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1. INTRODUCTION

Throughout the paper the following notation will be used. The letters N, Z and
R denote the sets of all natural, integer and real numbers, respectively; k will stand
for a positive integer. For any a, b € Z we define Z(a) = {a,a + 1,:--}, Z(a,b) =
{a,a+1,:--,b} when a < b. By A we denote the forward difference operator defined
by Atn = tn41 — Un. Also, the symbol * will denote the transpose of a vector.

The second order forward-backward differential-difference equation

(1.1) Au"(t) = V' (ult + 1) — u(t)) — V' (u(t) — u(t — 1)), teR

has been studied extensively by many scholars. For example, Smets and Willem [26]
have established the existence of solitary waves of (1.1). '
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A generalization of (1.1) is the following equation

(@a) s Su(t) = f(t,u(t +1),u(t),ut - 1)), tER,

where S stands for the Sturm-Liouville differential expression and f € C(RY,R).
The present paper considers the second order difference equation

(1.3) Lty = f(n, Un+1, Un, Un-1),

with boundary value conditions
(14) Ug + QUg4+1 = A, Up+2 +;8ub+1 =B,

where L is the Jacobi operator defined by Lun = antn+1 + @n—1Un—1+bntin, an and
b, are real-valued for each n € Z, f € C(R*,R), and o, §, A and B are constants.

Observe that the equation (1.3) can be considered as a discrete analogue of (1.2),
and the operator L leads to a symmetric matrix representation. Also, notice that the
boundary value conditions in equation (1.4) include the following special cases: the
Dirichlet boundary value conditions, the mixed boundary value conditions and the
Neumann boundary value conditions:

(1.5) Ug = A, up42 = B;
(1.6) ug = 4, Aupyy = B;
(1.7) Aug = A, up42 = B; and
(1.8) Au, = A, Aupyy = B.

It is worthwhile to observe that the Jacobi operators appear in a variety of applications
(see, e.g., [27], and references therein). They can be viewed as the discrete analogues of
the Sturm-Liouville operators and their investigation has many similarities with that
of Sturm-Liouville theory. It should be noted that there are a number of books devoted
to the Sturm-Liouville operators, whereas there are only few on Jacobi operators.
Moreover, there is a small number of researches available that cover some basic topics,
such us positive solutions, periodic operators, boundary value problems, etc., which
typically can be found in the books on Sturm-Liouville operators (see, e.g., [17]).
Without loss of generality, we can assume that a = 0 and b = k—1 for some positive
number k. Then the boundary value problem (BVP) (1.3) with (1.4) becomes

(19) Lun = .f(ns “ﬂ-l-li Un, u'n—l): ne Z(l, k)
with boundary value conditions

(1.10) up+ ouy = A, ugy1 + Buy = B.
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The theory of nonlinear difference equations has been widely used to study discrete
models appearing in many fields, such as computer science, economics, neural network,
ecology, cybernetics, etc. Since the last decade, there has been much literature on
qualitative properties of difference equations, those studies cover many of the branches
of difference equations (see, e.g., [1, 8, 9,14-16, 18, 20, 22, 24, 25|, and references
therein).

In recent years, the boundary value problems for differential equations was studied
extensively. By using various methods and techniques, such as the Schauder fixed
point theorem, the cone theoretic fixed point theorem, the method of upper and
lower solutions, coincidence degree theory, a series of results of nontrivial solutions
for differential equations have been obtained in the literature (see, e.g., [2-6, 13, 28].
Notice that the critical point theory is also an important tool to deal with problems on
differential equations (see [19, 23, 31]). Because of applications of difference equations
in many areas (see [1, 8, 15, 16, 20, 25]), recently, some authors have gradually
paid attention to applying critical point theory to deal with periodic and homoclinic
solutions of discrete systems (see (7, 10-12, 29, 30, 32, 33]).

In particular, using the critical point theory, Chen and Fang [7] have obtained a
sufficient condition for the existence of periodic and subharmonic solutions of the
following second-order p-Laplacian difference equation

A(pp(Au(n - 1)) + f(n,u(n+1),u(n),u(n—1)) =0, n € Z.

We also refer the reader to [29, 30] for the discrete boundary value problems. Notice
that, however, all these topics do not concern with the Jacobi operators.

As far as we know results obtained in the literature for the (BVP) (1.9) with
(1.10) are very scarce. Since the function f in (1.9) depends on un4+; and un—_j, the
traditional methods of establishing the functional, developed in [10-12, 29, 30, 32, °
33|, are inapplicable to our case. The present paper aims to fill this gap.

