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Abstract. In [2] a cyclic diagonal operator on the space of functions analytic on the
unit disk with eigenvalues (An) is shown to admit spectral synthesis if and only if for
each j there is a sequence of polynomials (pn) such that limp— o0 Pn(Ak) = 6;,x and
lim sup,,_, o SUPs 4 [Pn(Ak)|*/* < 1. The author also shows, through contradiction,
that certain classes of cyclic diagonal operators are synthetic. It is the intent of this
paper to use the aforementioned equivalence to constructively produce examples of

synthetic diagonal operators. In particular, this paper gives two different constructions

for sequences of polynomials that satisfy the required properties for certain sequences
to be the eigenvalues of a synthetic operator. Along the way we compare this to other
results in the literature connecting polynomial behavior ([4] and [9]) and analytic
continuation of Dirichlet series ([1]) to the spectral synthesis of diagonal operators.
MSC2010 numbers: 30B10, 30B50, 47B36, 47B38
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1. INTRODUCTION

A vector z in a complete, metrizable, topological, vector space X is said to be
cyclic for a continuous, linear operator T' : X — X if the closed, linear span of the
orbit {7z : n > 0} of z under T is all of X. Operators that have a cyclic vector are
said to be eyelic. A vector z is said to be a root vector for T if there exist A € C
and n € N such that (T'— AI)®z = 0. A continuous, linear operator T : X — X on
a complete, metrizable, topological, vector space X is said to admit spectral synthesis -
or be synthetic if every closed invariant subspace M of T' equals the closed linear
span of the root vectors for T' contained in M. Cyclicity results yield interesting
approximation results. For instance, the Weierstrass Approximation Theorem asserts
that the function f(z) = 1 on [0,1] is cyclic for the operator T : g(z) —+ zg(z) of
multiplication by = on the Banach space C([0, 1]) of continuous functions on [0, 1].
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Results about polynomials are intimately related to the results about cyclicity and
synthegissincethevectorspacegenmtedbytheset {Trz:z € X}is equal to the set
{p(T) : p € Clz]}, where C[2] is the set of polynomials with coefficients in C. There
are three recent results which demonstrate this connection. To state these results, we
first present the notation, used in the original papers, and the necessary background.

The operator J(An,my) is a Jordan block acting on a finite dimensional Hilbert
space J,. The space of functions analytic on the unit disk in C is denoted as Hi,
the space of functions analytic on C is denoted as H(C). A linear operator D:H =
H; or D : H(C) — H(C) is called diagonal if it has as eigenvectors the monomials
2" for n > 0. Formally, these maps are given by Yoo anz” > oo Mn@n2".
The sequence (A,) is called D’s associated sequence. A diagonal operator D with
associated sequence (An) on Hy or H(C) is defined and continuous if and only if
lim sup,, 00 |An|* <1 or imsup, o [An]* < o0, respectively (see Proposition 1 in
[3] and Lemma 1 in [7], respectively). In either case, the operator D is cyclic if and
only if the eigenvalues are distinct (see Theorem 1 in [3] and Proposition 3 in [7]).
Note that the root vectors for a diagonal operator are precisely its eigenvectors. The
aforementioned results are as follows.

and

Theorem 1.1 ([9], Theorem 3). Let {An} be a bounded sequence of distinct complez
numbers, let {mn} be a bounded sequence of positive integers, and let J = &J (Anymn)
be a Jordan operator acting on a Hilbert space H = @32, Hn. If for each positive
integer i, the orthogonal projection Ps¢, : H — H; is in the weakly closed algebra,
generated by J and the identity, then the Jordan operator J = @J(An,mn) admits
spectral synthesis.

Theorem 1.2 ([9], Theorem 4). Let {\n} be a bounded sequence of distinct complex
numbers, let {my,} be a bounded sequence of positive integers, and let J = @J(An,mn)
be a Jordan operator acting on a Hilbert space H = @52 ,H,. Let i be any positive
integer and {p,} be a set of polynomials. Then {po(J)} converges in the weak operator
topology to the projection operator Pac, if and only if

) mapa)={ § FEZ

(2) tima p9 (Ax) =0 for all j,k > 1, and

(3) supgk [55) (Me)| < o0 for all § > 0,
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0 ifj 2 my
; P08 ifj < my.
Theorem 1.3 ([2], Theorem 8). Let D : Hy — H, be a diagonal operator with distinct
eigenvalues and let D be the algebra generated by D. The following statements are
equivalent:

(1) In the SOT, 7, € D for alln > 0.

