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Abstract. Nérlund strong logarithmic means of double Fourier series acting from
space Llog L (T’) into space Ly ('l‘") , 0 <p <1, are studied. The maximal
Orlicz space such that the Nérlund strong logarithmic means of double Fourier
series for the functions from this space converge in two-dimensional measure is
found.
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1. INTRODUCTION

It is known that the rectangular partial sums of double Fourier series Sp m (f; 2, ¥)
of a function f € L, (T?), T := [-m,7), 1 < p < oo, converge in L, norm to the
function f as n — co (see [14]). In the case L; (T?) this result does not hold. But for
f € Ly (T), the operator S, (f;z) is of weak type (1,1) (see [16]). This fact implies
convergence of S, (f;z) in measure on T to the function f € L, (T). However, for
double Fourier series this result does not hold (see [7, 9]). Moreover, it is proved that
the quadratic partial sums Sy, (f;#,%) of double Fourier series do not converge in
two-dimensional measure on T? even for functions from Orlicz spaces wider than the
Orlicz space LlogL (T?). On the other hand, it is well-known that the rectangular
partial sums Sy m (f;,y) of a function f € Llog L (T?) converge in measure on T?.

Note that the classical regular summation methods often improve the convergence
of Fourier series. For instance, the Fejér means of the double Fourier series of a
function f € L; (T?) converge in L; (T?) norm to the function f (see [14]). These
means represent the particular case of the Norlund means.
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The Nérlund logarithmic means of a double Fourier series are defined by

AL Siy (i % ¥)
tam (f32,9) := mgg m-i+)(m—-j+1)’

where I := Y71 (1/k) and S;; (f;2,v) denote the rectangular partial sums of the
double Fourier series of the function f.

It is well known that the method of Norlund logarithmic means of double Fourier
series is weaker than the Ces6ro method of any positive order. In [10] Tkebuchava
proved that these means of double Fourier series in general do not converge in two-
dimensional measure on T2 even for functions from Orlicz spaces wider than the Orlicz
space LlogL (T?). For Nérlund logarithmic means tn,m (f; z,y) of double Fourier
series Tkebuchava [11] proved the following result.

Theorem 1.1. Let Lq (T?) be an Orlicz space, such that
Lo (T%) ¢ Llog L (T?).

Then the set of function from the Orlicz space Lqg (T?) with logarithmic means of
rectangular partial sums of double Fourier series, convergent in measure on T2, is of
first Baire category in Lq (T?).

On the other hand, as it was noted in [1] Remark 1, the regularity of summation
method does not allow to deduce the summability in measure of a functional sequence
from its convergence in measure.

In this paper we consider the strong logarithmic means of rectangular partial
sums of double Fourier series and prove that these means are acting from the space
Llog L (T?) into the space L, (T?),0 < p < 1 (Theorem 4.1). This fact implies
convergence of strong logarithmic means of rectangular partial sums of double Fourier
series in measure on T? to the function f € LlogL (T?) (Corollary 4.1). Uniting
these results with Tkebuchava result from [10] (see Theorem 1.1), we prove that the
rectangular partial sums of double Fourier series converge in measure for all functions
from Orlicz space if and only if their Nérlund logarithmic means and strong Nérlund
logarithmic means converge in measure (Theorem 4.3). Thus, not all classical regular
summation methods can improve the convergence in measure of double Fourier series.

For the results on summability of logarithmic means of Walsh-Fourier series we
refer the papers (3] - [5], [12, 13].
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2. DoUBLE FOURIER SERIES AND CONJUGATE FUNCTIONS

We denote by Lo = Lo(T?) the Lebesgue space of functions that are measurable
and finite almost everywhere on TZ.