In this paper, motivated by the above arguments and results, we use the critical
point theory and obtain sufficient conditions for the existence and multiplicity of the
solutions of the BVP (1.9) with (1.10). The main idea is to transfer the question
of existence of the solutions of the BVP (1.9) with (1.10) into that of the critical
points of some functional. We also demonstrate the power of the critical point theory
in the study of the existence of multiple solutions for boundary value problems for
difference equations. For the basic concepts and results on variational methods, we
refer the reader to [19,21,23,31].

Throughout the paper we suppose that B = 0 and a, < 0 for n € Z(1,k). The
main results of the paper are the following theorems.
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Theorem 1.1. Assume that the following conditions are satisfied:
(L) by — @ao +a1 >0, bk — Bax +ax-1>0, bit+ai+ai-1>0, 2<i<k-1;
(F1) there egists a functional F(n,) € C'(Z X R?, R) with F(0,-) =0 such that

OF(n—1,vsva) \ OF(Mv00) o fn, 1y vy, 05), Vi € 201, K)
8va Ove
(Fz) there exist constants ¢, > 0,c2 >0 and1 < 11 < 2 such that for anyn € Z(1,k),

(1.11) F(n,v1,v3) <1 (1/1:}‘ —i--‘u%)ﬂl + ca.

Then the BVP (1.9) with (1.10) possesses at least one solution.

Corollary 1.1. Assume that the conditions (F1) and (L1) are satisfied. And, also
(F3) there egists a constant Mp > 0 such that for all (n,v1,v2) € Z(1,k) x R?
8F(n, v1,vg)| SBL |8F{n, vy, V3) = 1t
| ouy Ty Oy el

Then the BVP (1.9) with (1.10) possesses at least one solution.

Remark 1.1. Assumption (F3) implies that there exists a constant My > 0 such that
(F2) |F(n,v1,v2)| < M1+ Mo(jva| + [val), V(n,v1,v2) € Z(1, k) x B2

Theorem 1.2. Assume that the conditions (Fy) and (F3) are satisfied. And, also
(L2) A=0, by —aag+a; =0, by—Bax+ax-1=0, bi+ai+ai1=0,2<i<k-1;
(Fs) F(n,v1,v2) = +oo for n € Z(1,k) as \/v{ +v3 = +o0.

Then the BVP (1.9) with (1.10) possesses at least one solution.

Theorem 1.8. Assume that the condition (Fy) is satisfied. And, also

(F5) there exists a constant oy > 2 such that for any n € Z(1, k),

8F(n,v;, BF n,vi,
(1.12) 0<o1F(n,v1,v3) < (r;;;. Uz) (81): va), v, V\/ul +v3 >R

Then the BVP (1.9) with (1.10) possesses at least one solution.

Remark 1.2. The condition (1.12) implies that there exist constants cs > 0 and
¢4 > 0 such that

(1.13) F(n,v1,v3) 2 c3 (\/v’ + vd r‘ —cq, Yn € Z(1, k).

The next two theorems contain sufficient conditions ensuring at least two nontrivial
solutions for BVP (1.9) with boundary value conditions (1.10).
Theorem 1.4. Assume that A = 0, and the conditions (Ly), (Fi) and (Fs) are
satisfied. And, also
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(Fs) there exists a functional F(n,-) € C'(Z x R?, R) such that

. F(n,v1,vs
‘1_1_%—-—71-——) =0, r= /v +42, Vn € Z(1,k).

Then the BVP (1.9) with (1.10) possesses at least two nontrivial solutions.
Theorem 1.5. Assume that the conditions (L) and (F1) are satisfied. And, also
(Fy) there ezist constants § > 0, 7 € (o, ICE‘}?!T)"“’“) such that

F(n,v1,v2) < 73 (v} +v8), forn € Z(1,k) and v? + 13 < 8%;
(Fs) there exist constants p>0,v> 0, og € (3 Amex, +00) such that

F(n,v1,v2) > 0 (v} +v3) —, for n € Z(1,k) and v? +v2 > g2,
where Amin and Amax are defined in formula (2.4).

Then the BVP (1.9) with (1.10) possesses at least two nontrivial solutions.
Remark 1.3. It follows from (Fg) that there exists a constant v’ > 0 such that

(F3) F(n,v1,v2) > oz (v} +v3) =+, Y(n,v1,v2) € Z(1, k) x R2.