(2) D is synthetic.

(3) The function f € H, is cyclic, where f(z) = {1.

(4) For each j > 0 there is some sequence of polynomials (p,) C C[z], depending

on j, such that limp 00 Pn(Ak) = 6;,k and

limsup ig};({lpn(kk)li}) <1

PP () = {

Theorem 1.4 ([4], Theorem 3.1). Let D be a cyclic diagonal operator on H(C) having
eigenvalues {An}. If for each j > 0 there ezists a sequence {pjn(2)} of polynomials
for which limp o0 Pjin(Ak) = 6k and sup ({|pjn(Ac)*/* : k> 0,n > 1} < oo, then
D admits spectral synthesis.

All three results have similar kinds of conditions which guarantee that an operator
~ is synthetic. First, condition (1) in Theorem 1.2, the first condition on the sequences of
polynomials in Theorem 1.4, and the first condition on the sequences of polynomials
in part 4 of Theorem 1.3 can colloquially be thought of as separating a sequence of
points. Second, condition (3) in Theorem 1.2, the second condition on the sequences of
polynomials in Theorem 1.4, and the second condition on the sequences of polynomials
in part 4 of Theorem 1.3 specifies a growth condition on the polynomials on the
sequence of points. In particular, the growth condition in part 4 of Theorem 1.3 is the
strictest it can be and still allow for unbounded eigenvalues. This will be colloquially
referred to as satisfying a minimal growth condition.

Seubert and Deters present examples of synthetic diagonal operators (see [9],
Theorem 5, [3], Corollary 1 and Theorem 5, [2], Theorem 6, [4], Theorem 3.2 and
Corollary 3.3). In [9] and [4] the authors use the existence of nets and sequences of
polynomials to demonstrate the synthesis of some subset of diagonal operators. While
Deters does not do this in [3], Theorem 8 of [3] guarantees the existence of sequences
of polynomials which separate eigenvalues and satisfy a minimal growth condition.
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[9] or [3]- Rather, they are shown

No sequences of polynomials are constructed in .
A on or using existence theorems like

to exist through arguments based on contradicti
Mergelyan's Theorem. In the proof of Theorem 3.3 in [4], Seubert and Deters construct

" sequences of polynomials simply by looking at the power series expansion of canonical
products. For instance, for a diagonal operator on H(C) with eigenvalues (An) such
that M. — n? for n > 0, the polynomials (pn) defined by Pn(2) = [Temy 557 satisfy
the conditions in Theorem 1.4 for Ao. However, observe that the growth restriction on
the polynomials in the conditions of part 4 of Theorem 1.3 is much more restrictive
than the growth restriction in Theorem 1.4. The purpose of this paper is to construct
polynomials which satisfy the conditions in part 4 of Theorem 1.3.

2. CONSTRUCTING POLYNOMIALS OF MINIMAL GROWTH

For the sake of brevity, we enumerate the conditions in part 4 of Theorem 1.3 as
follows:

(2.1) nﬁ_ﬁ.ﬂpn(.lk) = lek,
(2.2) lim sup ﬁ?({h(/\kni}) <1

Constructing polynomials which satisfy conditions (1) and (2) appears to be non-
trivial. For instance, consider the diagonal operator with eigenvalues A, = n for
n > 0. Such an operator is synthetic by Theorem 6 in [2]. A natural choice for the
polynomials corresponding to Ag would be pn(2) = [Th., 25X. However, note that

n by n 0
- - 3
lpn(2n)|% = (.H 2",: k) = (L[l+ "k 1) >1/3
=] =1

Hence, while the sequence clearly satisfies condition (1) for J = 0, it does not satisfy
condition (2).

