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1. INTRODUCTION AND MAIN RESULTS

Let T¢ := [—m,7)? denote a cube in the d-dimensional Euclidean space R, The
elements of R? are denoted by x :=(z1, ..., 2q).
Let D = {1,2,...,d}, B = {ll0,....ly}, 1 S r < d,BC D, Iy < lg31, k =
1,2,..,7r — 1, B = D\B. For any x = (z1,...,24) € R? and any B C D, denote
xp = (21,, Tty, ---,%1,) € R". The number of elements of a set B we denote by |B|. If
B # @, then for any natural number n we suppose that ng := (n,n, ...,n) € RIBl. The
notation a < b stands for a < cb, where ¢ is a constant depending on the dimension
d. Below we will identify the symbols

ng ny ny,

z and Z Z dtp and diy, - - - dt;_, respectively.

in=0gp i‘l =0 ‘]._:ﬂ

We denote by Lo(T¢) the Lebesgue space of functions that are measurable and
finite almost everywhere on T¢. The Lebesgue measure ofaset AC T¢ we denote by
mes(A). Also, we denote by Ly (T¢) the class of all measurable functions f that are

1The research of U, Goginava was supported by Shota Rustaveli National Science Foundation
grant DI/9/5-100/13 (Function spaces, weighted inequalities for integral operators and problems of
summability of Fourier series)
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2x-periodic with respect to all variables and satisfy
/p

£l = (F Ifl") < oo.

The weak — Ly (T¢) space consists of all measurable, 2r-periodic with respect to
each variable functions f, satisfying

= ’ld 5 > At < oo
1l weat- . (xe) = SUP Ames {x € T : | f (x)| > A}

The Fourier series of a function f € Ly (T¢) with respect to the trigonometric
system is the series
-!f T ) i(nyz1+-+naza)
SUf] = F (11, oy ) i1t 107),

N1y d=—00

where

1 f(.n“:l, ...,Id)c_i(“‘zi +--.+n‘:ﬂg)dml iat d.'!fd

f(ﬂlj '"rnd) = (2'”

d
) T
are the Fourier coefficients of f. The rectangular partial sums are defined as follows:

Np !
o (fi%) = Y, Flmymg)elnert=ined),

np=—Np
In the literature, it is known the notion of Riesz logarithmic means of a Fourier
geries. Given a natural n, the n-th Riesz logarithmic mean of the Fourier series of an
integrable function f is defined by

1 o Se(f) =1
l“k:clk-i-l‘ In‘_§k+1'

where S (f) is the partial sum of the Fourier series of f. The Riesz logarithmic means
of Fourier series with respect to trigonometric system has been studied by a number of
authors. Here we mention the papers by Szasz [13] and Yabuta [16], where additional
references can be found. The Riesz logarithmic means of Fourier series with respect
to Walsh and Vilenkin systems were discussed by G4t [2] and Simon [12].

Let {gx : £ > 0} be a sequence of nonnegative numbers. The Nérlund means for
the Fourier series of f are defined by

1 n
T e
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In the special case where g, = 1:—1, we have the Norlund logarithmic means:
n—k (f )

(11) Ln (fiz) = E T
which represent kind of "reverse"Riesz logarithmic means. In [6| we have proved some
convergence and divergence properties for the logarithmic means of Walsh-Fourier
series of functions in the class of continuous functions and in the Lebesgue space L.