Let Ly = Lq(T?) be the Orlicz space (see [8]), generated by Young function @,
that is, @ is a convex continuous even function, such that Q(0) = 0 and

Qg . Q(u)
ulﬁlm T nP—%T=0'

This space is endowed with the norm
IFlzo(e = nf{k > 0: [ QUs(e,)] /Kydedy <13,
o
In particular, if Q(u) = ulog™ u, log*u = 1{u>1} logu, then the corresponding

space will be denoted by L log L(T?).
Given a function f € L (T?), its double Fourier series is defined by

(2.1) Y. F(mn)eim=ein,
(n,m)ez?
where Z is the set of integers and
: -~ 1
(23) Fmm) = 205 [[ #tapemee-imvazy
T

are the Fourier coefficients of f.
Denote by Snm (f;2,y) the (n,m)*® symmetric rectangular partial sums of series
(2.1). As is it well-known, we have

Snm (£i2,9) = =3 [[ £(5,) Da (2~ 9) Do (y 1) dodt,
T2

where (
_ sin((n+1/2)u)
D) == tu/2)
is the Dirichlet kernel.

One can associate three conjugate series to the double Fourier series (2.1):
(a) conjugate with respect to the first variable:

(2.3) FUO n 3™ (—isignj) F (5, k) 0=+
(.k)ez?
(b) conjugate with respect to the second variable:
(24) FOD~ 37 (~isignk) F (G, k) U=+
(4,k)ez
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(c) conjugate with respect to both variables:
(2.5) FOD~ 3T (—isign) (~isignk) G, k) U
(.x)ez?
It is well known that for an integrable function f we have

;i : ’
}'[1.0) (z, )= p_v.;; J E-t%i—s(?y%!-} 8,

}'[n.lJ (z,9) = p.v.% J Et{%’%—}j

o £(8.)
1 8,
FAD (z,9) = pV.— / [ = ——dsdt.
2tan (Z52) 2t
/s (=52) 2tan (%7°)

Privalov’s theorem (see, e.g., [16], vol. II, p. 121) immediately implies the a. e.
existence of f(:?) and f(%1) under the assumption f € L1 (T?). The a. e. existence
of f) for f € Llog L (T?) was proved by Zygmund (see [15, 17]).

We consider the symmetric rectangular partial sums of series (2.3)-(2.5) defined by
5O (fizy) =Y, Y. (—isignj) F(j k) 0=+,

lil<n [kl<m

S (fimy) =Y, Y (—isignk) f (5, k) e'0=+ )

lil<n |k|sm

B (fim) = X Y (~isigns) (—isiguk) £, ) /U=,

l5l<n [E|<m
It follows from (2.2) that

§r£?m(f;z!y) Sa Figfff(sat)ﬁn(z— BJDm(y"‘t)dEdt,
T

52 (fi20) = = [[ £(0.6) Du (o~ 6) Do (y — ) ot
;5

and
St (fi29) = 75 [[ £(5,0) Do (@~ o) B (y — 1) dct,
where ‘ ;
= N, 1 (m+1)u
(2.6) Dm (w) = g7y ~ T (u/2)) L, m=1,.
is the conjugate Dirichlet kernel.
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In this paper we also consider the following operators
~1

‘-gn?m (f;.r,y)= %fff(sst)ﬁn (I'—ﬂ)ﬁm (y-—t)d&dt,
o

§:1m (fiz,y) = ;lg'fff(s:t)ﬁn(:—a)ﬁm(y—-t)dsdt
b o

and

ol 1 " R
: 'Sn,m(f;ztv)z'_ f(sat)Dﬂ(z-sJDm(y"t)d‘Bdt!
) _

where D, (u) is the modified Dirichlet kernel defined by
sin (nu)

ﬁn (u) = Wj.

3. STRONG RIESZ LOGARITHMIC AND STRONG NORLUND LOGARITHMIC MEANS

The strong Riesz logarithmic means, the strong Nérlund logarithmic means and
the strong Fejitr means of rectangular partial sums §:‘g f are defined by the following
formulas, respectively:

z 1 & |52 (fizy)
?m (-fizly) G= Inlm ZZJJ—[

i=0 =0 G+ +1)
1 n m gg?-(fizly)l
A L oy T B o s

i=0 j=0

o - bt — l S o . B
T (fi2,9) = Wﬁg; lsfj (f,z)| , a,b=0,1.
Denote

R (f) = Bnm (£) 1 8% (f) = Sam (f),
ﬁ??m(.f) = Ta,m (f), 5"3?,,. (f) =an,m(f)-

In [6], among others, it was proved the following result.