It may also be thought that Theorem 3.2 in [4] would provide some insight into such
constructions. Following the proof of Theorem 3.2 in [4], if D is a diagonal operator

on H; with associated sequence (\,), then the equivalent condition to Theorem 3.2

in [4] would be that there is some non-trivial, entire function E of order p and type 7

such that E(\n) = 0 for all n > 0 and limp—;00 [An|?/n = 0. However, if |An| < [Ans1]

for n > 0 and n(r) = |{z : E(z) =0, |2| < r}|, then, for sufficiently large k, Theorem
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CONSTRUCTING POLYNOMIALS OF MINIMAL GROWTH

4.5.1 in [5] would imply that
n(|A —In|E(0)| + (7 + 1)(3|Ax])?
1204  SRIEOLE DG
Thus, thq “obvious” candidates for sequences of polynomials do not work and more
creativity must be used. We shall first construct polynomials which satisfy (1) and
(2) fora pafticula.r family of bounded eigenvalues. To accomplish this we shall make
use of polynomial approximations of Blaschke products.

0 as k — co.

Theorem 2.1. Let (An) € C be a sequence such that [A,| < 1 and Yool —
[An]) < oo, then for each j > 0, there is some sequence (p,) C C[z] such that
limp e pn(/\k) — Jj.k and limsupn—mn SUPgs. 4 !Pn(Ak)li' <1

Proof. Fix j 2 0, and for n > j define

(2 = )| Akl

An=max({|{\e]:1<k<n}) and Bn(z)= H (1= Xe2)e

; k#j
Choose M, such that (2/(1 — A,))"?(2nAM+1/(1 — A,)) < 1/n, and for n > 1
define
: _ T =] & —
an(2) = [T e > Gen)™.
ki m=0
For |z| €1 and 0 < k < n observe that

M, My
Iz = M) IMel/ M) 3 Re)™| 2 3 AT < 2/(1 = An).
m=0 m=0

Since |(z — Ak) (| Mkl/Ak)|/]11 — Xez| € 1 for |2| < 1, we have that for n > max({1,5})
and [2| <1

) n—-1 n oo el
|gn(2) — Ba(z)| < (1 = A,.,) Z |z = Akl Z [Aez|™
k#j m=M,+1
o fia )"“ nAMHL 1
= \1-A4, 1-4, n’

Next, since Y- (1 — |Ak|) < oo, there is some B € Hj such that B, converges to
B in Hy, B(Ax) = 0 for k # j, and B(A;) # 0 (see Theorem 15.21 in [8]). Note that
limn 00 gn = B in H;. Define p, = gn/B();). Since

[2a(Me)I* < (I(gn (k) — Ba)l/IBOG)DE + |Ba(Ak)/BO))E,

the sequence (p,) clearly possesses the desired properties. O
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— H, is a diagonal operator with associated sequence

Corollary 2.1. If D : Hy .
[Ar]) < o0, then D is synthetic.

(An) € C such that [A\s| <1 and 2=

nstructive version of this result is known from Corollary

A more general, but non-co
vz [12] whose

1 in [3]. However, the proof of Corollary 1 in [3] relies on Proposition 2 of
proof is nontrivial.

We now are going to co
for a particular collection of sequences (An) such that imsup, .o
limsup,,_, |An| = 00. Although there will be many details in what follows, the main
spirit of the approach will be to consider sequences (An) such that Yneg oy =
Informally, the sequence (A,) does not grow too quickly. We will then find a sequence
(2x) of positive numbers such that limn—sco %f-[ =0and Yo, ﬁ = co. Informally,
the sequence (z,) will grow faster than the sequence (|An]), but not too fast. The
desired sequence (p,) of polynomials will then look like pn(2) = [Ti—1 £=-. The
first step will be the following lemma which follows directly from elementary entire
function theory.

