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1. INTRODUCTION

The aim of this paper is to establish the existence and multiplicity of solutions
for the following second-order impulsive differential inclusion subject to anti-periodic
boundary conditions

—(Bp('(7))) + MBp(u(z)) € OF (z,u(z)), in [0,T)\{z1,22,...,Zm},
(1.1) { —A®,(u'(zx)) = Ix(u(zk)), k=1,2,...,m,
u(0) = —u(T), 4'(0) = —u/(7),

wherep>1,T >0, M >0, @p(z) := |2|" %2, 0=20 <21 < ... < T < Zmy1 =T,
ARy (u'(z1)) = By(w'(z)) — p(u'(2y)), where w/(z;) and u'(z;) stand for the
right and left limits of u’(z) at * = zy, respectively; I, € C(R,R), k = 1,2,...,m,
F:[0,7] xR = R is a measurable function such that for all t € [0,T], F(¢,-) is
locally Lipschitz and 8F(t,-) denotes the generalized subdifferential in the sense of
Clarke [1].

In recent years much attention was paid to the question of existence of solutions
for impulsive boundary value problems, which -have a number of applications in
chemotherapy, population dynamics, optimal control, ecology, industrial robotics and

physics.

IThis work was supported by the National Natural Science Foundation of China (Grant Nos.
11271299 and 11001221), the Mathematical Tianyuan Foundation of China (No. 11126027) and the
Natural Science Foundation Research Project of Shaanxi Province (No. 2012JM1014).
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For the background, theory and applications of impulsive differential equations, we
refer to [2]-[12] and references therein.
In [13], Tian and Henderson studied
—(®,(v'(2))) + M®,(u(z)) € OF (u(z)) + pG(z,u(z)), in [0,T\{z1,Z2,...,Zm},
—ﬁﬁp(ﬂ'('.l‘:k)) = Iic(u(zx)), k=1,2,...,m,
u(0) = —u(T), ¥'(0)= —u'(T).
In [13] it was proved that under some conditions imposed on F, G and I; the problem
(1) has at least three positive solutions via the three critical point theorem of Ricceri
(see [14]).
In this paper, motivated by the above work, we study the question of existence
of solutions of the problem (1.1), and using a variational method based on the non-
smooth critical point theory, we prove the existence and multiplicity of anti-periodic

the following equations with impulsive effects:

solutions of problem (1).
The paper is organized as follows. In Section 2 we give some preliminary results

and establish a variational principle for the problem (1.1), which are needed in the
proofs of the main results. Section 3 is devoted to our main results.

2. PRELIMINARIES

In this section we present some preliminaries, basic notion and results from
the theory of non-smooth analysis — the calculus for locally Lipschitz functionals,
developed by Clarke [1], which will be used in the proofs of the main results of the

paper.
Let (X, || - ||x) be a Banach space, (X*,|| - ||x-) be its topological dual, and let

© : X = R be a functional. Recall that a functional ¢ is locally Lipschitz if for all
u € X there exist a neighborhood U of u and a real number Ly > 0 such that for all

z,yeU

le(z) — e)| < Lullz - ylix-
If f is locally Lipschitz and u € X, the generalized directional derivative of ¢ at u
along the direction v € X is defined by

(Po(u; ‘U) = limsup (P(w -k t‘b‘) = (p(‘lﬂ) g
w—u, 80 t
The generalized gradient of ¢ at u is the set

Op(u) = {u* € X*: (u*,v) < ¢°(u;v) for all v € X}.
So ¢ : X — 2%" is a multifunction. Observe that the function (u,v) ~ ©°(x;v) is
upper semicontinuous and satisfies
©°(u;v) = max{(£,v) : £ € Bp(u)} forall ve X.
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- We say that ¢ has compact gradient if 9 maps bounded subsets of X into relatively
compact subsets of X*. Also, an element u € X is said to be a critical point of a
locally Lipschitz functional ¢ if 0 € dp(u).

In the proofs of our main results, we will use some facts from the non-smooth
critical point theory. To state these results, we first give some definitions.

Definition 2.1. We say that an operator A : X — X* i3 of type (S)4+ if for any
sequence {un} from X the conditions u, — u and Limsup,_, ;o0 (A(tn), un —u) <0
imply un, — u.