2. VARIATIONAL STRUCTURE AND SOME LEMMAS

For a given r > 1, define the norm || - ||, on R¥ as follows: for all u € R*
1

Ly &
Jull- = (_Z: {u,-.-l') :

Since [u||~ and |lul]z are equivalent, there exist constants k;, k; such that kz >
k1 > 0, and

(2.1) killull2 < [lull- < kallull2, Yu € RE.
Clearly, [lu|| = [lull2. When k > 2, for the BVP (1.9) with (1.10), consider the
functional J on R* defined as follows:

k
(2.2) J() = 5(Pu,u) + (1,0) = 3 F(n, Unss, un),

n=1

Yu = (ug,uz,--- ,ux)* € R, ug+ou; = A, Uy + Bux = B, where

bi-ag @ 0 -+ 0 0 ok
a; b ay -+ O 0 0

(23) P= et SRS T R S b Jetleachr
0 0 0 -+ brp Gk—1 0

0 0 0 -+ ag-1 br—Pag arB
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Clearly, J € C*(R¥, R), and for any 4 = {Un}nez(k) € R, by using the equalities
uo + auy = A and U1 + Buk = B, one can easily compute the partial derivative:

% = Lup — f(1, Un+1,Un, Un-1), 7 € Z(1, k).
Threfore, u is & critical point of J on R if and only if {un }ntd = (uo, us, Uz, *++ s Uk, Uks1)
is a solution of the BVP (1.9) with (1.10), where up = A — au; and ug41 = B — Bug.
Thus, the existence of solutions of the BVP (1.9) with (1.10) is reduced to that of the
critical points of J on R*. That is, the functional J is just the variational framework
of the BVP (1.9) with (1.10).

Remark 2.1. The case k =1 is trivial. For the case k = 2, P has a different form,

_ [ i—aag a1
P_( a1 ba—ﬂﬂz)'

However, in this case, it is easy to complete the proofs of Theorems 1.1 - 1.5.

Remark 2.2. It follows from (L3) that 0 is an eigenvalue of P and { = 7’;(1, 1,-,1)%€e

E; is an eigenvector of P corresponding to 0. Let A1,Az, -+ ,Ak—1 be the other

eigenvalues of P. Applying matriz theory, we infer that A; > 0 for all j € Z(1,k—1).
Define

(24) Amm =min{);|j € Z(1,k—1)} >0, Amax = max{A;|j € Z(1,k—1)} > 0.

namely,

Denoté W = {(u1,uz,** ,ux)* € R¥|un =¢, c € R, n € Z(1,k)} and let V be the
direct orthogonal complement of R* to W, i.e, R* =V @ W.

Let E be a real Banach space and let J € C*(E,R), that is, J is a continuously
Fréchet-differentiable functional defined on E. We say that the functional J satisfis
the Palais-Smale (PS) condition (see [12]), if any sequence {u(®)} C E for which
{J (u™)} is bounded and J* (u®)) — 0 as k — oo possesses a convergent subsequence
in E. Let B, denote the open ball in E about 0 of radius p and let 8B, denote its
boundary.

Lemma 2.1.(Saddle Point Theorem, [25]). Let E be a real Banach space, E =
Ey @ E,, where E; # {0} and is finite dimensional. Suppose that J € C'(E, R)
satisfies the (PS) condition and also
(J1) there exist constants p, p > 0 such that Jlas,nsl < p; (J2) there ezists e €
B,NE; and a constant w > u such that J|.+5, > w.

Then J possesses a critical value ¢ > w given by
i (h(w)),
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where
I'={h € C(B,NE;,E)| hlos,nE, = id}
and id denotes the identity operator.
Lemma 2.2. (Mountain Pass Lemma, [23]). Let E be a real Banach space and let
J € C}(B, R) satisfy the (PS) condition. If J (0) =0 and
(J3) there ezist constants p, a > 0 such that Jlss, 2 a, and
(Ja) there ezists e € E'\ B, such that J(e) < 0.
Then J possesses a critical value ¢ > a given by

(2'5) o= DEPIE[U 1] (g( ))1
where
(2.6) I'={g € C([0,1], E)|g(0) = 0, g(1) =€}

Lemma 2.8. (Linking Theorem, [23]). Let E be a real Banach space, E = E) @ Es,
where E, is finite dimensional. Suppose that J € C*(E, R) satisfies the (PS) aondthon
and also

(Js) there exist constants a > 0 and p > 0 auch that J|pB,nE, 2 a;

(Jo) there exists an e € By N E; and a constant Ry > p such that J|sq < 0, where
Q= (BRO nE1) (23] {re|0 S Ha}

Then J possesses a critical value ¢ > a given by

¢= Inf ap J(h(u)),

where T = {h € C(Q, E) | hlaq = id} and id denotes the identity operator.