Lemma 2.1. Let 2, zg € C such that Re z > Re zo and a sequence of positive numbers
(2a) such that z, T 0o be given. If z ¢ {22 :n 2 1}, then pn(2) = [Tgmy Z=2 2 0 if
and only if Yooy & = 0o.

nstruct polynomials that satisfy conditions (1) and (2)
EAnl"l" <1 and

Proof. Since zx 1 0o, there is a sequence of numbers (u,) such that limp 00 %n =1
and (|2 — zn|/|20 — 2a|)? = 1+ 2(Re 20 — Re z)un/2n. Hence, by Theorem 15.5 in [8],
the result follows. O

In light of the above proposition, we will concentrate our efforts on polynomials of
the form pn(z) = [Tg=; %= that satisfy conditions (1) and (2) for some sequence
(2n)- To this end, we now develop some ideas to judiciously select sequences of zeros
for the polynomials. Our definitions will be recursive. Define ao(z) = =, an(z) =
Inan-1(z), e = 1, and ep, = e~ for n > 1. Also, define ba(z) = [Tr_g ax(z) for
n > 0. We collect some basic results about these functions below. In particular, we
will obtain an estimate for [T;_; am(z + k — 1) similar in spirit to Stirling’s formula.

Lemma 2.2. Let a, and b, be defined as above. The following assertions hold.

(1) Letm > 0, n € N, and z > ey, be given. There is a function e, : N5 R
such that [Ti_; am(z + k — 1) = am(z +n — 1)"m=(") gnd limsup,,_, (1 —
Emz(n))lnn=1.
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CONSTRUCTING POLYNOMIALS OF MINIMAL GROWTH

(2) Letm 20, n € N, and z > en, be given. There is a function gz : N —+ R
such that [Ti_; bm(z + k— 1) = bp(z + n — 1)™ma(n) gng limsup,,_,.. (1 —
Emz(n))Inn=1.

(3) Ifn>1 and0 < c < 1, then sup,(ca,(z))* < el/an’(1/c),

(4) For 2,y >2 andn'>0, a7 (zy) > a3 (z)az (y).

(5) For each € € (0,1) there is some M such that a;'(z¥) > (az)(z))V for
z> M, y€[g1), andn > 0.

Proof. (1) Define a sequence {em,z(n), n € N} as follows: we put Em,z(1) = 1'and

for n > 2 define
1 n

= A= gam+1(z+k- 1).
Observe that the only task is to prove the second property of €, . The proof will be
by induction on m. The case m = 0 follows directly from Stirling’s Formula (see [6],
p. 313). Suppose that the result holds for some m > 0 and let z > em+1 be given.
For n > 2 define

_ __ am42(y) Om+1(y)
Jaly) = am+z(z++ n—1) a,,,.,.l(::i n—1)

Em,z(n)

First, observe that
falz+n—-1)=0, .ﬂl’l(ﬂ'r_nil--l.(“‘m+1(55'l"""''_':l)""""l SN

and

falazis(@mis(z +n— 1) =aGF=D)) 5. 0

for sufficiently large n. Write yn = a;};(am+1(z + 1 — 1)/am4a2(z +n — 1)) and
note that f, has a unique maximum at y,. Observe that for sufficiently large n,
z <yn < Z-+n— 1. Define ky, to be the smallest k such that |(z + kn — 1) — yn| =
min({|(z + k — 1) — yn| : 1 < k < n}) and observe that |y, — (z + kn — 1)| < 1/2 for
sufficiently large n.

Next, by the Mean Value Theorem, there is some c, between y, and z + k, — 1
such that |fn(z +kn — 1) = fa(yn)| = | f2(cn)|[(z + kn — 1) — yn). It is easy to see that
limp o0 €n = 00. Since limpeo fi(cn) =0, limp—yoo falyn) =1, limpyoo [fn(z +
kn—1) = fa(yn)| = 0 and limpe0 fa(z + kn — 1) = 1. Hence, for sufficiently large n,
we have

z+1>anh, (a.m+1(s +n-— l)m)
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and
—am+1(T) asa(@+ka—1) am+1(x + kn — 1)

ﬂ(5m+1.=(ﬂ) = Em,;(ﬂ)) 2 Gmil@+ 10— 1) amiz(z+n— 1) ant1(z+n— 1)
it W (:l:-l-k—_l_)___ﬂm+1(z+k"1) 0.
* M%k" am::(z +n—1) amu(z+n-— 1) e

Therefore,
limsuplnn(l — em+1,2(n)) < limsup Inn(l —em,z(n)) <1
n=—+00

n—+o0
and the result is proven.
(2) 1t follows from part 1 that, for each 0 < j < m, there is some function &j,z,

defined on N, such that imsup, (1 — £jz(n))lnn <1 and

H aj(z+k—1)=ajlz+n— 1)“3:.-1-(“)_
k=1

Next, we put &m (1) =1 and forn 2 2 define
1 m

B I : —1)é; -

eme(®) = Th-En=1) Z_:o aj1(z+n—1)éje
J—

Clearly, we have
n
b (z + 1 — 1)me™ = ] b(z + k- 1).

k=1
The other part of the assertion follows by noting that

iaj+1(z+n —1)/Inbm(z+n—-1)=1.
j=0

(3) Follows from a simple calculation.