Definition 2.2. We say that a locally Lipschits function g : X ) R satisfies the non-
smooth Palais-Smale condition (non-smooth (PS)-condition Jor short) if any sequence
{u'n}ﬂZI g X such that {J(u,.)},,g; s bounded and

p(un) == min{||u*||x- : u* € 9¢(un)} = 0 as n— +oo,

has a strongly convergent subsequence.

Definition 2.3. We say that a locally Lipschits function J : X — R satisfies the
non-smooth Cerami condition (non-smooth (C)-condition for short) if any sequence
{un}n>1 € X such that {J(un)}n31 is bounded and

(1 + |[unllx)p(un) = 0 as n - +oo,
has a strongly convergent subsequence.
For the next result we refer to [15], Proposition 1.1.
Lemma 2.1. Let ¢ € C'(X) be a functional. Then o is locally Lipschitz and
©°(uiv) = (¢'(u),v) forall u,ve X,
9p(u) = {¢'(u)} forall ue X.
Consider the space X = {u € W'®([0,T]) : u(0) = —u(T)} endowed with the

norm

T s
[lullx = (A- (|"'($)|9+M|ﬂ(3)|p)d’—') , uweX.

i
Observe that the norm ||u||x is equivalent to the usual norm: ( fuT([u’ @) 1 ]u(z)ll')ds) -
(see [13], Lemma 3.1). The next lemma, which will be used in the proofs of our main
results, was proved in [13] (see [13], Lemma 3.3).

Lemma 2.2. Let u € X. Then |jullco < %T#”u”x, where 2 4+ 2 =1.

It is known (see [13], Lemma 3.2) that the space X is reflexive and separable
Banach space.
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The functional J : X = R corresponding to the problem (1.1) is defined by

m u(xy) T
Jw) = ;ﬁwu;—; j; Ii(s)ds — fn F(z, u())dz.

Now, we are going to establish a variational principle for the problem (1.1). To this

end, we impose the following conditions on the non-smooth potential F(z,u) and the

real continuous function Ij:
(H1) For all u € R, the function z = F(z,u) is measmmble.-
(H2) Forallz € [0,T], the function u — F(z,u) is locally Lipschitz and F(z,0) =
(113) ghere exist a,b € L1([0,T);R) and 1 < 7 < +oo such that |u*] < a(z) +
b(z)|u|"? for all z € [0,T], z € R and u* € OF (z,u).
(11) There exist constants aj, bj > 0 and v; € [0,2—1), § =1,2,...,m such that
|Z;(2)| < aj + bjlu|™ for all z E'R andj=1,2,...,m.

Definition 2.4. We say that u € X is a weak solution to the problem (1.1) if
- f T(d’p(u'(z))v’ (@) + M, (u(2))v(z) — " (@)v(@))dz = Y Li(u(@:))v(z:) =0,
0 i=1

for all u* € 8F(z,u(z)), v € X and for a.e. T € [0, 7.
Proposition 2.1. Assume that the potential F(z,u) satisfies the conditions (H1)-

(H3). Then the functional J : X — R is well defined and is locally Lipschitz on X.
Moreover, every critical point u € X of J is a solution to the problem (1.1).

Proof. The proof is similar to that of Lemmas 3.5 and 4.4 from [13], and so is omitted.

Observe that, according to the Proposition 2.1, in order to find solutions of the
problem (1.1), it suffices to obtain the critical points of the functional J.

3. MAIN RESULTS

In this section we state and prove our main results. We first establish some existence
and multiplicity results for the problem (1.1), by using results from critical point
theory. Our first result is as follows.

Theorem 3.1. Assume that the conditions (H1)-(HS) and (I1) are fulfilled, and also
the potential F(z,u) satisfies the following conditions:
(H4) There ezist u € (0,7), co > 0 and M > 0 such that g < F(z,u) <
—pF°(z,u; —u) for all u € R with |u| > M and z € [0, T).
(H5) limjy|—0 15 = 0 uniformly for oll z € [0, T and all u* € 8F(z,u).
Then, the problem (1.1) has at least one nonzero solution on X.
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Proof. First, we claim that J satisfies the non-smooth (PS)-condition.

