — 0 and is said to have isotropic mean Berwald curvature if B = B3 cFh, whfwe
¢ = c(z) is a scalar function defined on M and h = hyjdz*dz? is the angular metric.

Theorem 1.1. Let F = /A be an m-th root Finsler metric on an open subset
eo oL

UCR"

(i) For a scalar function ¢ = c(z) on M, the following are equivalent:
. (ia) 8=(n+1)cF+n;
: (ib) S=n.

(ii) For a scalar function ¢ = ¢(z) on M, the following are equivalent:
: (#ia) E = 21cFh;
: (b)) E=0.

Let (M, F) be a Finsler manifold. There are two basic tensors on Finsler manifolds:
the fundamental metric tensor g, and the Cartan torsion C,, which are the second
and the third order derivatives of 1F?2 at y € T My, respectively. Taking a trace
of Cartan torsion C, gives us the mean Cartan torsion I,,. The rate of change of
the Cartan torsion along the Finslerian geodesics, Ly, is called Landsberg curvature
(see [17], [18]). Taking a trace of Landsberg curvature L, yields the mean Landsberg
curvatute Jy. The metric F is called isotropic mean Landsberg curvature if J = cF1I,

where ¢ = ¢(z) is a scalar function on M.

Theorem 1.2. Let (M, F) be a non-Riemannian m-th root Finsler manifold. For a
scalar function c = c(z) defined on M, the following are eguivalent:

(ia): J+cFI=0;

(ib): J=0.

There are two important transformation in Finsler geometry: the conformal change
and the B-change. Two metric functions F' and F defined on a manifold M are called
conformal if the length of an arbitrary vector in the one is proportional to the length

in the other, that is, if gj; = (gi;j. Here the length of a vector £ means the fact that
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415, as well as g;;, must be Finsler metric tensors and showed that ¢ falls into &
point function.

A change of Finsler metric F — F is called a 3-change of F, if F(z,y) = F(z,y) +
B(z,y), where §(z,y) = bi(z)y* is an 1-form on a smooth manifold M. It is easy to
see that, if supg(, - [bi(Z)y*| < 1, then F is again a Finsler metric. The notion
of a 3-change has been proposed by Matsumoto, named by Hashiguchi-Ichijyo, and
was studied in detail by Shibata (see [6], [8], [13]). If the Finsler metric F reduces to
& Riemannian metric, then F reduces to a Randers metric. So, the S-change is also
called the Randers change of Finsler metric.

Let (M, F) be a Finsler manifold. We consider the conformal 3-changes of Finsler
metrics F = e®@F + 8, where f(z,y) = bi(z)y® is an 1-form on a smooth manifold
M and a = a(z) is the conformal factor. It is easy to see that, if supp(z =1 |18l < 1,
then F is again a Finsler metric.

Let F = /A be an m-th root Finsler metric on an open subset U C R™. Put

0A 924 0A
pr Ay = ooy = o

Suppose that A;; defines a positive definite tensor and let A% denote its inverse. The

Ai = Ao = A,(y‘.

following equalities hold:
Am —2
m2

9ij = [mAA;; + (2 — m)AiAy),
i g- ij m-2; ;
V'Ai=mA, YA =(m-1)4;, AYA = ﬁy’,

Ly o T
m m-—

IA'

In [1], Amari-Nagaoka introduced the notion of dually flat Riemannian metrics
when they studied the information geometry on Riemannian manifolds. A Finsler
metric F' on an open subset U C R™ is called dually flat if it satisfies the equality
(F2)argpt* = 2(F)1 (see [12], [19]).