Theorem 3.1. Let f € LlogL (T?) and 0 < p < 1. Then for any a,b = 0,1 the
Jollowing ineguality holds

" i/p
( [ (st (i) dxdu) <o [[1f @u)liog* If (@,0)] dedy + a
i T .

43



U. GOGINAVA AND L. GOGOLADZE

Applying Hardy's transformation, we obtain
"'S'mb ) E MZ-I a?& (f; I, y)
LlmBom (Fi3¥) = - -
(3.1) : 2 2 +2) G+2)

m=—1

= ~ai 2
- z J—:::'_—zagt‘ (f;z,y)ﬁ-;;-%é‘&'?m (f;Iny) +°-n?m (.fn"ﬂy)‘
=

Consequently, for f € Llog L (T?) from Theorem 3.1 we obtain

i/p
(32) ( /[ (Etn (f:z.y))"dzdy)

o

/p
4 ( f f (iungr'fi?aﬁ’ (f;x.vJ)dedy) 1
J) \a.

a Lf |f (z,9)|1og" |f (z,9)| dzdy + c2.

(rf (E?‘pa"(f‘z))pdw) (,f (sues (m))‘,ﬂ) l_h

< a[lF@ldnfenm, 0<p<l
N

IA

1A

Since
1/p

Similarly, for one dimensional case we can show that

1/p 1/p
(33) ( / @ (f;z))’dx) , ( / (B (f;z))”dz)
T

T
< o [lf@ldnsenm, 0<p<l,
: T

where oy, (f; ), On (f;7) , Bn (f;z) and R, (f;z) are the éﬁtong Fejér and the strong
Riesz means of Fourier series and conjugate Fourier series, respectively.
4. MAIN RESULTS

Theorem 4.1. Let f € LlogL (T?) and 0 < p < 1. Then the following inequality
holds

1/p
( J[ o iz dzdy) <a [[1f @vliog" | @) dsdy + ex
il T
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Theorem 4.2. Let f € Llog L (T?) and 0 < p < 1. Then

> :
1 S5 18 (fiz0) = £(z,9)]
4/ (In!mgg(ﬂ—i-l-l)(m_j_i_l)) dzdy — 0

as n,m — 0o.

Corollary 4.1. Let f € Llog L (T?). Then

1 e [Siy (£ 2,9) — £ (z,9)]
Ez(niiﬂ)(m—jﬂ)_’o

in measure on T? as n,m — oco.

Uniting these results with Tkebuchava theorem (Theorem 1.1), we can state the
following result.

Theorem 4.3. The following assertions are equivalent:

(a) the embedding Lq(T?) C Llog L(T?) holds;

(b) the strong Norlund logarithmic means of double Fourier series Jfor all functions
from Orlicz space Lq(T?) converges in measure on T?;

(c) the Nérlund logarithmic means of double Fourier series for all functions from
Orlicz space Lg(T?) converges in measure on T2,

5. PROOF OF MAIN RESULTS
Proof of Theorem 4.1. Setting an () := sin((n+1)t) and B, (t) := cos((n+1)¢),
we can write
61) Swu(fia)=7 [ 1 RQ_EUREZD),
T

- 1 [romere-n =m0,
T

_i f f(t)eos((n+1)(z—1t)) smz( Scn-i(-(lzli)t(;/;) 2 o
T

1 ’ os ((k+1/2)(z —t))  cos((z—t)/2)
= ;/f“)s‘“((““) (z-1) (coa2sin((z—t)z/2) - 2sin((x-:)/z))d‘
T
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+lff{t) sin((n+1)(@—1)

2tan((z —1) /2)

k+1/2) (z —t))
—-ff(t)cos((n+1) (z—1) mz((sin((z-t)/z) %

= ﬂn(I) ff(t)ﬁn(t)pi(z t)dt_'..‘ﬁ"_(.ljf(t)aﬂ(t)Dk(I t)dt

sin((n+1) @=1)
f IO Ftan (-0 /2)

sin ((k+1/2) (z—1)) ,,
_g"‘;(::_)ff(t)ﬁn () 2sin ((z — 1) /2)

T
A PP 1/2)(z=1) ,
x T

2sin ((z —t) /2)

= —ap (z) 5k (fBn; ) + Ba () Sk (fani )
—Bin () Sk (£Bni ©) — n (z) Sk (fan; ©) + Sn1 (fi2)-