The Reisz and Nérlund logarithmic means of multiple Fourier series are defined
by the following formulas:

1 - Si ( f H x)
Rop (Fi%) = == e
o (f3x) 1-_[ i ingn jIE-'[D (I._f +1)

i€D

sl L e B s ()
L"D (f!x) i ]_—I Iiig H (i_?'l'_l) .
ieD 'P=Y2 jep

It is easy to see that
1
Loy (fix) = F/m‘) Fp, (x—t)dt
Td

and ;
Ry (fi) = 73 [ 1(8)Gup (x— )t
Td

where

By () =TT B (=) " 6 ) =TT G, (=)

5ED jED
1 ¢ Do 1 = D;
F, (u) == I,. z i;i‘“)‘ Gn (u) == K ;o T(I;)

Let B c D. Then the nuxed logarithmic means of multiple Fourier series are
defined by

N 1 - Sns —ig,ig (.f;x)
(Lﬂu O‘R"D’) (-f!x) e I-I I ‘Dgo jle-ID (‘J T 1) v

i€D
It is easy to show that

(Lﬂa OR,,B,) (=)= %/‘f(t) F,, (xg —tg) Gny (xp: —tp)dt.
™™

Let Lg = Lg(T?) be the Orlicz space generated by Young function @Q, that is, @
is a convex continuous even function such that Q(0) = 0 and (see [10], Ch. 2)

Q(u) = +00 Iimg@=0.
' ua0 u
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This space is endowed with the norm
1llzgqes = inf{k > 0 f QU1 /k) < 1}
T

In particular, if Q(u) = ulog?(1+u) (u, 8 > 0), then the corresponding space will
be denoted by L log? L(T¢).

The rectangular partial sums of double Fourier series Sum (fi,y) of a function
FeL,(T?),1<p< oo converge in L, norm to the function f as n — o0 (see
[17]). In the space Ly (T?) this result does not hold. But for f € L; (T), the operator
S (f:z) is of weak type (1,1) (see [18]). This fact implies convergence of Sy, (f;z)
in measure on T to the function f € L, (T). However, for double Fourier series this
result does not hold (see [8, 11]). Moreover, it is proved that quadratic partial sums
Sn.n (f;2,y) of double Fourier series do not converge in two-dimensional measure on
T2 even for functions from Orlicz spaces wider than the Orlicz space L log L (T?). On
the other hand, it is well-known that the rectangular partial sums Sy m (f;z,y) of a
function f € Llog L (T?) converge in measure on T2,

Notice that the classical regular summation methods often improve the convergence
of Fourier series. For instance, the Fejiir means of the double Fourier series of a
function f € Ly (T2) converge in L; (T?) norm to the function f (see [17]). These
means represent the particular case of the Norlund means.

It is well known that the method of Nurlund logarithmic means of double Fourier
series is weaker than the Cesdro method of any positive order. In [14] Tkebuchava
proved that these means of double Fourier series in general do not converge in two-
dimensional measure on T¢ even for functions from Orlicz spaces wider than the
Orlicz space Llog?™* L (T¢). Thus, not all classical regular summation methods can
improve the convergence in measure of double Fourier series.

For the results on summability of logarithmic means of Walsh-Fourier series we
refer the papers [4]-[6], [13, 16].

In this paper we consider the mixed logarithmic means (Ln, © Rn,, ) (f) of rectan-
gular partial sums of multiple Fourier series and prove that these means are acting
from the space Llog!®(=! L (T9) into the space weak — Ly (T¢) (Theorem 1.1). This
fact implies the convergence in measure of mixed logarithmic means of rectangular
partial sums of multiple Fourier series (Theorem 1.2). We also prove the sharpness of
this result (Theorem 1.3).



CONVERGENCE IN MEASURE OF LOGARITHMIC ...
Theorem 1.1. Let B C D and f € Llog'®I"* L (T). Then

"(Lﬂn © Rﬂa’) (-f)"wsak—L:('l") S’ 1+ l]lfl lOgIBI_l lfl"hﬂ"’) Z

Theorem 1.2. Let B C D and f € Llog!®!~' L (T¢). Then
(Lny © Rny,) (f) = f in measure on T as n; — oo, i € D.

Theorem 1.3. Let B C D, |B| > 1 and Lq (T?) be an Orlicz space, such that
Lo (T%) € Llog!®1-1 L (19).