We consider conformal f-changes of locally dually flat m-th root Finsler metrics
and prove the following result.
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Theorem 1.3. Let F' = %/A be an m-th root Finsler metric on an open o
U c R", where A is irreducible. Suppose that F = e*F +p is a conformal B-change
of F, where B = bi(z)y' and o = &(2)- Then F is locally dually flat if and only if
ezists an 1-form 8 =61 (z)y' on U such that the following equalities hold:

there
(11) BB+ Pibo = 2BPa,
(12) Ag= a—l-m[mAef + 2041 + 2(a0h — ag )],

(18) A ~DAA Ao = b+ cohl + 2bo + (AoB)] = ~Ime 4%,
where Bot = Beryits 00 = ety Bat = B)av", fo = Bat®, Bor = (bi)o and & =
aoBi + Boi — 2Bz — 20z '

A Finsler metric is said to be locally projectively flat if at any point there is a
local coordinate system in which the geodesics are straight lines as point sets. It is
Jnown that & Finsler metric F(z,y) on an open domain U C R" is locally projectively
fat if and only if G = Py*, where P(z,)\y) = AP(z,9), A >0 (see [7]). Finally, we
study conformal f-change of locally projectively flat m-th root metrics and prove the
following result.

Theorem 1.4. Let F = T/A be an m-th root Finsler metric on an open subset
U C R", where A is irreducible. Suppose that F = e°F + B is a conformal f-change
of F, where B = bi(z)y* and a = a(z). Then F s locally projectively flat if and only
if it is locally Minkowskian.

2. PRELIMINARIES

Let M be a n-dimensional C*° manifold. Denote by T M the tangent space at
z € M, by TM = UzemT=M the tangent bundle of M, and by TMp = TM \ {0} the
slit tangent bundle. A Finsler metric on M is a function F : TM — [0, oc) which has
the following prop&ties:

(i) F is C* on T Mp;

(ii) F is positively 1-homogenedus on the fibers of tangent bundle T'M;

(iii) for each y € Ty M, the following quadratic form g, on ToM:

L0
gy(ﬂ,ﬂ) b= Em [Fz(y +su+ tﬂ)] |l.t=0| u,v € TzM
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is positive definite.
Let z € M and F; := F|r, 5. To measure the non-Euclidean feature of F., define
Cy:T:MzT:M2aT:M—R by

1d
Cv(ul U,'I'.IJJ = EE {Gyﬁw(us UH |t=01 u,v,we T:M.
The family C := {C, },ers, is called the Cartan torsion. It is well known that C=0
if and only if F is Riemannian.

Given & Finsler manifold (M, F), then a global vector field G is induced by F on
T Mo, which in standard coordinates (z*,y*) for TMj is given by

G =15 ~ 26 0) o,
where G*(y) are local functions on TM. G is called the associated spray to (M, F).
The projection of an integral curve of G is called a geodesic in M. In local coordinates,
a curve c(t) is a geodesic if and only if its coordinates (c'(t)) satisfy the equation
& +2G'(¢) = 0.
Define By : T:M @ T:M @ T:M — T,M and E, : :M®@T:M - R by
By(u,v,w) := B"j,n,(y)'uj'u""r.f:al';,i;-l= and E,(u,v) = Ejk(y)u-"v", respectively, where

jk! (y) == oy ay“ 8‘]}: () Ejk (y) = ka (v),
u=u'z%|;, v=1'z%|; and w = w'yZ|,. B and E are called the Berwald curvature
and the mean Berwald curvature, respectively. A Finsler metric is called Berwald
metric and mean Berwald metric if B = 0 or E = 0, respectively.
A scalar function 7 = 7(z,y) on TM \ {0}

\/‘m Vol{(v)ERnIF( le) <1

(e,9) = In [ Vol(B"(1))
is called the distortion. Let
8(z,9) = 2 [r(o,50)] _,

where o(t) is the geodesic with ¢(0) = z and ¢(0) = y. S is called the S-curvature. S
said to be isotropic if there is a scalar functions ¢(z) on M such that

S8(z,y) = (n+ 1)c(2)F(z, ).
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3. PRoOF OF THEOREM 1Ll

il P e ‘
In local coordinates (z¥,y"), the vector filed G =" 557 2G* 2 is a global vector

feld on TMp, where G* = G'(,y) are local functions on T Mp given by

. :
-—I“izﬁi"_iF_ e T.M.
6= 36" [gmrag?" ~ Bl

By a simple calculation, we have the following result (see [22]).
Lemma 3.1. Let F = T/A be an m-th root Finsler metric on an open subset U C R™.
Then the spray coefficients of F are given by
G = £ (Aaj — A)AY.
Thus the spray coefficients of an m-th root Finsler metric are rational functions
with respect to y.