By the conditions (I12), (1I3) and the Lebourg’s mean value theorem, for all Ju| <
M and z € [0, T] we have

|F(@,u)| = [F(z,u) - F(z,0)| = |(u",u)] < a(@)lu] + b(=)|u|" < Ma(z) + Mb(z).

Next, by the property of generalized directional derivative of a locally Lipschitz
function, for all [u| < M and z € [0, 7] we get

|F°(z, u; —u)| = | max{(u®, —u) : u* € OF (z,u)}| < a(z)lul+b(z)|u|” < Ma(z)+MTb(z).
Thus, for all # € R with |u| < M and z € [0,T] we have
(3.1) F(z,u) + pF°(z,u; -u) < a;(z),

where a1(z) € L([0, T], R).
Suppose {u,} C X satisfies

(3.2) |J(un)| < C and p(un) = 0.

Since 8J(un) C X* is a weak® compact set and the norm function in a Banach space
is weakly semi-continuous, by the Weierstrass theorem we can find us € 8J(uy) to
satisfy

(3.3) P(un) = |lupllx- and u} = Au, —v, foreveryn>1,
with v, € L7 ([0, TL,R), L + 1 = 1, and v, € 8F(2,un(z)) for all z € [0, T]. Here
A: X — X" is an operator defined by
T m
7 i /n [@p(u (@)Y (2) + MEp(un(@))u(@)dz — 3 Li(un(z))v(z), Ve X.
i=1
By the condition (I1), when u(z;) < 0, we get

aju(z;) + 9";?(;‘_1—);’1;1:#(%) < /‘:’J} I;(s)ds < —aju(z;) - P{%u’ﬁ"'l(zj),
Ii(u(z5))u(z;) 2 (a5 + bjlu(z;)[™)u(z;) = —a;(~u(z;)) — bs(—u(z;))™+".

When u;(¢) 2 0, we obtain

~aju(a;) - i) < [ " Lo < apulas) + Lwr¥i(ay),
ged 7 +1 g 0 iy & 9 +1

I (u(;))u(z;) 2 (-a; — bjlu(z;)™ )u(z;) = —aju(z;) — bj(u(z;))"*.

Thus, we have
bj

(25)
(3.4 } [y ey

I (u(z;))u(zs) > —ajlu(zs)] - bslulzs)™+.
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Therefore, by Lemma 2.2 we get
7 B by (loa\uH i
68 |3 f '(o)is 52(“J§T'|i“||x+—L—_+l(§T )" i),
j=1 Jj=1
1.1 l-—q i+l
(3.6) Ij(ﬂfzj))ﬂ(xj)2-65§T°|Iﬂllx—bj(§T') Il

Thus, in view of condition (H4) and the formulas (3.1), (3.2), (3.5) and (3.6), we
can write

C+ ullunllx = J(un) —:(uf‘nm
(2= w)lullx — | P, un(edz = om, =)

- f: /un(ﬂ) Ii(s)ds + p zm: Li(un(z1))un(z:)
i=1v0 i=1
(5 — ) lullx - j{ + cag Farn(a) + () ()

v

[ @ unE) + uF un() —un(e))ds
{lun|2M}
(1 b f1,.a\nH :
-3 (gTHmllx + 5 (574) ual%*)
3 (a3 THunllc +1(374) )
i=l1
£ (_%"“)”“”"_ ;("‘—T'”u“”"” % +1(2 )m II}H)

w3 (el + (57" ualp*),

where C is a constant.
Thus, the sequence {un} in X is bounded, and hence by passing to a subsequence
if necessary and using Sobolev’s embedding theorem, we can assume that

U, — u weakly in X,
(3.7) u, 4 u ae in C1([0,77),
un = % a.e. in LP([0, T).

Now, we prove the following fact

lim sup{Atn, tn — 1) < 0.
n—+o00
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- To this end, first observe that by (3-2) and.(3.3), we have with €, | 0

T
€nllun — ul| 2 (up, un — u) = (Auy, u, — u) —-/ Vn(Z) (un (z) — u(z))dz
0
Next, by (3.7) and the Halder inequality we get

T
-/0 Un(2)(un(z) — u(z))dr -0 as n - +co.

