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1. INTRODUCTION

It is well-known that the Vilenkin system does not form a basis in the space
Ly (Gm) . Moreover, there is a function f in the martingale Hardy space H;j (Gn),
such that the partial sums of f are not bounded in L (Gmm)-norm, but the partial
sums S, of the Vilenkin-Fourier series of any function f € Ly (Gm) convergence in
measure (see [12]).

Uniform convergence and some approximation properties of the partial sums in
L; (Gyn) norms were studied by Goginava [8] (see also [9]). Fine [3] has obtained
sufficient conditions for the uniform convergence, which are in complete analogy
with the Dini-Lipschits conditions. Guliev [13] has estimated the rate of uniform
convergence of a Walsh-Fourier series using Lebesgue constants and modulus of
continuity. Uniform convergence of subsequences of partial sums was studied also
in [7]. The same problem for Vilenkin group G,, has been considered by Fridli [4],
Blahota [2] and Gét [6].

It is also known that a subsequence S,, is bounded from L; (G,) to L1 (Gy) if
and only if ng has uniformly bounded variation and the subsequence of partial sums
S, is bounded from the martingale Hardy space Hy (Gr,) to the Lebesgue space
L, (Gn) for all p > 0.

1The research was supported by Shota Rustaveli National Science Foundation grant no.13/06
(Geometry of function spaces, interpolation and embedding theorems
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. In this paper we prove the following rather surprising fact: there exists a martingale
J € Hy(Gm) (0 < p < 1), such that

sup IS6n41 £, . = oo.

The reason of divergence of Sy, 11 f is that for 0 < P < 1 the Fourier coefficients of
f € Hy (Gm) are not bounded (see [17]).

In [5], G4t has obtained the following strong convergence result: for all f € H(Gn)
||Skf ISkf = £lly _
n-ma logﬂz
where Si.f denotes the k-th partial sum of the Vilenkin-Fourier series of T
For the trigonometric analogue of this result we refer to Smith [16], for the Walsh

system see Simon [14]. For the Vilenkin system Simon [15] has proved that there is
an absolute constant c,, depending only on p, such that for all f € H,(Gn)

1.1) Z"k:ﬂ.l <cllfllf,, 0<p<1.

In [18] the author proved that for any nondecreasing function ® : N — [1, co0)
satisfying the condition “lLrago ® (n) = 400, there exists a martingale f € H, (Grm),
such that

2 ISk £, . @ (k
(1.2) Z_:%_)=00for{]<p<].
k=1

Strong convergence theorems for two-dimensional partial sums were proved by
Weisz [23], Goginava [10], Gogoladze [11] and Tephnadze [19)].

The main aim of this paper is to investigate weighted maximal operators of partial
sums of Vilenkin-Fourier series. Also, the obtained results we use to prove approximation
and strong convergence theorems on the martingale Hardy spaces H,, when 0 < p < 1.

2. DEFINITIONS AND NOTATION

Let N denote the set of positive integers, and let N := N U {0}. By m := (my,
my, ...) we denote a sequence of positive integers my with my > 2. Denote by Z,,, :=
{0,1,...,my. — 1} the additive group of integers modulo my, and define the group Gy,
as the complete direct product of the group Z,,, with the product of the discrete
topologies of Z,,‘s. The direct product z of the measures

ik ({7}) =1/mx, j€2Zp,

is the Haar measure on G, with p(Gm) = 1.
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If the sequence m := (mq, M1, ...) is bounded, then Gm is called a bounded Vilenkin

group, otherwise - unbounded.
The elements of G, can be represented by sequences

T = (Io' Ty, ...,Sﬂj,...), Ti € Zm.,-

Observe that the sequence {In(2), n € N}, where Ip (z) :== Gm and

In(@) i= {y € Gm | Y0 = T0, s Yn—1 = Tn-1} (% € Gm, nEN).

forms a base for the neighborhood of G-
Denoting I := I, (0) for n € N and I := Gm \ In, we clearly have
N-1
(2.1) In = |J L\
=0

If we define the so-called generalized number system based on m as follows

Mp:=1, M4 :=mpM,, k€N,

then every n € N can be uniquely expressed as n = Enﬂij, where n; € Zp,
(j € N), and only a finite number of n;’s differ from zero.

Also, we denote |n| := max {j € N, n; # 0}, and L; (G,) will stand for the usual
(one dimensional) Lebesgue space.

Next, on G, we introduce an orthonormal system, called the Vilenkin system as
follows.

‘We first define the complex valued functions i (z) : Gy — C to be the generalized

Rademacher functions:
rx (z) := exp (2mizk/mi) (% =-1, € Gm, kEN).
The Vilenkin system 1 := (1, : n € N) on Gy, is then defined as follows:
Yn(@) = O™ (z) neN
n . =0 k .