Hence
r(fia) ¢ = —E e t1i2)] < B, (780,2) + B (Fam2)
+Rn (fﬁmz)+Rn(famz)+§n+1 (f;2).
Since

1/p
( A (f;mw’dm) <o [If @)lda,
T T

from (3.3) we conclude that for 0 < p < 1 and f € L; (T)

1/p
(5.2 ( JER ds) < [[1f @)lds.f € L (T).
T T

Now we consider the rectangular partial sums of double Fourier series. In view of
(5.1) we can write
Sa-iim—3(f; &¥) = Sn-i(Sm-3(f;9)i %) = —an(2)8i(Sm—(f;9)Bni 2)
(53) +Bn (2) 5 (Sm—3 (f39) an; @) = Bn () St (Sm—j (£39) Bni 2)
—atn (%) Si (Sm—j (fi9) @ni) + Snt1 (Sm—j (f,9); 2)
= 'élfa (i,3:2,9) +gn+l (Sm-s (f,9);2).
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Next, for I (i, 5; 2, ), in view of (5.1) we have
(54) h(ijiz,y) = —an(z) Sm-; (g;. (fBni)3y)
= en(@)an 1) (5.(/825) Briv) — on () Brn (1) 5 (B (i ) o v)
+an (&) () 5 (5. (78139) i) + o () am 1) (5 (i) i)
=00 (2) St (S (80 2)3v) = an &) e () B (7B 2,1)
~n (2) Bm (4) 51} (Bnami 7, y) + @n (<) Bim )55 (FBrnbmi,0)

+ar|. (@) am (¥) -5' (fBram;z,¥) — an (z) 3" m+1 (fBniz,y)
= qu (i, 4;2,y) + Iis (i,m; z, 7).

I=1
From (3.2) we obtain

”11 (":JJ -Tv',‘y)l
(0:8) f.[ (t,.z,,. 22 (1+1)(g+1)) aedy

< f [ |t £BaBmi ,) tndy
™

) j j If (@, v)|log* | £ (z, )] dedy + cs.
T2

Similarly it can be shown that

II (“J’ ,y};
&) f/ (t,. ZE(“J‘F 1)(:+1)) il

i=0 j=0

< @ f 11 @ wliog* 17 el deddy +-ca, 1=2,3,4
f o
Now, we turn to I5 (i, m; z,y). Taking into account that

~10 o
3:,m+1 (£Bn; z,y) = Si (Sm+1 (f;v) Bniz) ,

f(,y) € Llog L(T) for a.e. y € T and f € Llog L (T?),

and

f|§m+x (fiz,y)|dz < c1f|f(=.v)llos+ |f (z,y)| dz + ca,
T T
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from (3.3) we obtain

(f (‘lg Sm(ﬁvil)dz)

< f [Smsa (fizp)|dz <01 f If (z,v)|og* |f (z,¥)| d= +c2.
T T

1/p

Consequently,
s (i 2,9)]
&) ff (z..:,,..i B ('1:‘1)(J+1)) o
< a f[ \f (@) og™ |f ()| dedy + ez
T2
A combination of (5.4)-(5.7) yields
P
1 S izl
8 —_— TN
{52 1/’/ (zntmggm 1)(j+1)) e
< o [[1f (@uiiog* £ (ol dsdy + e
T2

Similarly, we can prove that

r
I, (3, 55 2, 9)|
) ]f (Iﬂm e (s+1)(j+1)) dsdy

E ff \f (& 9)|og* |f (@ p)l dody +ca, 8 =2,3,4,
T2

/p
1 Barn G i) o)
(:nzmgg R e M

oo (ff

T2

|Sm—j (Sn+1 (f,2); 3 -
(ff (znzm H}Z (5‘+1;(j+1) 9)1) da:dv)

/e
9 |Srm—3 B (£,7)30) ; 1
Ve

a i f |f (z,3)\ log* | (z,)] dady + ca.

Il

IA
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Combining (5.3) and (5.8) - (5.10), we complete the proof of Theorem 4.1. O

Proof of Theorem 4.2. The result follows immediately from the density of polynomials
and by virtue of standard arguments (see [16]). m|
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