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1. INTRODUCTION

We are concerned with the existence and multiplicity of nontrivial nonnegative
solutions of the following problem:
—Apa) = ﬁi{:ﬂznuj“w“’uh]m‘) in 0,
(1.1) —Bp(z)¥ = seyraf (@)@ [u|fE-2y in
| (w2 25 =g () jufat=)-2y,
[Vy|P(z)-2 % = ph(z)|v|?=) -2y on 00,
where @ ¢ RV (N > 2) is a bounded domain; p, ¢, o and 8 belong to C(f2) and satisfy:
1 < g(z) < p(z) < a(z) + B(z) < p'(2) (b"(2) = HEL N > p(z), p*(z) = 0o
if N < p(2)), 1 < p~ = essinfzeq p(z) < p(z) < p* = ess supzeq p(z) < oo,
l1<g™ <q* <p” <p* <a™ +B~ <at+8* (\p) € R?\(0,0), and the weight
functions f, g, h satisfy the following conditions:
(A) f € C@®) with ||f]loc =1 and f* = max{f,0} #0;
(B) g.h € C(09) with |lglloc = [|hllc = 1, g* = max{=g, 0} # 0 and h* =
max{=h, 0} 0.
The main interest in studying such problems is motivated by the presence of
the p(z)-Laplace operator, div(|Vu[P®)~2Vy) in (1.1). This is a generalization of

the classical p-Laplace operator div(|Vu|P~2Vu), obtained in the case when pisa
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ositive constant. We point out that problems involving elliptic equations with p(z)-

P
jvial generalizations of the similar problems, studied in the

Laplace operators are not tr:
constant case, since the p(z)- Laplace operator is not homogeneous, and thus, some

techniques, such 8s the Lagrange multiplier theorem, used in the classical case are

no longer applicable in the general set
other hand, stimulated by the development of the study of elastic mechanics, interest

in variational problems and differential equations with p(z)-growth conditions has
grown in recent decades (see, e.g- [3, 4 8]), and systematic discussion of the spaces
Wk»(®) () becomes necessary: Also, note that the study of Lebesgue spaces L@ and
Sobolev spaces wlP(=) has been & subject of active research area (see, e.g., [7, 9]).

In & recent paper [1], Brown and Wau considered the corresponding semilinear
elliptic system. They showed that the above problem has at least two nonnegative
solutions if the pair (A, &) belongs to a certain subset of R2. In [10], the authors
extended the results of [1], to the corresponding p-Laplacian system. The main
purpose of this paper is to develop the approach used in [10], and to extend the
results obtained in [10] to the case of p(z)-Laplacian with multiple parameters. This
extension is nontrivial and requires more detailed analysis of the nonlinearity and an
application of the variational methods under certain conditions.

ting involving p(z)-Laplace operators. On the

2. NOTATIONS AND PRELIMINARIES

In this section we discuss some basic properties of the Sobolev spaces wieE)(Q),
which will be used later (for details we refer to [5, 7, 9]). Denote by S(Q) the set of
all measurable real-valued functions defined on . Two functions from S(Q2) will be
identified, when they are equal almost everywhere. We set

c;@)=1{h:he C(Q),h(z) >1 for any z € Q},
h™ = mriinh{z), ht = max h(z) for every h € C4 (D),
and define
1P@(@Q) = {ue S(@Q) : fn lu(@)P*® dz < +o0 for p € C-(D)},
with the norm
ol oy = ey = nfr > 0: [ |42 P dz <13,
a
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and WP(=)(Q) = {u € LP=)(Q) : |Vu| € L*=(Q)},
with the norm [|ufly1.50(q) = [] Lotes () + | V| Ltey 2y Observe that LP(=)(Q) and
W' =)(Q) are separable and reflexive Banach spaces (see [7]).