Lemma 3.2. Let F = /A be an m-th root Finsler metric on an open subset U C R™.
Then the following are equivalent:

a): S=(n+1)cF +n;

b): 8=,
where ¢ = c(z) is a scalar function and n = n;(z)y* is an 1-form on M.

Proof. By Lemma 3.1, the E-curvature of an m-th root metric is a rational function
in y. On the other hand, by taking twice vertical covariant derivatives of the S-
curvature, we get the E-curvature. Thus the S-curvature is a rational function in
y. Suppose that F' has almost isotropic S-curvature, 8 = (n + 1)e(z)F + 5, where
¢ = ¢(z) is a scalar function and n = n;(z)y* is an 1-form on M. Then the left hand
side of 8 — = (n + 1)c(z)F is a rational function in y, while the right hand side is
an irrational function, implying that c=0and S = 7.

Lemma 3.3. Let F = Y/A be an m-th root Finsler metric on an open subset U C R™.
Then the following are equivalent:

a): E=2lcFh;

b): E=0,

where ¢ = c(z) is a scalar function on M.
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Proof. Suppose that F = /A has an isotopic mean Berwald curvature:

n+1
2

where ¢ = ¢(z) is a scalar function on M. The left hand side of E = 2cFhis a

rational function in y, while the right hand side is an irrational function, implying

that c=0and E = 0.

Proof of Theorem 1.1 is an immediate consequence of Lemmas 3.2 and 3.3.
From Theorem 1.1 we infer the following result.

E= cFh,

Corollary 3.1. Let F = %/A be an m-th root Finsler metric on an open subset
U C R". Suppose that F has isotropic S-curvature S = (n + 1)cF, for some scalar
Junction ¢ = e(z) on M. Then S = 0.

A Finsler metric F satisfying F,« = FF is called a Funk metric. The standard
Funk metric on the Euclidean unit ball B"(1), denoted by ©, is defined by

2 — (|zPlyP- < z,y >)+ < 2,y >
oy = YEE=C ”yll—lzlgy r<zy>

y € T B™(1) ~ R™,

- where < +,- > and |-| denote the Euclidean inner product and norm on R", respectively.

In [5], Chen-Shen has introduced the notion of isotropic Berwald metrics. A Finsler
metric F is said to be isotropic Berwald metric if its Berwald curvature has the

following form:
(3.1) B'j = c{Fyuyp8'y + Fypp'; + Fpuys6's + Fpspy'},

for some scalar function ¢ = ¢(z) on M. Berwald metrics are trivially isotropic
Berwald metrics with ¢ = 0. Funk metrics are also non-trivial isotropic Berwald
metrics. In (3.1), putting i = | we get

g e S
Bij=——cF Yhis.
Plugging it into (3.1) we obtain
] : 2 : ; : :
(3.2) By = n'—_l_l{Ejkﬂ + Ewud; + Eij0; + Ejray'}.

This means that every isotropic Berwald metric is a Douglas metric. For the definition

of Douglas metrics we refer to [3].
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Now, let F = %A be an m-th root Finsler metric on an open subset U C R".

Suppose that F has isotropic Berwald curvature given by (3.1). By Lemma 3.1, the
left hand side of (3.1) is a rational function in y, while the right hand side is an
irrational function, implying that ¢ = 0. Thus we have the following result.

Theorem 8.1. Let F = %A be an m-th root Finsler metric on an open subset

U C R". Suppose that F has isotropic Berwald curvature. Then F is a Berwald
meiric.

In [21], Tayebi-Rafie Rad proved that every isotropic Berwald metric (3.1) on a
manifold M has isotopic S-curvature 8 = (n+1)cF, for some scalar function ¢ = ¢(z)

on M. Thus, as an immediate consequence of Theorem 3.1, we can state the following

result.

Corollary 8.2. Let F = %/A be an m-th root Finsler metric on an open subset
U C R™. Suppose that F has isotropic Berwald curvature. Then S = 0.