Lemma 2.4. Assume that the conditions (Lg), (F1), (F3) and (F4) are satisfied.

Then the functional J satisfies the (PS) condition.

Proof. Let ul) € R* and I € Z(1) be such that {J (u®)} is bounded and J* (u®) —

0 as [ — co. Then there exists a positive constant M, such that |J (u(?)| < Ma.
Let u® =v® + w® e V+ W. For | large enough, since

1S (-9 (59) ) = = (U0 43 s ) e

in view of (F}) and (F3), we can write

(Pu0.) < 3 s+ o)

< 2M, Z 9] + [0 < (200vE +1) 0]
n=]
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On the other hand, we have (Pu®),v®) = (Pv®,v®) > Ain |[v®]|* . Therefore
Aain 0O” < 2MoVE+1) [[v@]|, implying that {v(} is bounded.
Next, we show that {w(®} is bounded. Since

My>-—J (um) = —% (Ptlm.ﬂm>+i 72 (“- “S-)!-l!“g)) )

n=1

C (pu<*>.uf'))+g [F (r s u0) - 7 n,ws:ll,wg>)]+gp (m @ ud),
we get

> (i)

n=1

& 3t (2o O3 [ () = F ()
n=1

< M+ -;-Am [ ||2

k |0F (n, 0 + 003}, 0l + ool i B (n 0 + 00,0 + 60

"Upi1 +
+ By n+1 Bz

n=1

< Mz+%)um ||uw|[’+mm @]

k
where 8 € (0,1). It is easy to see that { Y F (n,wf,‘lnw,‘,")} is bounded.
: n=1
It follows from (Fj) that {w(®} is bounded. If otherwise, we assume that ||w(®|| -
+00asl —+ oo. Since there exist z¥) € R, I € N, such that w® = (2®,20),... 20)" ¢
Ej, then

|
.u‘

L] 3
o) = (35 o80F) " = (25 10F) = VEs1 5 400 st 00,
n=1 n=1

Since
F ( 0] {:)) _ [ F(n,20,20), when n € Z(1, k),
n, wn+1!1”ﬂ = F (ﬂ, _ﬁz(l)‘zﬂ)) x when n =k

then F (n,wff_’,_l,w,(.n) —++ooasl = oo.
k
This contradicts the fact that {Z F (n,w,(:'ll,wg))} is bounded. Lemma 2.4 is
. :
proved. o a

Lemma 2.5. Assume that the conditions (L1), (F1), (Fs) and (Fg) are satisfied.
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Then the functional J satisfies the (PS) condition.

Proof. It follows from (L;) that P is positive definite. We denote by A1, Az, -+ , Ak
its eigenvalues, and define

(2.7) Amin = min{A;(j € Z(1,k)} > 0, Xmay = max{)\;|j € Z(1,K)} > 0.

Let u® € R* and I € Z(1) be such that {J (u®)} is bounded and J' (u®) — 0
as | — co. Then there exists a positive constant Ms such that —Mz < J (u®) <
M3z, VIl € N. By (1.13), we have

~Mz <7 (u®) = %(p«u(i),u(l)> _gﬁ- (n, 4, u)

o [ -3 [ () ()]

i - e o0

1
S gAmax
e
This implies
cak?? "u 2 |[u("||2 < Mj + cek.
Since g1 > 2, there exists a constant M > 0 such that
||uf‘}|| < M, VieN.

Therefore, {u(? } is bounded on R*. As a consequence, {u()} possesses a convergent
subsequence in R¥. Thus the (PS) condition is satisfied. Lemma 2.5 is proved. 0O

Lemma 2.6. Assume that the conditions (L3), (F1), (F7) and (F3) are satisfied.
Then the functional J satisfies the (PS) condition.

Proof. Let u) € R*, I € Z(1) be such that {J (u®)} is bounded and J* (u) —+ 0
- @8 1 — oo. Then there exists a positive constant M; such that |J (u()| < M. By
(F{), for any ) € E;, and | € Z(1) we have

M <7 (u®) = 1 (Pu®,40) ‘g‘” (m99,40)

e 40 - 3 {o [ (422)"+ ()] -}

<2
2
< (-} o] rv b7
Therefore,
(2= ) [0 < 308
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Sinceau>%4\m,itiseasytoseetha.t {u®} is & bounded sequence in Ey. As a

- consequence, {u(lJ]. possesses a convergent subsequence in Ej, and the result follows.