So, im 8up,,_, 4 oo (Atn, tn — 1) < 0, and thus (3.8) is fulfilled. Since A4 is of type (S)+
(see [13], Lemma 4.2), we obtain u, — u in X.

Further, by conditions (H2), (H3), (H5) and the Lebourg’s mean value theorem,
for all z € [0,7] and u € R, we obtain

(3.8) |F(z, u)| < elul” + ag(z)|ul,

where § > p, € > 0 is an arbitrary real number and a, € LY([o, T],R*).
Therefore, by Lemma 2.2 and formulas (3.5), (3.8), we can write

m u(z)
7w = 2l - > [ woyas - / " Fle,u(@))dz
1

m  eu(xy)
> Sl —E fn L(o)ds— ¢ ,[: lu(z)Pdz + /:ag(xnu(znedx

m - eu(z)
> Sl =30 [ sl + s, [ e

> Sllull - i / " B - (274l + () ] " aala)dalully
> (3-(37%)") it

m
Lra bi (L)™' Lraye T §
_E(“'ET llunllx + == (374) ™ flunll* ) + (57) [ at@dsiiul.

%+
Hence, we can find R > 0 and § > 0 such that
(3.9) J(u) > 6 for allu € X with ||ul|x = R.

Now we claim that
(3.10) J(tu) 5 —00 as t— +oc.

To prove this, let N be a Lebesgue-null set outside of which the hypotheses (H3) and

(H4) hold, and let = € [0, T]\N, u € R with |u| > M. We set d(z.)) = F(z, Au),

A € R, and observe that J(z, -) is locally Lipschitz. By Rademacher’s theorem, we find

that for every z € [0, T] the function A — J(z, A) is differentiable a.e. on R, and at a

point of differentiability A € R we have adxa (2, A) € 83(z, A). Moreover, by the chain
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rule we have 93(z,A) C (BuF(z, M), u)r, implying 83(z,)) C (BuF(z,Au), \u)z.
Next, from (H4) we infer
d 1 &S(z. AL T
Aaa(z! A) 2 ;3(3- A) = a(z, M) 2 ‘\p‘
Integrating the above insquality fom 1 to do we get 1n 4228} > 1n 3 . So, we have

e i

roved that Ag * F(z, Au) 2 A§ F(z,u) for z € (0,TI\N, [u| 2 M and A > 1.
7 Let :(z) )=ﬂ min{F(z,u) : |u| = M}. Clearly we have z € L?([0,T],R*) and
z(z) 2 ¢g for every z € [0, 7). Therefore, for every = € [0, TI\N and |u| > M we have

i o g
(311) F(zu) = F(z, julM ™ Mulu|™) 2 %)"F z, HM) > z(m)(l}gfl) ;

On the other hand, in view of the equivalence belween lwo norms in the [inite-
dimensional spaces, for any finite-dimensional subspace U C X and any u € U, there
exists a constant C > 0 such that

b ]
lfulls = ( j; lﬂ(z)l'd-'f-') 2 Cllullx, 21

Then, by (3.5) and (3.11), there exists a positive constant C} such that

= b 1 4+1 . T i
TS Jlhlty + 3 (orgTH e + 25 (57’ i) - a6y (1) %o

1 [ 1.1 bj (1,1\7H 1 TA R
< ;nuuﬂﬁz(aiar«uuuxqi—l(gﬁ) nun};*)—co(-ﬁ)"uuu%
i=1

1 [ 1 by (1,.1\%H 1\& 1
< L + 3 (argThlbe + 22 (574) ™ ) - o (5) "l
i=1

Since p < 1 and 75 <p—1, foranyu € X\{0} we have J(tu) = —oco as t — +00,
implying the desired claim (3.10).

Finally, for large ¢ > 0 we have J(tou) < 0 with fixed u € X'\ {0}. Hence, observing
that J(0) = 0, in view of formula (3.9) and the non-smooth mountain pass theorem
(see [16, 17]), we obtain u € X, u # 0 such that 0 € &J(u). An application of
Proposition 2.1 completes the proof. Theorem 1 is proved.

In the following result we replace the condition (H4) by conditions (H6)-(HS).