4. PROOF OF THEOREM 1.2

The quotient J/I is regarded as the relative rate of change of the mean Cartan
torsion I along Finslerian geodesics. Then F' is said to be isotropic mean Landsberg
metric if J = cFI, where ¢ = c(z) is & scalar function on M. In this section, we are
going to prove Theorem 1.2. More precisely, we show that every m-th root isotropic
mean Landsberg metric reduces to a weakly Landsberg metric.

Proof of Theorem 1.2: The mean Cartan tensor of F' is given by the following

formula:
5o k 5 1 -3 k m—-2
= gj Cijk = ;A [mAA-’ + Eyj‘yk]

2 2
X [Azﬂuk e D{(— — 2)AidjAx + AlAidjk + AjAwi + AkAﬁ']}]-

The mean Landsberg curvature of F' is given by

k xr 2 ._.& k m-2 1 2% s
o= ¢*Lgn= AR [mAA* + Ty [ - oo AR A

m

10 52 m—2 ;
Reltt x ik
AT AGlj [mAA +m_-1y’y"].
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Since J = ¢F1, then
AGE, = —2cA%—2| A2 4. _2._1 2 e A e 3
8 Tiik |jk+fm J{(m“2)AIAJAk+A[A'IAJk+AJAkt+AkAlj_|} .

By Lemma 3.1, the left hand side is a rational function in y, while its right-hand side
is an irrational function in y. Thus, either ¢ = 0 or A satisfies the following PDE:

2 2 2
AEA,-,-;; 3 (; = 1."(; —2)A;A; A + (;n- - I)A{AiA,‘k + AjAri + ArAi;} =0.
This implies that Cyjx = 0. Hence, by Deike’s theorem, F is a Riemannian metric,

which contradicts our assumption, and hence ¢ = 0. This completes the proof. O
By the similar method can be proved the following result.

Theorem 4.1. Let F = %/A be an non-Riemannian m-th root Finsler metric on an
open subset U C R". Suppose that F has an isotropic Landsberg curvature, that is,
L = c¢FC, where ¢ = ¢(z) is a scalar function on M. Then F reduces to a Landsberg

melric.

5. PROOF oF THEOREM 1.3

A Finsler metric F = F(z,y) on a manifold M is said to be locally dually flat if at
any point there is a coordinate system (z') in which the spray coefficients have the
form G* = —4¢" H,;, where H = H(z,y) is a C* scalar function on TMp = TM\{0}
satisfying H (a;., Ay) = A*H(z,y) for all A > 0. Such a coordinate system is called an
adapted coordinate system (see [15]). Recently, Shen proved that the Finsler metric F
on an open subset U C R™ is dually flat if and only if it satisfies (F?2),x,1y* = 2(F?),.
In this case we have H = —2[F?|,my™.

In this section, we prove an extended version of Theorem 1.3. More precisely,
we find a necessary and sufficient condition under which a conformal B-change of a
generalized m-th root metric is locally dually flat. Let F be a scalar function on TM
defined by F = /A?/™ 1 B, where A and B are given by

A= gy i (2)y™ g™, B = by(z)y'y.
Then F is called generalized m-th root Finsler metric. Suppose that matrix (Ai;)

defines a positive definite tensor and (A%) denotes its inverse. Now, we are going to

prove the following result.
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Theorem 5:1. Let F'= VA¥™ + B be a generalized m-th root Finsler metric on an
open subset U C R™, where A is irreducible. Suppose that F = e*F + B is a conformal
pB-change of F, where f = bi(z)y* and a = a(z). Then F is locally dually flat if and
only if there exists an 1-form 6 = 6, (z)y" on U such that the following equalities hold:

(5.1) e?2[2B + 4az B — Bor — 2a0B1] = 2(BiBo + BBor — 2BBx),
(5.2) A 51;[mAe, + 204, + 2aok — anA),
(6.3) T ToB = 2T[((Tuﬂ): + Y1Bo + oY1 — 2T, 8) + 2e* YY),

where T = A* + B, fu = ﬂm*u'yk » @0 = a‘m'y's Bat = (b"),_,_.ty‘, Bo = (bi)ﬂ'y‘r
Boi = (br)o, and

2 ;2s
TP = ;A% IA.p + Bp')
2 2
Top = EA:?:"[{E —1)ApAg + AAgy) + By,
U = apfi + Pot — 2B — 201 8.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.1. Suppose that the equation PAR2 + UA="14+0 =0 holds, where
®, 7,0 are polynomials iny andm > 2. Then® =¥ =0 =0.