Lemma 2.6 is proved. 0

3. PROOFS OF THE MAIN RESULTS
In this section, we prove our main results by using the critical point method.

Proof of Theorem' 1.1. It follows from (L1) that the matrix P is positive definite.
Let A1, )2, , Ak be the eigenvalues of P. Applying matrix theory, we have A; >
0, j =1,2,--- ,k. Without loss of generality, we may assume that

0<A S-S A

Then for any u = (u1, %z, ,Uk)" € R* we have

k T
)2 el =l bl = 3 (Ve +2) "

' k
1
> EAxlluII’ = limll - leall = e D~ [ + 18D « llwll + [lul]™ = cak
n=1

2 %Axllull’ = llnll - llull — exk(2 + [B)™ lul|™ — cak — 400 as [|u|| = +oo,
which by (F;) implies that J is bounded from below. From this, we conclude that
a (PS) sequence must be bounded in R*. This means that J(u) is coercive. By the
continuity of J(u), there exists i € Ej such that J(&) = cy. Clearly, # is a critical
point of J. This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. Observe first that by Lemma 2.4, J satisfies the (PS)
condition. Next, we verify the conditions (J1) and (Jz). For any v € V, by (F}) we
have '

k
~J0) = —3 (Pu,) + 3 F(n, a1, vn)

n=1
1 . - k
< =3 Amia|0]|* + kM + Mo D (lunsa| + |un])
n=1

< =3 min[[v]% + kM + \/8k — 4B + BZMo|jv|| — —oo as |[v]| = +oo,

implying that the condition (J;) is satisfied.
Next, for any w € W, w = (w;,wg,- - ,wg)*, there exists z € R such that
Wy = 2 for all n € Z(1,k). By (Fy), there exists a constant Ry > 0 such that
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F(k,~pfz,2) > 0 and F(n,z,z) > 0 for n € Z(1,k — 1) and |z| > Ro/v2. Let
M = i F — = i
6 wztl.k—%{ﬂlsﬂu/ﬁ{ (n,2,z), F(k,—Bz,2)} and My = min{0, Mg}. Then
F(k,~Pz,2) > Mz, F(n,z,2) > My, V(n,z,2) € Z(1,k—1) x R2.

So, we have

k k—1
—J(w) = EF(n, Wn4t1,Wn) = EF(n,z, z)+ F(k,—Bz,z) > kMy, Yw e W.

n=1 n=1
It can easily be seen that the functional —J satisfies all the assumptions of Lemma
2.1, and the result follows. Theorem 1.2 is proved. a

Proof of Theorem 1.3. Since the matrix P (see (2.3)) is symmetric, its eigenvalues
(denoted by Ay, Ag, -+, Ax) are real, and without loss of generality, we may assume
that A1 < A3 <--. < Ap. Therafore, for anyu= (u1,u2,:++ ,ux)* € R, we have

7(6) < Eullll+ Il -l — s 3 [\/—“‘"] b

n=1

< §*~uuu= +1imll - llull - ek lul™* + sk — —co as lul| =+ +oo.
Due to the continuity of J(u), the above inequality implies that there exist upper
bounds of values of functional J. Classical calculus shows that J attains its maximal
value at some point, which is just the critical point of J. Theorem 1.3 is proved. O

Proof of Theorem 1.4. First observe that by (Fg), for any € = zﬂ}—r\m, where
Amin is defined in (2.7), theremustsp)ﬁ such that

|F(n,v1,v)| < m,\m (v +42) ,¥n € Z(1, k),
for \/v? +v2 < V2p.

Next, for any u = (u1,uz,-- ,ux)* € R and |ju]| < p, we have |u,| < p, n €
Z(1,k), and for k > 2 we can write

J(u) > - Amlnﬂunn 4052 T2 Amm'; w2, +ul)
_ > 2 Sl ~ 3 At = ol

Taking a £ 3Aninp? > 0, we get J(u) > a > 0, Yu € 8B,. Observe also that there
exist constants a > 0 and p > 0 such that J|gp, > a. This implies that J satisfies
the condition (J3) of the Mountain Pass Lemma.