(4) Follows by induction and the observation that zy = z +y for z,y > 2.

(5) Follows by induction and the observation that lim,_,1- -0 =g, a

We now proceed to the main result. In particular, the theorem that follows will
produce a construction of polynomials whose existence is guaranteed in Corollary 1
of [2], and mildly extend the result of Theorem 6 in [2].

Theorem 2.2. Suppose (\,) is a sequence of distinct complez numbers such that
0 < Re), < ReAp41 and [ImA,| < Re, forn 2> 0, limy—y00 ReAn = 00, and there
is some p > 0 such that |\n| < bp(n) for n > ep. Then for each £ > 0, there is a
sequence (pn) C C[2] such that (p,) satisfies (1) and (2).
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Proof. Let a > 0 be given, fix a nonnegative integer £, and define § = max({ep+1, | Ae|}).
For n,k > 1, define zx = bp11 (8 + k — 1),

n z—1z n 3=
@) =] —=, A= “
k=

At — 2 -z’
it il el AL~ 2

and j, = min({j : Re A; > 2,/2}). Note that

An] < H 1 IMll). B et Dhm % < eniie Tien b < o H8fik R

By assumption, there is some J; such that [A;| < by(j) for j > J;. Since
o 2(2ap11(2))

A b))
there is some Mj such that by((z/4)ay+1(z/4)) < 2byra(z/4) for = > M.
Thus, if max({J1,ep}) < jn < (n/4)ap+1(n/4) and n > M, then

2Re)j, < 2N, | < 2bp(jn) < 2by((n/4)ap+1(n/4))

p+1
< dbyy1(n/4) = n [ ] ak(n/4) < za < 2Re ;.
k=1

'

Hence, if j, > max({J1,ep}) and n > Mj, then j, > (n/4)a,,+1(n/4) Thus, lim, 00 |An |/ =
1 and there is some N such that |A,|Y/» < /T+ a for n > N;.
By part 2 of Lemma 2.2, there is a function € : N — R such that forn > 1

n

I1 2k = (Bp11(8 + n — 1)) = zpe(m
k=1

and limsup,,_,o,(1 —&(n))In(r) = 1. For n > 1 and 0 < k < p, define
ek = (ak(0 +n = apir (0 +n —1))71)*,

and note that forn > 1,

P P p+1
I cnk = T1(@x(6 +n — Dapta(8 +n — 7)™ = [T ar(8+n - 1)< = 25
k=0 k=0 k=0

From part 5 of Lemma 2.2, there is some M3 such that a;* (z¥) > a,il(z)"r for z > M,
YE [m' 1), and 0 < k < p+1. Since limp— o0 £(n) = 1 and limz 00 ax(z) = oo for
0 < k < p+1, there is some N, such that } < e(n), ax(@+n—1)} >2for0 <k <p,
a,,+1(8+n-1)m22,anda,+1(9+n—1)_>,Mgforn2Ng. ‘
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Thus, forn> N2 and 0 <k <p, we have that

n®™a,., (0 +n— 1)"5‘& <(f+n— 1)*™a,1(0+n— 1)’5&!}
<(@+n—-1apsx@+n—1)
<ar(ax(@+n— 1)"™)ag (aps1(6+n —1) )

<ap*(ax(8+n— 1) ap(0+n- 1)5) = ap (cnk)

Therefore,
a P n 1
b’(x)) - o P i (ﬂk(z)) - o —rn'_-: () eﬂ'ln,‘ﬁl("““"‘).t"’ ;
> Rl = e <~
s*:p (zﬁw k1=-=IO = Cnk !‘;IO