In the special case where m = 2, the Vilenkin system will be referred as a Walsh-
Paley system. It is known that the Vilenkin system is orthonormal and complete in
Ly(Grm) (see, e.g., [1, 20]).

Similar to the classical Fourier analysis case, for f € L; (Gm) we can define the
Fourier coefficients, the partial sums of the Fourier series and the Dirichlet kernel
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. with respect to the Vilenkin system Y as follows:

Fk) =fc fOdp, keN,

n—1
Saf : =" F(k)¥x, neNy, Sof =0,
k=o
n—1
D'n H =z‘f-’h ﬂEN+.
k=0
Recall that (see [1])
(2.2) Dy, (z) = { gfmifiixee.rfn
and
my—1
(2:3) D (2) = ¢u(z) (ZDM, () Z ] (z)) :

The norm (or quasinorm) in the space Ly (Grm) is defined by

1/p
TR ( I Ifl”d,u) D <peco).
Notice that the space Ly, o (Gin) consists of all measurable functions f for which
||f||z.,,,m = supAu (f > f\)l/p < +o00.
A>0

The o-algebra generated by the intervals {I,, (z) : £ € G} will be denoted by F,
(n €N). Denote by f = (fa,n € N) a martingale with respect to Fn, n € N (for
details we refer to [21]). The maximal function of a martingale f is defend by

f* =sup |f""| -

neN v
In the case where f € L; (G,) the maximal function can also be defined by

f* (z) = sup ——

neN |I (2'.'

_/ s f (w) dp (u)

For 0 < p < oo the Hardy martingale space H,(Gr,) consists of all martingales f
satisfying
I, = I£*ll, < oo
For 0 < p < 1 the dyadic Hardy martingale spaces H, (G,) possess an atomic

characterization. Namely, the following theorem is true (see [24]).
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Theorem W. A martingale f = (fa,n €N) is in Hy (Gm) (0<p<1) if and

only if there exist a sequence of p-atoms (ax, k € N) and a sequence of real numbers
(ux, k € N) such that for everyn € N

(2.4) > wSu,ar=fn  and 3 luxl? < oo
k=0 =0

Moreover, |]_f||H’ w inf (Y peo |pklp)1/’. where the infimum is taken over all decompositions

of f of the form (2.4).
Recall, that a bounded measurable function a is a p-atom, if there exist a dyadic

interval I, such that

/Iad#=0, lall < p(@)~?, supp(a)CI.

Let X = X(Gm) denote either the space Ly(Gr,) or the space of continuous
functions C(Gm)- The corresponding norm is denoted by ||-]lx, and the corresponding

moduli of continuity are defined by .
w(1/Mq, f)x = sup |f (- +h) = fO)llx-
hel,
The modulus of continuity in Hp (Gm) (0 < p < 1) can be defined as follows:

w(1/Mn, f) g, (6 = IIf — Sm, Flle,em) -

It is easy to show that for f € L;(Gm) the sequence (S, (f): n€N) is a

martingale.
If f = (fa,n € N) is a martingale, then the Vilenkin-Fourier coefficients must be

defined in a slightly different manner, namely:
F@)e=jim [ A @ T @),

The Vilenkin-Fourier coefficients of a function f € L; (G,,) are the same as the
martingale (Sar, (f) : n € N) obtained from f.
For a martingale f we consider the maximal operators:

§°f : =sup|Sufl,
neN

S : =sup i 0<p<1,

neN (n+ 1)7~ 1ogl?l (n + 1)’

where [p] denotes the integer part of p.
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3. MAIN RESULTS
In this section we state the main results of this paper.
Theorem 3.1. The Jollowing assertions hold:

a) Let 0 < p < 1. Then the mazimal operator S is bounded from the Hardy
space Hp (Gm) to the space Ly (Gp).
b) Let 0 <p <1 andp:N, — [1,00) be a nondecreasing function satisfying

the condition ;
—(n+1)"""110glPl (n 4 1)
(3.1) nl_ll’lgo @ (ﬂ) = 4-00.
Snf
neN 'P(ﬂ) Lp,00(Cm) Sl e

and

sl 2 s

neN (p(ﬂ.) 1 :

We easily infer the following result, which first was established by P. Simon [15].