Setting p(u) = [, |u(z)|¥ ™ dz, for any u € L?=)(Q), we can write

u
(21) Iulbfﬂ(ﬂ] =& p(:] =1
- +
(22} [uILlilJ(n) >1= |u12pf=](ﬂ) S p(‘l.l.) S |u|§"l}{nj
¥ i+ =
{23) |u]L’f-){ﬂ) <l= |ulppf=)(ﬂ} S P(u) S |u|L{'3{R}'

With p(u) = [, [Vul?® dz + [, [u[?®) dz, we have similar to (2.1)-(2.3) relations
with [[u| instead of |u| Let=)(5)-

In the spaces W'P(#)(0) the Poincaré inequality holds, that is, there exists a
positive constant Cy such that

[ulzotera) < Co|VuLote)ia),  Yu € WHPE(Q),

implying that |Vu| ) () is & norm equivalent to the norm ||ul| in the space W#(=)(Q).
Later we will use this equivalence, and for simplicity, we will write ||ul|, = |Vu| ;,.m )"
The embedding W»#(=)(Q) — LP=)(0) is compact and continuous (p* = ;:
if p(z) < N and is p* = o if p(z) > N) (see [7]).
If g € C4(Q) and g(z) < p*(z) for any z € {J, then there exists a compact
embedding W1?(#)(Q) < L) (9Q) for 1 < g(z) < p?, where p? is M) when

p(z) < N, and is oo, when p(z) > N (see [5]).

3. THE MAIN RESULTS

Let W'(x) = W12(=)(Q) b the usual Sobolev space. In the Banach space W =
W) (Q) x W»(=)(Q) we introduce the norm

w0l = [ 19up© da+ [ 9P az) ™,
a y]
and for (u,v) € W denote by Jj,,(u) the energy functional associated with problem
(1.1), defined by the formula:

Inu(u,v) = L %(lwlpfﬂ +|VoP®) do

[ @ dz - 1y ,0),

“a2) + ﬁ(z) 9(z)
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where
= 4(=) dg + f h(z)|v|%®) ds.
Kyu(u,v)=A /; ﬂ.ts'(m)hul B ()|v]

Denote by Na,.(§?) the Nehai manifold, defined by
Nau(@) = {(u,) € WA{(0,0)} : (@), (%, 0), (w,0)) = 0}

The energy functional g, is not bounded below on the wh‘ole space W, implying

that (u,v) € Na,u(9) if and only if
ﬂ(ﬂ‘.,t}) = (33,;.(“;“) (": U)) = j‘;(IVuI’("’ + |V9P(3J) dz

— [ F@IEIo® b~ Kaulw) =0.
a
Therefore for (u,v) € Na,u(Q2) we have

(3.) (7 w,0), @) = [ PP + 7o) de

= /ﬂ (=) + B(@)) £ (2)[u|*® [P® dz — g(z) K, u(u,v) <

<@* - (e +67) [ SO do -+ & — ) Ky ).
We split Ny, into three parts: :
Ni, = {(w) € Nau(@) : (9'(, ), (w,0)) > O},
7., = {(1,9) € Nou(®) : (F(w,0), (w,)) =0}
Ny, = {(9) € Nagu(®) : (F(w,9), (w,0) < 0}.
Let Co = (&)= 0(e, 6,4, 5, 3) be a positive number, where

- T4 Bt —qt gt = a” +f" —pt_——gt, 2=
C(a,B,q,5,8) = E—-—S“ +BT Y= =at—FF) o st 20 iy gl = —q
(@8,0.58) = (2 e el R B I gt
Theorem 3.1. If the parameters A and p satisfy 0 < lAi»-:c’F + jplr-—_ﬁ: < Co,
then the problem (1.1) has at least two solutions (uf,vy) and (u7,vy) such that
uy > 0,vF >0 in Q and uf #0,v5 #0. And, if f > 0, then uF > 0,vF >0 in Q.

Lemma 3.1. The energy functional g , is coercive and bounded below on Nj ., ().
50 R
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Proof. Let (u,v) € N, 4(Q) and ||(u,v)||w > 1. By the Sobolev embedding theorem

we have

31,#['11, = / p(::) (|Vu|”[”} e |V‘UI’(=)) dz — / f(z)lutn{levlﬂ{:) .