Thus, there is some N3 such that sup, (bp(z)/ z:(“))"’ T <y/1+aforn> Na.
Next, since lim;_,oo Re A; = co, there is some Ja such that ReAj > 2Re A¢. Define

J = max({Ja, €p, jNy, JNs, £ + 1}), and observe that
n §+n
S 1z > f g 1/bps1(z)dz = ap+2(8 + 1) — ap42(6).
k=1 e

Hence, limp_yc0 pn(\j) = 6j,¢ for j > £. Choose Np such that |pn(A;)] < 1foré <j<J

and n > Np, and define N = max({No, N1, N3}). If n > N, j > ¢, and |pa(};)] > 1,

then j > J, ReA; > zn, /2 and there are two possibilities. :
First, there is some m with 1 < m < n— 1 such that z,,/2 < ReAj < Zm41/2.
Second, z,/2 < Re ;. In the first case, if m < N, then m +1 < N; and

2t <Re)jy, SReds <Re) < 2t < B

Thus, in the first case, m > Nj. Similarly, m > Nj in the first case, and hence we*

have
} e
< [Aml} (kﬂ 'j—:')
=1

< |Am|7= (b’(j))? < \/1+av’1+_r;'= 1+a.

D

X mAJ'_zk 2 A'—Zk
u:n(Am*—AmH Sl

k=m+1

Similarly, in the second case, we have |pn();)[*// < 1+ a, implying that for n > N
sup [pa (M) <1+a.
i>t
Since a is arbitrary, we have
lim sup sup [pn (A;)|? < 1
n—oo j>£

and ]imﬂ—boopr't()‘j) =djeforj> L
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CONSTRUCTING POLYNOMIALS OF MINIMAL GROWTH

e — 771 3= Ji
If £ = 0, then we are done. If £ > 0, then define p(z) = [T,y £=3% and gn = p-pn,
and observe that limp—y00 gn(A;) = dj,¢ for j > 0 and

lim sup sup |ga (A;)|? < 1.
) n—oo  j>£
This completes the proof of Theorem 2.2. 0O

Corollary 2.2. Suppose (An) is a sequence of distinct complez numbers such that
0 < ReAn < ReAn41 and [ImAs| < Redn forn >0, limpy00 Re A, = 00, and there
is some p > 0 such that |An| < bp(n) for n > e,. Then the diagonal operator with
associated sequence (An) is synthetic.

3. DiscussioN

One may wonder how far one may push the technique used in Theorem 2.2 to
constructively produce examples of synthetic diagonal operators on Hj. To help
answer this question we turn to some results from [1]. The two theorems from [1]
of the greatest importance to this paper are stated below.

Theorem 3.1 ([1] Theorem 3.1). For any p > 2, writing A\, = n? (n > 0), there
ezists a complez sequence {c,} satisfying

(3.1) limsup |c,|* = 6, = e "3
n—oo
such that
£(@) =" coe
n=0

(which converges for Rez > 0, and' eztends as a C™ funclion to the closed right
half-plane) has an infinite-order zero at z = 0. In other terms,

o0
Zc,.n"‘=ﬂ. k=0,1,2,....
n=0

Moreover, for positive
|£(2)] < Ce=="",

where C, c are positive constants.
" For integral p, the constant on the right-hand side of (8.1) is sharp, in the sense
that no such sequence {c,} ezists with 0 < limsup,,_,., |ca|* < 8p.
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Theorem 3.2 ([1] Theorem 2.1). Let0 < M<MA<..,ond

2
lim sup (In’\::) =0.

n—oo

—SN. -U

Suppose, for somee >0, |ea| S €
o0
Ean:=0v k=0,1,2,...,
n=1

then all ¢, vanish.
The use of the two above theorems becomes evident when compared with the

following result (stated in abbreviated form) from [3].
Theorem 3.3 (Theorem 3 in [3]). Let D be a cyclic diagonal operator on Hg having
distinct eigenvalues {A\n}. Then the following are equivalent: :

(1) D admits spectral synthesis.

(2) There does not ezist a sequence {wn} of complezx numbers, not identically

zero, for which limsup [wa|Y/™ <1 and 0= Y52, wa A} for all k > 0.