Corollary 3.1. LetO<p<1land f € Hy, (Grn) . Then thereis a constant c,, depending
only on p, such that

o= ISk £l
_];_2—78 < cpIfll, -
k=1

Theorem 3.2. Let0<p<1, fe Hy (Gm) and My < n < Mjeyy. Then there is a
constant ¢, depending only on p, such that

In (f) - flla, 6.y < cpnt/P=1 gl (F};; f)

Theorem 38.3. The following assertions hold:
a) Let0<p<1, f € H,(Gyy) and

)= (1)
w|—, =0 g e as n — 00.
(M,. Hp(Gm) Myt

ISk (f) = f"L"m(am) —+0 as k= oo.
b) For every p € (0,1) there ezists a martingale f € Hp(Gpm) for which

,_.,-( 1 f) =0 _'i'—l )mn—roo
Ms,’ Hp(Gm) M,,{p_l

ISk (£) = fllz, .y + O a8 k= oo,
65
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Theorem 3.4. The following assertions hold:
a) Let f € Hy(Gm) and

1 )
e =0l — as n — oQC.
u(Mn'f)m{G..) 4

1Sk (f) — fll, = 0 as k= oo.
b) There ezists a martingale f € Hi(Gm) for which

1 1
___.‘_f) =0(—-) as n— oo
s (MZM,‘ Hl(am) Mﬂ

||Sk(f)—f|]1""‘0 as k— oo.

Then

and

4. AUXILIARY PROPOSITIONS
Inthissectionwastatetwoknownlemmasthatwiﬂ be used in the proofs of our
main results.
Lemma 4.1. ([22]) Let T' be a sublinear operator such that for some0<p <1 and
for every p-atom a

f|Ta|’ dp < cp < 00,

T

where I denotes the support of the atom. If T' is bounded from Lo to Lo, then
ITfll, < ep 1F ]| et (Gom) -

Lemma 4.2. [17] Letn €N and z € I,\Iy+1 for 0< s < N —1. Then

cM,
[ 1pee-vlaut < T

5. PROOF OF THE THEOREMS

Proof of Theorem 8.1. We first prove assertion a). To this end, observe that since §;
is bounded from Loo(Gm) t0 Loo(Gm), in view of Lemma 1, it is enough to show that

for every p-atom a

N

where I denotes the support of the atom.

Let a be an arbitrary p-atom with support/ and u (I) = My. We may assume that
I = Iy. It is easy to see that S, (a) = 0 when n < My. Therefore we can assume
that n > My.

~% P
Spa(z)| du(z) <c<oco for 0<p<l,
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_ Since |la]|o, < M}/? we can write _
52 @< [ 1a@]1Dn & - 01w (0

S Bolle || 100 =010 ) < M7 [ 1D (5= 0.
In
For0<p<1 and::EI.\I.+1,fromLemma2weget

5.) Sna (2) cM M,
log# (n +1) (n + 1)1/771 = Joglel (n 4 1) (n+1)/P-1
Combining (2.1) and (5.1) we obtain

= s N-1
(5.2) A Gsa(o)" du(z) = Z,:o /r.u
cM k"‘l’ No1 Mp : CM;,—PNM
g (n +1) (0 + 1) Z M, = 1og?® (n 4+ 1) (n+ 1)

This completes the proof of assertion a).
To prove part b) of the theorem, we set

Jo (z) = DM:-,,-H (z) - -DM,,,.r (z)

530 @) du (=)

< cp < 0o

and observe that

e 1X 1, i M af
fmr (3) = { 0. o . M":k Mz"*"'l 1

Hence we can write

Di(z) - Dm,, (2), ifi=M,, +1,..,Map41—1,
(53) S‘fﬂh (3:) - fng (3:) ] lf i 2 M2m+1:

0, otherwise.
From (2.2) we get

sup Su, (fas)

(54)  lfolle, ey = l = "DM,__H Dy, " < c,M1 1/p,

Let 0 < p < 1, then under the condltion (3.1) there exist positive integers ny such

that
(Man, +2)'/77

= < 115
o oMt o OsRS
Applying (2.2), (2.3) and (5.3) we can write
|SM:-.,, +1fns 2t |-DM3.'..+1 ~ DM:..* = |stn,, l 1
¢(Man, +2) ~ @(Man, +2) ¢ (Man, +2) ~ 9 (Mzn, +2)’
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This implies
SM-.-.+1fm. {I) > 1 =1

Combining (5.4) and (5.5) we obtain

Shtgn, +11n, (2)

m (F‘ {ﬂ: €Gm:'— . > ;(Ei.—_,,,)'})l/p
lfn (@),

(M ' 4-2)””"1

Ing

1

= —+o00 as k — oo.
0 (Many +2)MI? 9 (Manu +2)

Now consider the case p = 1. Under the condition (3.1) there exists a sequence
{nk : k > 1}, such that
loggn, _
m
k—too @ (Qru)
Let Gn,= Man, + Man,—2+ Mz + Mo and z € Ing\I2s+1, 8 = 0,...,nk. Combining

(2.2) and (2.3) we obtain
s—2

Z"m & (:‘L‘) D May (:I'.‘)

| D, (2)] 2 1Dae, (@)] -

-2
M.
> My, - sz > Mg, — Mas-1 2 5
=0
Hence
g
69 [ |Pu, @42 22 R T ED BT
Taa\I2a41 =0