Then the set of functions from the Orlicz space Lq (T%) with logarithmic means
(Lng © Rny,) (f) of rectangular partial sums of multiple Fourier series convergent
in measure on T¢ is of first Baire category in Lq (T9).

Corollary 1.1. Let B C D, |B| > 1 and ¢ : [0,00[— [0,00[ be a nondecreasing
function satisfying the condition
@(z) = o(zlog!®" z) as z — +oo.
Then there exists a function f € L1(T%) such that
a)
[t <oo;

™ :
b) the logarithmic means (Ly, © Rn,,) (f) of rectangular partial sums of multiple
Fourier series of f diverge in measure on T%.

2. AUXILIARY RESULTS

In this section we state some auxiliary results that will be used in the proofs of
our main results. For the next result we refer to ([1], Ch. 1).

Theorem 2.1. Let H : Li(T%) — Lo(T%) be a linear continuous operator, which
commutes with a family of translations €, that is, HEf = EHf for all E € €& and
all f € Ly(T?%). Let ||fllz,cxey = 1 and A > 1. Then for any 1 < r € N under the
condition mes{x € T% : [Hf| > A} > L there exist By, ..., E, € €, j =1,2,...,d, and
g ==1,i=1,...,r, such that
1
o

mes {x eT?: ‘H (z": E.-f(E.-x))

i=1

The proof of the next result can be found in [3].
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Lemma 2.1. Let {Hm}im=1 be o sequence of linear continuous operators, acting
from Orlicz space Lq(T?) into the space Lo(T9). Suppose that there evists a sequence
of functions {€x}§2, from the unit ball Sqg(0,1) of the space Lq(T%), sequences of

integers {mi}iz, and {w}2, increasing to infinity such that

g0 = i%fma{x €T : |Hnu &k (z, )| > w} > 0.

Then the set K of functions f from the space Lo(T9), for which the sequence {Hy f}

converges in measure to an a. €. finite function, is of first Baire category in the space

Lq(T9).
For the next lemma we refer to [4].

Lemma 2.2. Let Lo (T4) be an Orlicz space and let ¢ : [0,00) = [0,00) be a
measurable function satisfying the condition ¢ (z) = o(® (z)) as = = co. Then there
ezists an Orlicz space Ly, (T%), such that w (z) = 0(®(z)) as 2 — oo, and w (z) >
@(z) forx>c20.

To state the next lemma the proof of which can be found in [7], we first introduce
the following notation:

e w(12m + 1) A m (12m + 5) =, ™
mn = g+ 1/2) P T @+ 1/2) 1t 8(2n +1/2)"
and set
2!!—1
Jn = U [emn + Fns Bran — Yo -
m=1

Lemma 2.3. Let 0 < 2 < 7n and z € J,. Then

th (E"—Z) Z,

H =

3. PROOF OF MAIN RESULTS
Proof of Theorem 1.1. First, we prove that the one dimensional operator Ly, (f) (see
(1.1)), has weak type (1,1), that is, for f € Ly (T') we have

(3.1) I1Zn ()l wear—Li ey S 1Fllz, oy -
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Setting o, (t) :=sin((n+1)t) and 8, (t) := cos((n+ 1) t), we can write

T

1 . cos ((k+1/2) (z—1t)) ,
= ;/[(f}am((n+ 1) (z — 1)) 2sin ((z ) /2) dt
T

1 sin ((k+1/2) (z - 1))
A Tf St)em(ln + ) - 0) = e

1 cos((k+1/2)(z—1)) cos((z—t)/2)
n ¥Tff(*)’i“(("+1)(’“‘)) 2sin (@ 1) /2) ‘2sm((z-:)/2))‘“

sin ((n+ 1) (z — t))
_/f() 2tan ((z — £)/2)

gin ((k +1/2) (z — 1))
-;!f(tlws((ﬂ*-l)(”“‘” 25 (@ —1)/2)