1
a(z) + B(z)
= m;c,\,,(u, N f (VP + |VoP®) dz — qi_x,\,,.(u, v)

s ((!Vﬂ[’(”+|VuP’(‘)Jda: Ku(t,v))

e ﬁ_) [ 19up® + 90ip) az
1 =dn
= -)KA w(tv) 2 ((Tﬂ:r)ll(ﬂ )y -

et (L_J%s?')(w-":?‘ + eualll =), 0y

Since p~ > g*, we have g, ,(u,v) = oo as ||(u,v)||w — oo, implying that T u(u,v)

EE

is coercive and bounded below on N ().
Lemma 3.2. If0 < |)| o || 7= = < C(e,B,q,8,5), then N () =2.

Proof. Assume the opposite, that is, N3 ”(Q) # @. Let (u,v) € N3 () be such that
[I(x, v)Hw > 1. Then for 0 < |A|#= = + |7 < C(e,8,q,85,5) we can write

0= (Jim(u,u),(u,u)) - fnp(z)([vu|p(=) + |Vvl"(’})dz—

(a() + B(z)) fn @U@ ulf® dz — g(2) K, u(u, )

p [ (VP +|90p@) da
n

v

|

* (AVuP® + V0P da — [ £(a)ful*O]off o)
n

(@ +8%) [ @l dz
o —q*) fn 2(=) (| VulP® + | Vo) de

(gt - (@* +B%) /n F(@)]ul® o] dz.

v

-+

Therefore

02 (0~ — g")lI(w,v)[I% +crolg™ — (at + B))S>" +8%||(n, v) 1% +77,
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implying e

8 JEe L +4pt\aFrat—p~
(32) (@ o)lw 2 (g =7 e
Similarly, we obtain

0= (j:\‘p(un ’U), (l‘.l.,'l'J))
< p* [ (VP + [Vop@) do — (o™ + 67) Jo F@uITO Nl da = g K r0)

< pt . (Valr® + [P ds — (0 + B) (I + 1V0lP) do — K, )
—-q K .\,_u(“: v).

Therefore
0< (ot — @+ Bl V)l + (@ + 87 —a7)Kxulu,v),

implying
4B O\ -
(3.3) ||{“‘v)||w5015(2—_q_—§:j%; T (N7 + || 7).

Prom (3.2) and (3:3) we get [(w,)llw < 1 and N7+l > C(2,8,4,5,)
The obtained contradiction implies that N3 ,(Q) = 2.

Lemma 3.8. Suppose that (ug,vo) is a local minimizer for gy, on N»,u(R), and that
(u0,v0) & Ngl”(ﬂ). Then 33,;.(“0:”0) =0 in W12,

Proof. The result can be obtained by the arguments similar to that of used in Brown
and Zhang'[2], and so is omitted.

Lemma 3.4. We have
o if (uo,v0) € N ., then K u(u,v) > 0;
o if (uo,v0) €3, then K ,u(u,v) > 0 and [o F(z)|ul*@[v]f@ dz > 0;
o if (uo,0) € Ny, then [ £(=)lul*@|u[#®) dz > 0.

Proof. The proof is an immediate consequence of (u,v) € Ny, and (3.3).
We write Na,,(?) = Ni,(@) UN5,,(Q), and define

9+ = lllf 3 u,v), 9_ s 2
M wwent, @ Aultath iy (u.u)el?ff;.,.{n) I, v)-

Theorem 3.2. If0 < ||z~ = + |pl7= = < Cq, then
52

R N TRV R




ON A CLASS OF ELLIPTIC SYSTEMS ...

* (i)6;5,<0
e (i) 65, > dg for some dy = dy(a, B, 4,5, 5, )\, ) > 0.

Proof. (i) Let (u,v) € Ny ,. From (3.2) we have

(34) a)‘y.(ﬂ, 1)) < p—i_ L(lvufp(lj + Ivvlpfzj) dr

g | @O dz - Lk 0,1,

Since (u,v) € Ny ,(f2), we can write
(3.5)
p* fn (IVufP® +|7o[P®) dz — (o~ +57) fn F@)l*o]P® dz — g~ K (s, 6) > 0.