Proof of Theorem 5.1: We have
F? =€%(A% + B) + 2e°B(A% + B)'/? + £,
(FP)er =20,0¢™ (A% + B) + 2 (2 AR Aps + B) +20,°B(A% + B}
ey B
+e%[(A® + B) VA= AR An + Bou)B+ 2A% + B)'/2Bu] +2B,0P.
Then
[FYaryuy® = 200€2T; + €2 Yor + 200e° BT + age® BT 4T, + 262801 T2
+ BT T +emT T, - %eﬂﬁr-i'r.'fo +e2BT 4Ty

+  2B1fo + 26Pu.
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Since F is & locally dually flat metric, we can write
TR = 2BT(Ty + T(BTo + Ao+ BoTs + 0BT ~267,)
+2e*T*(a0B; + Bt — 2048 — 28, )]
+n%e2°'Aﬂ"-’ [2aoAA, + (% —1)AjA + AAg — 201 A% — 2AA,.]
+ee [2&031 + By~ Ao B— 23:.]

—458z + 2818o + 288u = 0.

By Lemma 5.1, we have

(5.4) 200AA + (% —1)AjAg + AAg — 2a=1A2 =24AA,,

1
(5.5) 38T1Yo = Y((8To)i + BoY1 + aoBY: — 267 ;1 + 26> T,
(5.6) e**[200B + Bot — 405 B — 2B = 2(288,1 — BiBo — BBol).

The equality (5.4) can be written as follows
(5.7) A(245 — Ag + 20, A) = ((% = 1)Ap + 2agA)A;.

Irreducibility of A and deg(A;) = m — 1 imply that there exists an 1-form 8 = 0y
on U such that

(5.8) . Ay =0A.
By (5.8) we get
(5.9) Ag = Ab +04A; — A

Substituting (5.8) and (5.9) into (5.7) we get (5.2). The converse assertion can be
obtained by a direct computation. This completes the proof. O

6. PROOF OF THEOREM 1.4

" It is known that a Finsler metric F(z,y) on U is projective if and only if its
geodesic coefficients G* have the form G'(z,y) = P(z, y)y', where TU = U xR" - R
is positively homogeneous with degree one, while P(z, Ay) = AP(z,y), A > 0. We call

P(z,y) the projective factor of F(z,y). The following lemma plays an important role.
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Lemma 6.1. (Rapcsdk) Let F(z,y) be a Finsler melric on an open subset U c R™,

Then F(z,y) is projective on U if and only if it satisfies

(6.1) Fargy® = Fa.
In this case, the projective factor P(z,y) is given by
Foey®
(6.2) P= —F
Much earlier, G. Hamel proved that a Finsler metric F(z,y) on U C R" is

projective if and only if
(6.3) Foigp = Fruye.

Thus (6.1) and (6.2) are equivalent.
In this section, we prove an extended version of Theorem 1.4. Specifically, we study

the conformal B-change of a generalized m-th root metric F' = VvV A* + B, where A
is irreducible, and prove the following result.

Theorem 6.1. Let F = VA2I™ + B be a generalized m-th root Finsler metric on an
open subset U C R™, where A is irreducible. Suppose that F = e*F+p is a conformal
B-change of F, where B = bi(z)y',a = a(z). Then F is locally projectively flat if and
only if it is locally Minkowskian.

To prove Theorem 1.4, we need the following lemma.

Lemma 6.2. Let (M, F) be a Finsler manifold. Suppose that F = e*F + f is a
conformal B-change of F. Then F' is a projectively flat Finsler metric if and only if
the following holds:

(6.4) e*(For — Fi) = e*(ap F — aoF1) + (bs)z1y* — (Bi)o-

Proof. We have
F=eF+8,
Fox = ague®F + e*Fo + (bg)z*y,
Fﬂ = RQBGF + EGFQ =+ (b‘)oy‘,

For = age®F; + e®Fg + (b)o,
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and the result follows. This completes the proof.