A combination of Theorems 3.1, 3.2, and 3.3 yields the following corollary.

Corollary 8.1. Let D : Hy — H be the diagonal operator with associated sequence
(nP). Then the following hold:
(1) If p > 2, then D is not synthetic.
(2) If1 < p <2, then D is synthetic.
Consider the diagonal operator D : H; — H; with associated sequence (n?).
If p > 2, then by Corollary 3.1 and Theorem 1.3 it would be fruitless to try to
construct polynomials which separate points and satisfy the minimal growth condition.
However, if 1 < p < 2 then Corollary 3.1 and Theorem 1.3 guarantee the existence
of polynomials which separate points and satisfy the minimal growth condition.
How shall such polynomials be constructed? Observe that since Y oo f; < 00, the
ideas used to prove Theorem 2.2 may not apply. To make this precise, let (p,) C Clz]
be such that (p,) satisfies conditions (2.1) and (2.2) for ; = 0. How would such
polynomials look like? Once again, as it was mentioned above, the "obvious"polynomials
0n(z) = [Ty=, (z — kP)/(—kP) fail. To see this, note that by the Mean Value Theorem
(n+1)? — kP > (n+ 1 — k)pk?~1, Hence

sl = [ EEL 8, (120418 _
k=1 k=1
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CONSTRUCTING POLYNOMIALS OF MINIMAL GROWTH

implying that supy5q |on(Ae)[/* > p™/(n+1),

Assume, without loss of generality, that no p, is constant and Pn(0) = 1 for all
n > 1. For each n > 1 write p,(z) = H:;l(z—z,.,k)/(—z,.,;,) for some 2 3,...,2n 4, €
C. Define g,(z) = :,":1(: = |Zn,k)/(=|2nk|) and note that the sequence (g,) also
satisfies (2.1) and (2.2) for j = 0. Hence, we may assume, without loss of generality,
that for n 2 1, p, is not constant, p,(0) = 1, and p,, has real positive zeroes.

Suppose momentarily that p.(z) = [[i_,(z — zk)/(—zk) for some sequence of
positive numbers (2z,) and reason heuristically rather than precisely. One possibility
is that {An i n > 1} C {2, : n > 1}. However, we have already seen that the
polynomials [T;_,(z — Ax)/(=)k) do not satisfy (2). If this is the case, then the
sequence (p,) would seem to fail for the same reason that the sequence (0n) failed.
Thus, there is some An, & {2z : n > 1}. Then by Lemma 2.1 we have Yony 12 =00
This implies that (zn) grows slower than (A,), and hence that p, grows faster than
0. Thus, it would that (pn) does not satisfy (2).

Therefore, it appears that there is not some sequence of positive numbers (z,)
for which pn(z) = [T~y (2 — 2k)/(—2z) satisfies conditions (1) and (2), and greater
creativity would be required to construct polynomials (p,).

CIUCOK JIMTEPATYPEI

[1] J. M. Anderson, D. Khavinson, and H. S. Shapiro, “Analytic continuation of Dirichlet _
series Revista Matematica Iberoamericana, 11, no. 2, 453 - 476 (1995).
[2] 1. Deters, “A connection between operator topologies, polynomial interpolation, and synthesis
of diagonal operators J. Math. Anal. Appl., 350, 354 — 359 (2009).
[3] I Deters and S. M. Seubert, “Cyclic vectors of diagonal operators on the space of functions
analytic on a disk J. Math. Anal. Appl., 334, 1209 - 1219 (2007).
[4] 1. Deters and S. M. Seubert, “An application of entire function theory to the synthesis of
diagonal operators on the space of entire functions Houston Journal Of Mathematics, 38, 201 -
207 (2012).
[5] A. S. B. Holland, Introduction To The Theory Of Entire Functions, Academic Press (1973).
[6] G. Latta and G. Polya, Complex Variables, John Wiley And Sons, Inc. (1974).
[7] J. Marin Jr. and S. M. Seubert, “Cyclic vectors of diagonal operators on the space of entire
functions,” J. Math. Anal. Appl. 820, 599 - 610 (2006).
(8] W. Rudin, Real And Complex Analysis, 3rd Edition, McGraw-Hill (1087).
[9] S. M. Seubert, “Spectral Synthesis Of Jordan Operators J. Math. Anal. Appl., 249, 652 - 667
(2000).
[10] S. M. Seubert, “Spectral synthesis of diagonal operators on the space of entire functions,”
Houston Journal of Mathematics, 34 no. 3, 807 - 816 (2008).
[11] 8. M. Seubert and J. Gordon Wade, “Spectral synthesis of diagonal operators and representing
systems on the space of entire functions,” J. Math. Anal. Appl., 844, 9 - 16 (2008).
[12] R. V. Sibilev, Uniqueness theorem for ‘Wolfl-Denjoy series, Algebra i Analiz, 7, 170 - 199 (1995);
English translation in St. Petersburg Math. J., 7, 145 - 168 (1996).