Next, by (3.4) we have

68 [ f@u < —= [ 49 + [0 az,

[ +ﬁ—
and by (3.5) we can write

3.7) Sinn) = (pi_ i qé) fn (V[P + |Po®) dg

1 1 alr z
g ) [ @
It follows from (3.6) and (3.7) that
(o7 —q")(a" + 5+ —

(at + B+)p=g*
Thus, af = inf(u'ujeNh(Q)ﬂA(u, v) <0.
(ii) Let (u,v) € Ny, (). By (3.2) we have

—27) i, )] <.

3*6‘(‘”’! 1.?) =

e sl < [ Fel i) e

By the Sobolev embedding theorem we obtain
f £ (@)|u|*® p]® dz < §5+||(u, v) |5 .

This implies
PT—at  oatist\TFSe
IOl > (g 5= *) :
53
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LSS i

Therefore
R T e ) |
- ?"*%—{f;“’—m(uw*ﬂlmr'ﬁ]

+

S¢++g+ ) Ao

Vv

"q
(a++ﬁ+—'q+
- _ot
[a' +B8 —p* ( p~—qt Sa++3+) Frt e
X | ¥ +B-) \at +BT —q*

g A ST

Choosing 0 < |A|F'—;-'F + |,u.ir-—-* < Co, we get dx,u(u,v) > do for all (u,v) € Nj
and for some do = do(e, 8,4, 3, S; A, ) > 0. This completes the proof.
We put

=( (= —q*)ll(u, vy ):m!:,—-
(@t + B* — a*) [ F(@)|u|®@|v]f() dz ;

Lemma 3.5. For each (u,v) € W with [ f(@)|ul*@|v|f®) dz > 0 we have
(i) if K u(u,v) <0, then there is a uniquet™ > tmax such that (t7u,t~v) € Ny

tmax

and
I u(t™u,t7v) = sup Jx u(tu, tv);
>0

(i) if Kau(u,v) > 0, then there is a unique 0 < t+ < tmax < ¢~ such that
(ttu,ttv) eNT,, (t7u,t™v) €Ny, and

L T . T o
DTy, ttv) = Silgfwa:.,p(tu,tv), Inu(t™u,t U)—!:;Eaa,p(tu,tu).

Proof. Fix (u,v) € W with [, f(z)[u|*®|v]f® dz > 0. Let
m(t) =17~ ||(u,v)|[f, — 27T f F(@)u|*@[o|P® dz for t > 0.
Clearly, m(0) = 0, m(t) — —co as ¢ — co. Moreover
m'(t) = (p™—¢ ")t “+‘1I|(u.v)llw—(a++ﬂ+—q)t°++’+_“+_1,/nf(m)lul“"’lvl""’ da.

Hence we have m/(t) = 0 at ¢ = tmax,m'(t) > 0 for ¢ € [0, {max) and m’(t) < 0 for
t € (tmax, 00). Thus, m(t) achieves its maximum at tmaz, increases for ¢ € [0, tmax)
and decreases for t € (tmax, 00).

54

L —




ON A CLASS OF ELLIPTIC SYSTEMS ...

Furthermore, we have
i

i yFRr (P = g J‘—"&""‘.f..: t.';—]

i(tmax) = ||, 2) Gy [(m SABPoE

(g
fn J(z)|u|o®)|y|f=) dz

+ o —_— + —_at % e
R e A i

(i) Let K ,(u,v) < 0. There is a unique £~ > ty,y such that m(¢™) = K) ,(u,v)
and m/(t~) < 0. Then we have

(™ —g")(E P W 0)lfy — (ot + 8% —g*)(t7)= 7" fn F(@)|ul*®]P® dg =
= (t7)"*"m'(t7) <0,
and hence, we can write
(@t u, W) = ()7 [m(t™) — Kau(u,v)] =0,
implying that (1~u,t"v) € N3 ,. Thus, for £ > tnax We have
=0, )y (o +8*=0") [ SO da <0, Lau(tu, ) <0,
a dt

and

4 3 u(tu, tv) = 'K — ot 48" () 1,)B(=) g =

Oty tv) = t(w, V)% — 7" Ko, 0) — t j; F@)ulo@ [u]f@ dz =0,

for t = t~. Thus, gxu(t™u,t™v) = sup;5q da,u(ty, tv).
(ii) Let K u(u,v) > 0. Using (3.8) and
+ = %
m0) = 0< Knulw,v) ST (NF= + |ul7=)|(u,v)lify
@t LB g o B =gt g et

< “(“v”)“?v(a-... + B+ _q+)( - —q* i ) R e m(tm);
for 0 < |A|#= = + |;1|r‘-_v": < C(a, B,4,8S,8), we conclude that there are unique ¢+
and ¢~ such that 0 < t+ < tyax < 1™, and

m(tt) = Ky u(u,v) =mt™), m'(t*)>0>m'(t™).