Theorem 38.2. Assume that the conditions (H1)-(H8) and (I1) are fulfilled, and there
exist two positive constants 8, v withy > p and 8 > v — p, such that F(z,u) and
I; (i=1,2,...,m) satisfy the following conditions:
(H6) limju| 400 T = +00 uniformiy for all z € [0, 7).
(H7) };m%up,“,_.w £E8) < M < +o0 uniformly for some M > 0 and all z €
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. (H8) lim infly|y oo EEEERLEMY) 5 o uniformly for all z € [0,T).
(12) L (i=1,2,.. ,m)moddnndnmdacrmsmg

Then, the problem (1.1) has at least one nonzero solution on X.

Proof. We first prove that J satisfies the non-smooth (C)-condition (see Definition
2.3). Let {un}n>1 € X be such that {J(un)}n>1 is bounded and (1+|jun||x)p(un) =
0 asn — +oo0. Then, there exists C > 0 to satisfy

(3.12) |J(un)l<C and (1+ |lun|lx)p(un) <C forall n€N.

By condition (H7), there exist g; > 0 and & > 0 such that F(z,u) < o1 |u]” for all
|u| = &, and = € [0,T]. It follows from the above inequality, the conditions (H1),
(H2), and the Lebourg's mean value theorem that |F(z,u)| < @(z) for all |u| < &,
and z € [0, T], where @3(z) € L1([0, T],R*+). Therefore

(3.13) |F(z,u)| < o1|ul]” +82(x) forallueR, z € [0,7].

Also, by condition (H8) there exist gz > 0 and d; > 0 such that pF(z, u)+F°(z, u; —u) >
2|ul? for all [u| > 6, and z € [0,7]. By arguments similar to those used in the
derivation of (3.1), we obtain [pF(z,u) + F°(z,u; —u)| > @3(z) for all |u| < &; and
z € [0,T]. Thus, for all u € R and z € [0, 7] we can write

(3.14) PF(z,u) + F°(z,u;—u) > a|ul® — 016 —@3(2),

where @3(z) € L*([0, T],R*), Therefore, by (3.4), (3.12) and (3.13) we get

=)

m

2 2 plhunll =3 (oo + =2

i=1

T T
oy ]n lun(z)|Ydz - jﬂ @ (z)dz.

'r+1

Thus, we have

m

1 p : i+l
Yually < Y- (adlnllee + =25

i=1

T
(3.15) : +01 fo |un(z)|"dz + /,; aa(z)dz + C.
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From (3.12) and (3.14) we obtain
(p+1)C 2 pJ(ua)— (un,tn)

T
55 f:m..(z)f"d:— [ wstoie - et
3 [ M + 3 Bl
i=1v0 i=1

\'%

T T
& [ lun(e)Pdz - f 23(2)dz — 0168

m
= = s nu+1
3 (culvalln + 2l

— 3 (asllnlloo + billuallZ+) ,
=]

where uf, € 8J(uy) and v, € OF(z,1y). Therefore the sequence {u,} is bonnded

both in ZA([0, T, R) and L*([0, T, R).
Since y > pand 8> v7—p, thena.ssummg1'<,6 and using Holder¥s inequality

we have _fa |un(z)|"dz < ( fo ]u,.(z)]ﬂdz) which together with (3.15) implies that
{un} is bounded in X. If § < <, then by Lemma 2.2 we get

T T s T
[ ot < hunlls? [ tuntePie < (373) il [ fun@)P

Ilence, taking into account (3.15), we conclude that {u,} is bounded in X. By
arguments similar to those used in the proof of Theorem 3.1 we infer that {u,}

strongly converges in X.
Also, by conditions (H3) and (H5) we can find R>Oand5>0tosatlsfy

(3.16) J(u) >4 for all u € X with ||u|| =

Next, we prove that there exists ug € X such that J(uo) < 0. To this end, observe
first that by condition (H6), for

p+1_T“‘%‘I(§)H

L SRy
there exists d3 > 0 such that
F(z,u) > gs|luf’ for all |u| > &3, z € [0, T).
It follows from (H2), (H3) and the Lebourg’s mean value theorem that
(8.17)  F(z,u) > oslul’ — 0305 —8u(z), foralluecR, z¢ [o,77],

where 54(::) € L*([0, T],R*). Therefore, by (3.17), (H3) and Lemma 2.2, we choose
* ug(z) = T — z and observe that ug € X.