Proposition 6.1. Let F = /A?/™ + B be a generlized m-th root Finsler metric
on an open subset U C R", where A is irreducible, m > 4 and B # 0. Suppose that
F = ¢e®F + 3 is a conformal 3-change of F, where 8 = bi(z)y',a = a(z). If F is a
projectively flat metric, then F reduces to o Berwald metric.

Proof. By Lemma 6.2 we have
_ 24" Ay + mAB,

2mAvVA* + B
Therefore
K_ (A2 4 m-1/a[1,24%/m 4 24%m 4, R e
Foytf = (A% 4+ B) V2[4 B2 4 By)(4# + B)

1 4A%M A A 2A%mAy 2 A%m AgA;
2\ i T mA . mAr, T Bm)]'
Thus
i -1
Fy—F, = e"(—A—-r;‘—:-ki)— [Aﬁ'(mAA;am + (1 —m)AAp + mAAy — mAAL)

+A% (AN Bag + 3m?A2Bioo + (2 — m)AAoB + mAAqB)
+%mA'~l-+1(mABm — AoB — A\By — AuB — mAB,.)
+3m?42(BBiao + BB - 5BoBi — BB.)|.
By (6.4) we obtain ®A% + UA® + © = 0, where
® = ~"22 [AoBu+ ot + 2B(Avi ~ Ao — Au) + mA(Boi — Bico — Bol)|
- (m-2)AoA/B,
¥ = mA(Aw + Aiao — Agt) — (m — 1) Ao Ay,
0= %m’A’ [233,00 —2BuB + BoB, + 2B, B],
+ mP AN A% + BY e [(h)o — (b)oat® + (o AF — Zaod® 1 4y)].

By Lemma 5.1 we have

(6.5) 3=0,
(6.6) 7 =0,
6.7) =0
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. —————

It follows from (6.6) that

(6.8) mA(Aiao + Ao — Agt) = (m — 1) AoAr.
The irreducibility of A and deg(4;)) =m—1< deg(A) imply that Ap is divisible by
A. This means that there is an 1-form 6 = 6;y' on U, such that

(6.9) Ag = 2mA8.
Substituting (6.9) into (6.8), we obtain

(6.10) Ag = Ay — Ajag + 2(m — 1)84;.
Plugging (6.9) and (6.10) into (6.5), we get

(6.11) mA(20B; — By — Biag + Bzi) = Ai(4B6 — Bo).

Clearly, the right-hand side of (6.11) is divisible by A. Since A is irreducible, and
both deg(A;) and deg(20B — 3B) are less than deg(4), we have

(6.12) By = 4B8.
By (6.9) and (6.12), we get the spray coefficients G* = Py with P = 6, showing that

F is a Berwald metric. This completes the proof.

The Riemann curvature
K, = R\ dz*® %h cTeM = ToM

is a family of linear maps on tangent spaces, defined by

L9 PG oG o
Rk—zgg—y’aﬂayk+26 ByioE ~ Byl gk

For a flag P = span{y, u} C T:M with flagpole y, the flag curvature K = K(P,y) is

defined by
gy (u, Ky(u))
gy (v v)ey(u, v) — gy (y, u)?’
When F is Riemannian, K = K(P) is independent of y € P, which is precisely

K(Pn U) e

the sectional curvature of P in Riemannian geometry. We say that a Finsler metric
F is of scalar curvature if for any y € T M, the flag curvature K = K(z,y) is a
scalar function on the slit tangent bundle T'My. One of the important problems in

Finsler geometry is to characterize the Finsler manifolds of scalar flag curvature (see
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[10], [11]). If K = constant, then the Finsler metric F is said to be of constant flag

curvature,

Proof of Theorem 6.1. By Proposition 6.1, F is a Berwald metric. On the other
hand, according to Numata’s theorem, every Berwald metric of non-zero scalar flag
curvature K must be Riemaniann. This contradicts to our assumption. Therefore
K = 0, showing that F reduces to a locally Minkowskian metric. a
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