Then (t*u,ttv) € N{,,(t7u,t7v) € Ny, and Ju(t™u,t7v) > dhultu,tv) 2
Iru(ttu,tto) for each t € [t+,¢7] and 9, ,(t"u,tHv) < 3 u(tu,tv) for each t €
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[0, ¢*]. Thus,
fauEtuite)= 1of Iapultu,tv) and Fru(t7u,t7v) = fup 3, u(tu, tv). :
This completes the proof. 1

= o (e~ +8~ —E-)KA.H(“J’)
We choose tmax = ((a' +8- =)l Iy )

0.

»m="" > 0for (u,v) € Wand K ,(u,v) > .
i

Theorem 3.3. For each (u,v) € W with K u(u,v) > 0, we have
o if o £(2)|u|*®[v[f®) dz < 0, then there is a unique 0 < t+ < Emax such that
(ttu,t+v) € N, and

Iauttu,tte) = E{)ﬂa,ﬁ(tu, tv);
o if [o F(@)lu|e®|v|P@) dz > 0, then there is a unique 0 < t* < Tmax < ¢~
such that (ttu,t+v) € NY,, (t7v,t7v) € Ny, and
Iu(ttu,tty) =infogiq,.. Iaultu,tv); dau(tu,t7v) = sup,50 9 u(tu, tv).

Proof. Fix (u,v) € W and K ,(u,v) > 0. Let

@9 ) =" " ()l -t P Kaulu,v) fort>0.

Clearly, m — —oo as ¢t — 0% and 7(t) — 0 as ¢ — co. Now the proof can be
completed using the arguments of the proof of Lemma 3.5.

Theorem 3.4. If 0 < |A|& = + |u|"— < Cb, then the functional 35, has a
minimizer (ug,vg) in N , and satisfies:

(i) Bnu(ug, vg) = 6% i

(ii)(ug ,vg) is a nontrivial nonnegative solution of problem (1.1), such that uf >
0,95 >0 in Q and uf #0,v5 #0.

Proof. Let {un,v,} be the minimizing sequence for g, , on N:\"_p. Then in view of
Lemma 3.1 and compact embedding theorem, there exist a subsequence {u,,v,} and
(uf,vg) € W, such that (ug,vg) is & solution of problem (1.1) and
ut — uf weakly in WP (),
uf = ug strongly in L2 (80) and in L5(Q),
Ut = vf weakly in W ") (@),
56
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vi — v strongly in L{(%)(89) and in L35(Q),
and we have
K u(uy,v7) = Ko u(ug, vi) as n — oo,
[ @@t P dz [ f@)fu o P d as - oo
1] 1]

We can write

Duluy,vy) = %Tﬂ(umvn)llw _((;_ -:_Bﬁ_ E )K.\ sifut

Therefore

Iopulut, v,,)—)ﬂ <0asn— oo.
It is easy to see that K ,(ug,vg) > 0 as n — oc. We prove
u} = uf strongly in W P(=)(Q),
v — v§ strongly in W?(=)(q).
Otherwise, suppose
u} -» uf in WPE)(Q) and v} » uf in WIPE)(Q),
Then we have
llug lws.ote < limnson inf [|usf llwrsce) or [lvg |t < limnyoo inf [0 || yr.ste)-
Let K ,(un,vn) > 0 and
Ta® =1(0) — [ f@l*®}off® s,
n
where 77i(t) is as in (3.9). We have I, ,)(t) = —occ as t — 0* and
T (6 5 = / F @@ dz as t - oo.
0
We have I, (t) = 7'(t). Using the argument of the proof of Lemma 3.5, we

conclude that #max(u,v) is a maximum of I, .)(t), for t € (0, Zmax(%,v)), Luw)(t)
increases and for ¢ € (Tmax(u, v), 00) it decreases, so that