93=
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_ Since by (I2) the functions I (i = 1,2,...,m) are odd and nondecreasing, the
functions fo Ti(s)ds are even and satisfy fo Ii(s)ds 2 0 for any ¢ > 0. Hence

(1)
Z f: Ii(s)ds > 0.
i=1

So, in view of (3.17) we can write

J(ouo) = ‘;f' /: (1+M’§-—=Ip)dx-—i f iy AT fDTF(z,m(z))dz

< % : (1+M|—-—:.-: ) f F(z, sug(z))da:
. ( pzfl( )P‘l'l)_gl’ga f luo(z)[Pdz + C;
- "p[ ( p+l( )m)_ p+1(§)m]'

where Cj := 936’ T+ fu @y(z)dz is a positive constant. Taking into account that

( ( )m) ®r+1 (12")p+l = “,l, (Tﬂ%@)w) <0,

we conclude that there exists a large enough sy > 0 such that J (soug) < 0.

Finally, robserving that J(0) = 0, we use the formula (3.16), the non-smooth
mountain pass theorem (under the non-smooth (C)-condition (see [17])) and Proposition
2.1, Lo complele the proof. Theorem 2 is proved. O

Theorem 3.3. Assume that the conditions (H1)-(H5), (I1) and (I2) are fulfilled,
and the potential F(z,u) satisfies the following condition:

(H9) F(z,u) = F(z,~u) for allz € [0,T), u €R.

Then the problem (1.1) has an unbounded sequence of solutions {un} C X such that
|[tin]loc = 00 a8 . — oo,

Proof. It follows from the conditions (I2) and (H9) that J is even. Hence using the
arguments of the proof of Theorem 3.1 and the non-smooth symmetric mountain pass
theorem [16], we conclude that J possesses an unbounded sequence of critical values
{cn} satisfying J(u,) = c,, where 0 € 8J(u,) for n =1,2,.

Since 0 € 8J(un), by (3.3) we get

m T
(318)  |[unll? = D Li(un(2:))un(z:) — _/0 (vn(2), un(z))dz = 0,
=]

where v, € 0F(z,uy).
Next, in view of (3.5), (3.6), (3. 11) (3.18), (H5) and (H9), we can write

Slunll = 222 Zf'(u.,(zo)un(zf) f (o () el il
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> (p+1ea+ j:((p + 1)F (2, un(2)) = F°(2, un(2); un(2)))dz+

i=1

+(@+1) i f‘ g Ii(s)ds — i Ii(un (i) un(2:) 2
i=1v0
> @+ Den+ (G0 +3) [ ‘(F(x,u..(z)) v

o+ 13 (w7l + 2y b (A i) -

—Z( 5T llunllx +m( T«) !"‘“) 2
> (p+1)en + ((p +1) + ;) f{ o F(z,un(z)dz

b v+l
o+ (sgTHhnli + 227 (574) " lonl)

L 1 Yt
~ 5= (aeg T unla + 8 (374) ™l
i=1
Thus, we have
1 P 1 = 1 1 1 .l. T+l 7+l
e+ @+ 13 iy T lunllx + =2 (GT4) ™

=2 1n T LaaTTe
+3 (gl + (37%) " unlly

> (p+1)en+ ((p +1)+ i) -/{.i e F(z,un(z)dz.

Since ¢, — +00 as n — +00, it follows from the above inequality that [ju,||x = 400
as nn — +00. Also, with some constant C”, we have

(3.19) 0+ 1)en < lunlBe +C".

Hence, by the condition (H3) and formulas (3.4), (3.19), we can write
1 2 < M pun(z) T
pen < -H"-n”x—cn+0' =Z./u. I;(a)ds-i—/ F(z, un(z)dz + C"
i=1 0
Un (1) T
= Z [ e+ [ 30 un(ali 0"

m 1 T
<3 (ailiunllm + 20l + ol | o)+ lunlls [ e+,

o8



EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR ...

. where u;, € OF(z, su,) with s € (0,1). Thus, we have |ltnlloa = +00 as n = +o0,
and the result follows. Theorem 3 is proved.
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