Iocrynuna 29 cenrabpsa 2012
37



- - ” ..t_,z ;;--.
St il [ L

TN

i 5 _" -‘_?-_ TR A _ﬁg}_ﬂﬁw._\u,gr .-;-.;7‘:;:,. PRESITY .t’ﬂ!{hﬁn %‘M

T BB i R s s L
RN e iR ol (et ol Tlotal
£ = .;.' ll EW{;TQH M :ﬁ&‘?“l—ﬂ'ﬂ 1-"1' B 'HM? .l.lrf pan ‘;‘t'r iT -. 5 .
= im&‘ﬂ,l"ﬂe ,.’*‘%aﬁ*”jﬁ I T i it -

= --H- e ah 2 . ) . S (2
At 'j % "”—’Q“-‘k“"' :rr'w-:rr i o w::\'.
e L "\;‘.w, 154 5..,-9(15@-\, j{u]h‘— h*-p.,- S R N Y i I'“"‘W" *JI
TP b it IR piivalestio Qe uteny H
o TR N J_H.u-%uzaw-.-li:ﬁ"{hf‘l'\ e e e Mt . o

g Ty g uh B s {0l o PO —'-» --;;TT-o% ;.M\-“-
LR aIE rrv'!Lwr- ﬁ‘FEiv:fTﬁ ﬁ-»r‘ TSRS e W=e ﬁ;’
. B o] : ; R "F;—ﬂ_aw "17' !r:‘b_[t“\ RS P |]‘wu d«ﬂ"g" ‘I p
SR g B R I P N LB ot Y
: &"?- ‘hnj‘“&'—"'ﬂ-&-}‘—‘*}.ﬁ’ﬂu&.:‘?“m{“ FenST S b W AP ™ "3

= .:lJ*IH'r-.‘ﬁ-,‘nt ﬂd‘-‘!{-"d‘tdu_la_"'" “l ‘ﬁ;o
,._;- & ,.'_ 2 fL-Fﬁu:I:MJKMt’m‘fJ‘t i e o'u

*'mr* FW"“ S0 o ALl IR R =

B RS B SR IR o e
A > ,_\ TR mmﬁi{ﬁ'j&_ﬁ d&_ld"-‘ |G e o a '-'”11 G Thnd pENITS b
JEL ey, wmwr..m cagts i, ot T TilgRe STl " '*w‘”" by £
s (T o i 2 R "'--‘"l' et b: y Rl £38 .f‘[“ F ¥y Tl "'"": 5
Pt r’-h.ﬂ" e, e i1, sussieen feuaply Q¥ e ..
47 ks b #Wu 137,.:; %w a..,Fﬂr:J.: : -'r'-t{

A= .5,-;1‘\1 ".\' g]u s Calpandd T um: ,-u_'w-mur:_n .n(ma,-a.r, o
= il e 'ﬁ 'ﬁme.;;;LJ%,K ..F'u,u.u.'a-aﬂud «E.-nwu 4;\1:'4:@’

'—.L
iy

' m ‘\r\«h -E,i' Tﬁmq AR el [ agihir HY NI "c
B TR 5--'_.,. V_tsi,_t B g!.-,g -,;Lerw mu z,-n.n..ﬁ. Mh. If-
¥ . AN A e T o= .:. 3 :

HJ,-_ ‘fﬁ“‘l'
A'