= -2 [ 1080 Bute-a+ 2G| 1)a, )5y (o at
T L ¢

1 sin((n+1) (z— t))
f IO S tan (=t 72) %

ﬂ“(z sin ((k+1/2) (z — )
‘T‘f”"’g"“) 2ein(@z—1)/2) =

T
o, () sin ((k+1/2) (z — t))
g f”‘)"" O S mE-ym *
= —Qn (;’.C) gk (fﬂn; z) + Bu (E) §k (.fﬂrl ) 2)
—Bn (z) Sk (fﬂn; z) — oy () Sk (fﬂni-'-"') ot S;-i-l (fiw) '
where S, (f;z), Sz, (f; z) and Dy, (z) stand for the conjugate partial sums, the modified

partial sums and the conjugate kernel, respectively. Taking into account that for
fel, (T‘) (sce [18], Ch. 7):

157 (D llwear—z, ey < Wl ey s

SNz, ey
weak—Ly (T!)
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and
1

n+1l

n
Z Sk (f) Sfllz, ey,
=0 sweak—L; (1)

we can apply Abel's transform to infer (3.1) from (3.2).
We apply the following special case of the Marcinkiewicz interpolation theorem

(9], p- 173). Let T': Ly (T!) = Lo (T*) be a quasilinear operator of weak type (1,1)
and of type (, a) for some 1 < & < 00, that is, T satisfies the following conditions:

a)forally>0
63 me{seT:TUDI>1}ST [If@lds vF el ()
T

sup

b) for all f € La (T%)
(3.4) IT ey S 1l my -
Then for all 8 > 0
65  [Taom Tl s [ i@ 1f @) de +1.
™

T
On the other hand, it is easy to show that the operator f*Gn has type (1,1). Indeed,
applying Abel’s transform we get
i

=t 1 1+
InGn(z) = Z(m—m)zDi(z)‘Fm;::oDj(z)

i=0 j=0
n—1
K; (z)
g_"_in + K (2),
where
1 i
Ki(z) == ——=) Dj(z).
i+1 =0
Hence

(3.6) P it g k)

Since || f * Kull; < || fll, from (3.6) we conclude that
(3.7) f * Gnllp, ey S NFllz,my -

Next, setting

Q:={x €T¢: |(Lns © Ray.) (f,x)| > A} .
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" where B’ = {51, 8,..., 8}, in view of (3.1)-(3.7) we can write

Ames {x €T : | (Lny © Rn,) (f,%)| > A}

Afln (x) dx = f (fln (x)d“h) dxp\{1;}
T4 Ti-1 \T

S " (L“’“'I} ORB') (‘f)":..(r«)

= [(Baso-+-0Rs, 0Ln, 0 0 Ln, ) (A, eruy

S o SEmy 000 Ln, ) (Al eru)

S 1+[||Zay 0+ 0 Lny, ()|10g|Lag 0+ 0 Luy, ([l crey
S o S1+||[Ew, ()10 |Ln, (D], crey

S 14 [I1A1108" 7 1]l grey

and the result follows. Theorem 1.1 is proved.

O

Proof of Theorem 1.2. By virtue of standard arguments (see, e.g., [18]), the result

can easily be deduced from Theorem 1.1. So we omit the details.

O

Proof of Theorem 1.9. By Lemma 2.1 the proof will be completed if we show that
there exist sequences of integers {ny : k > 1} and {v : k > 1} increasing to infinity,
and a sequence of functions {£i : k > 1} from the unit ball Sq (0,1) of Orlicz space

Lq (T%), such that for all k

(3-8) mes{x € T : | Ly2u, () © Rgan () (k3 %)| > i} 2

First, we prove that

ool

(3.9) mes {x eT?:

1 18
Lg!n(ﬂ] © Ragan(pr) (%;x)
Tn
nlBl-1
2 _‘2n(21.9|—1}"3| >,

By Lemma 2.3 we have

1 i8] 1=
Laan(g) © Ryam(at) (_['ﬂl_-x) =53 j H Faun (x5 — 2;) dzp

B H
,},'I‘ I

X/HG2=n(3¢-zi)d53'=ﬁ'ﬁ / 1 Foae (25 — 25) dzs

Tz €F [0.7a)121 7€B

1 ;
z H""‘,IJ'GJ“,JEB.
=n L
jEB

> 2ntzwl—1)}
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Consequently
mes {x € T :

' 1 o
> mes{xeJB xT®: ][ =2 galBI=1)
jep T

> 2nmsl-n}

1 B

nl! I‘

Lg!u(B)OR:pn(Bt)( [UTBI ,x)
In

1
B| .
= (2,,)13'111195 xaEJL liay, S @B [] 2
jeB\{l1}

Setting

1
Tr,mug ey, ©= TOBX L:Bin < 2n(@BI-1) ] (ﬁmjn = "fn) -
j€B\{h}

after some algebra we Obtain Tnmy,,..,mi, ~ —J[—m; Lhen we have

Je€B|{l1}

1
mes {x eT¢: ‘Lgh(g) o Raan (Br) ( [D'TEIIDI ;x) > 2“(2|B|-13}
In

2"(B\{1}) Trmigeem,

1
A D DA
MB\{1;}=18\{1;} =1
= 1 2"(B\{h}) on lBI-1 i j
~  9n|B| mj ~ 2“(2[BI—1}'I I > 1,
mEN ) =18\ jeB\{l)
yielding (3.9).

Next, under the conditions of the theorem we have
w90,
u—oo !l].Og’ | 11"
Therefore there exists a sequence of integers {n; : k > 1} increasing to infinity, such
that for all k

(3.10) Q(2*18))

Q(miBl)
g I BIHTE] = 1

k—oo 22n.IB|ﬂL3|—1 i~

From (3.9) we have

1 |8
mes {x eT?: ILgau;,(BJ o Ryank (1) ([_n:;l'%l_l; x)

> zm-(ﬂlBI-l)}

B|-1
> LLI____
~  om@BI-)"
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Then, by Theorem 2.1, there exist B, ..., By, € € and ey, ...,&r, (£; = £1) such that

Tk 1 B
(3.11) m@{x € 'Id : EE‘L?"k(B) o R?"'*{B'} (M; Eix)
i=1

Thg!
1
> gnk(2|B|-1) o
} > 8!
2"k (21B1-1)
where Tk ™~ —an.
e
Denoting
onk(4|B|-1)-1 92|Bns—1
Vg = er (23&.!3]) ] el: (x) = -__Q (22’“13') Mk (x) '
where
1 & L, e (Eix)
Mk (x) = r_ ZE‘—.[_'T"]I_BI__'
k=1 Tk

from (3.11) we obtain (3.8).
Finally, we prove that & € Sq (0,1). To this end, observe that since

|Mi| o, < gﬂlﬂltnw?)’

IMill, ey < 1,

bl < 3 [[Q (2l + 1] :

a.nd9-{“31<QQ—)—for0<'u<u’,inviewof(3.10)weca.nivrite

1 2218 |M, ()
. HJ o (e )dx]

IA

1€kl Lo re)

2218|ny 92| B(ny+2)
(2 g —) 2281 (3, () ]

1

2 1 +/ 21B]n 931B](n x+3) Q(2gis|m)

. e Q@R
Q (22131m.) 92|B|ny |Mk (x)l

1 '+'/ 22]5]“; y Q(22|B|“k) dx S 1:

S o

IA

<

L
2

implying that & € Sq (0,1). This completes the proof of Theorem 1.3. O
Proof of Corollary 1.1. The result follows from Theorem 1.3 and Lemma 2.2. O

Acknowledgment. The authors would like to thank the referee for helpful suggestions.
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