Finally, by (5.3), (5.4) and (5.6) we have

1 f |-5'q...fn. (z)| o)

(| frn (z)"_q,(c:,..) n P(an)

= ||.fm. ($)||H,(am) (./,., J?T;_n:)_ -/.., l ‘P(qm.) #(z))

cloggn,
> —(lo 1)> ———"*
‘P(Qru) ( 8 Ony — ) ( 'H-)

and the result follows. This completes the proof of Theorem 3.1.
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. Proof of Corollary 3.1. Let 0 < p < 1. Applying (5.1), (5.2) and Theorem W we have
"Slia" = 1 Sia (z
S Bk 31 [Se@p (@)
k=My " YIn

k=Mpy /-1

+ Z w5 [, (120140 0) )

< P 1- 103’
S oMy Z =-p+c’M "kZM Fp S <o
=MN
This completes the proof of Corolla.ry 3.1.

PmofofThmm-?-ﬂ.Lctﬂ<p$lande<n5Mk+1.UsingTheomm3.1we
get

15nfll, < epn'/P=110g!Pl n | £ g, G -
Therefore

ISnf = Flp < ISnf = S £ + 100 f = £IE = 1S (Saaa f - PIE
H1Smf = £l < ep (077 + 1) log?®) (Mi f)
k

Hy(Gm)
and
= 1
) I0f = £l < con'/o~togWhmus (7).
¥/ Hy(Gm)
Theorem 3.2 is proved.

Proof of Theorem 8.3. Let 0 < p < 1, f € Hp(G) and

1
(Afin’f)ﬁp(cm} =0 (M_zl'{;f) as 1n — 00.
It follows from (5.7) that
1Snf = £ll, = o0 as n — oo,

implying assertion a) of the theorem.
To prove part b), we set
1/p—-1

Qg (J’) = (DMuﬂ (z) - D, (z)) )

where A = sup,,cy mn, and
A

Ia () = ) —ra(a).
2i

i=0
Taking into account that
' _J a(z), 2k< A4,
Sma0x () = { 0, 2k > A,
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and

supp(ax) = Jak: fr 3 agdp =0,

we can apply Theorem W to conclude that f € Hp.
Next, it is easy to show that

(5.8) f—Sm.f
( FO _ Spg £, ..., £ — S, £, FOHR gy f(n-l-lr))

f{ﬂ+1] E f(n) il f(ﬂ-!-l-‘) o f(ﬂ]' ___)

( 40, Zh::(ﬂl, ) , keN,
is a martingale. Hence, using (5.8) we get
1 i ( 1 )
“’(E'nﬂr = b ler-l M)’
where [n/2] denotes the integer part of n/2.
Next, it is easy to show that
< 1, if je{Mﬂg---:Mﬁ-}l_l}: 1=0,1,...
1) { 0, if j¢ g{mﬁ....;\a*,.-;L1 1),

llaallog < MALP™-Mas = My{” = (supp ax) V7,

(5.9)

- Hence, using (5.9) we can write
limsup || f — SMausr~1(F)|L; .0 (Gm)
k—co

oo
2 limsup (lle:uﬂ—l“L,,,(Gm) = ﬂ Z (DMQ“.; - DM,,) "L’.u(am))
k—o0 i=kt1

> limsup (1 - ¢/M3{"") ¢ > 0.

k—co

This completes the proof of Theorem 3.3.
Proof of Theorem 3.4. The proof of assertion a) is similar to that of part a) of Theorem
3, and is omitted. So, we prove only part b). To this end we set

ai(z) = DM:H‘-Q-I(E) = DM:M‘ (z)

and

fa@)= Z ),

i=1
Taking into account that

<
Smaox (2) = { o (e), 204, < 4,
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and .
pp(@) =Iams, [ auds =0, sl < Mase, = ploupp ),
we can apply Theorem W to col:clude that f € H;.
Next, it is easy to show that

(L 5 » i L ol
o Daen < = (-) ,
L i=[lgn/2] M, £
where [Ign/2| denotes the integer part of lgn/2. By simple calculation we get
1" yaif J EJMQM“ “asy Msz-l — 1} o 8=0,1 .
0, if j¢ Ho{Mzun---'Mzm-i-l =1},

Finally, combining (5.6) and (5.10) we obtain

(5100  Ffi) =

liﬂs:p Il = Sgae, (Hllx

v

lim su ——1 [l i - Dasei 42 — Do,
k—toop Mgy, 1~ s — M_g;;"DM’M‘H"l | Z llx

=k+1 Ma
: = 1 1
hmsup c— E M—za—m >c>0,

k—too i=k+1

v

and the result follows. Theorem 3.4 is proved.
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