:  _ (lem+B” —a ) Kau(uv)\ 7T

<5 o)

(@~ + B~ —p*)ll(w,v) I3

Since Ky ,(ug,vg) > 0, there is a unique 0 < t§ < Fmax(ug, vg) such that (tug, tivi) €
N;t.u‘ Therefore

Drulti o G508) = | inf (o, 0 onulen 03,
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and we can write
£) = @) (I(ted 8598 Wy — Knu(t§ v, 8898 -

T i) (o
- [ 1@l P dz) =0,
a

Moreover, for sufficiently large n we have
I(“nu“n)(tg-) > 0‘

implying that fmax(tn, vn) > 1. Furthermore, we have

f(u,..u..)(l) = ||tn, vn) I — K pu(tun,vn) — ./n f(z)|u,,|“(x)]un|3(=3 dz =0.
Since J(y, v,)(t) increases for t € (0, Zmax (t4n, vn)), for all t € (0, 1] and for sufficiently
large n we have I(y, v,)(t) < 0 . Therefore 1 < 11 < Tnax(ug s 17):
On the other hand, (&3 ug,tdv3) € N, and

34\.1103-1‘3-""3.”3-) = ns'igfzm(“ﬁ'sﬂﬁlﬂz.u(ﬁﬁ,wﬁ)-

Therefore dx,, (g ug 503 ) < Iau(ug,v5) < limnsoo dr,u(uz, vt) = 63, which is
a contradiction. Thus both

ut s ug enduf —vF strongly in Wy P®(Q),
and we obtain
Inu(u,vf) = ru(ug,v5) =05, esn—oo.

Hence, (ug,vg) is a minimizer. With g ,(ug,v3) = daullug], lvg ) , (ugl, lvg]) €

N3 ,(Q) and Lemma 3.2, (uf,vf) is a nonnegative solution of the problem (1.1).

Now, we prove that ug” # 0,u§ # 0. We assume that v§" = 0. Then, since ug is a

nonzero solution of the problem
{ —AP(ﬂu =0, z €,
|Vu[P(®)-288 = \g(z)|u|?®) 2y, ze€oQ,
we have
1157 = [ o@)ug 1o ds > 0.
With w € Wi»@)(Q) \ {0}
ol = [ @it ds 20,
a0
58
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we have
K u(ug, w) = _/ 9(z)lug |"®) ds + f h(z)[w(*™ ds > 0,
an an

implying that there is a unique 0 < t* < Z,,., such that (ttuf, t+w) € N}'_#{QJ.
We have
tala ((ﬂ_ G o s Q_}KA.ufua'aw)) P L. (ﬂ_ +8” —q" \uF
(o= + B~ —p*)||(ug, w5 a=+=p=pt

>0l

and

Dulttug,tTw) = inf 3y, (tug, tw).

Therefore
3»\.11(#“3-: ttw) < 3)..:1("3-!“’) < qau (ua', 0)= 8:{:,.:

which is a contradiction, and the result follows.

Theorem 8.5. If 0 < (|A[»===F + [u|7==+F < Cj, then the functional dou has a
minimizer (ug,vy) in Ny , and satisfies:

(4) 3xu(ug,vg) =05 ,;
(ii)(ug , vy ) is a nontrivial nonnegative solution of the problem (1), such that uy >
0,95 20 in Q) and ug # 0,v5 #0.

Proof. The proof is similar to that of Theorem 3.4, and so is omitted.

The Proof of Theorem 3.1. In view of Theorems 3.4 and 3.5, we conclude that
there exist (ug,vg) € N"\"'” and (ug,vg) €Ny ,, such that uf > 0,vF > 0in Q and
ug # 0,vF # 0. We have N, NN , = @, implying that (uf,vf) and (ug,vy) are
distinct. If f > 0, then by the maximum principle we have uoi > L‘I,uf-,t > 0.
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