Clearly we have J(0) = 0, and in order to exploit the Mountain Pass Lemma in
critical point theory, we need to verify that the other conditions of the Mountain Pass
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Lemma are also satisfied. By Lemma 2.5, J satisfies the (PS) condition. So it remains

to verify the condition (Ji)- & o i
From the proof of the (PS) condition it follows that J(u) < 3Amax [Jull”—csk{* [luf™ +

csk. Since o3 > 2, we can choose & large enough to satisfy J(@) < 0. By the Mountain
Pass Lemma, J possesses a critical valuec 2> a > 0, where ¢ = infher sup,go,1) J(h(s))
and T = {h € C((0,1], R¥) | h(0) =0, h(1) =@}.

Let & € R* be a critical point associated to the critical value c of J, that is,
J(@) = c. Using the arguments of the proof of (PS) condition, we infer that there
exists @ € R* such that J(&) = Cmax = maXsefo,1] J(A(s))- _

Clearly, @ # 0. If i # 4, then the conclusion of Theorem 1.4 holds. Otherwise,
@ =1, and ¢ = J(@l) = Cmex = MaXyefo,1] J(R(8)). This implies sup,epx J(u) =
infrer Sup,eo,1) J(#(s)). Therefore, Cmax = maX,efo, 1] J(h(s)) for any h € T
By the continuity of J(h(s)) with respect to s, J0)=0 a.nd J(@) < 0 imply that
there exists 8o € (0,1) such that J (h(s0)) = Cmax. Choose hi, hz € T such that
{h1(s) | s € (0,1)} N {ha(s) | s € (0, 1)} is empty, then there exists s;, s3 € (0,1)
such that J (k1 (81)) = J (ha (82)) = Cmax- Thus, we get two different critical points
of J on R* denoted by u® = h (81), u? = hz (82) . The above arguments imply that
the BVP (1.9) with (1.10) possesses at least two nontrivial solutions. Theorem 1.4 is

proved. a
Proof of Theorem 1.5. By Lemma 2.6, J is bounded from above on Ey. We define
¢o = supyeg, J(u). The arguments of the proof of Lemma 2.6 imply By o400 J(u) =
—o0. This means that —J(u) is coercive. By the continuity of J(u), there exists & € E},
such that J(f) = cg. Clearly, 4 is a critical point of J.

Next, we claim that co > 0. Indeed, by (F), for any u € V, |jul| < p, we have

k
1
70 2 Pl =7 3 (s +7)

> [Bhuta = (8*+2)m] Il

Taking @ = [$Amin — (82 +2) 7] p?, we have J(u) > a, Yu € V N 8B,. Therefore,
we have proved that there exist constants a > 0 and p > 0 such that J|ap,nv > a.
This implies that J satisfies the condition (J5) of the Linking Theorem.

Noting that Pu =0 for all u € W, we have

k k
J(u) = %(Pu.u) =Y F(n,tnt1,tn) == Y F(n, tny1, un) <0.
n=1 n=1
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Thus, the critical point # of J corresponding to the critical value co is a nontrivial
solution of the BVP (1.9) with (1.10).

It follows from Lemma 2.6 that J satisfies the (PS) condition on Ex. Now we are
going to verify the condition (Jg).
' Wetu.keeeBB;nV,a.ndforanyzeWa.ndreRwesetu=m+z.Theuwe
have

1 k
J(u) = 5(P(re +2),re+2) = 3 F(n,rens1 + Zn41,Ten + 2n)

n=1

= %(P(f‘e)sfe) = i {02 [(f=n+1 +zn41)” + (ren + zn)z] n ’f}
n=1

< 2Amr -0y Z(ren +20)% + by

n=1

1
= (Fwax = 02) 12 = el 4 k7 < —oallsl? + k.

Thus, there exists a positive constant R, > & such that for any u € 8Q, J(u) <0,
where Q = (Br, N W) @ {re|0 < r < Rp}. By the Linking Theorem, J possesses a
critical value ¢ > p > 0, where ¢ = infrer sup,eq J(h(u)) and T' = {h € C(Q, Ey) |
hlaq = id}.

Let & € Ej be a critical point associated to the-critical value ¢ of J, that is,
J(@) = c. If & # @, then the conclusion of Theorem 1.5 holds. Otherwise, i = 4.
Then ¢ = J(@) = J(&) = c, that is, sup J(u) = inf sup J(h(u)). Choosing h = id.

u€E; her yeQ
we have sug.f(u) co- Since the choice of e € 8By NV is arbitrary, we can take

—e € 8B; N V. Similarly, there exists a positive number Rz > o, such that for any
u € 8@ we have J(u) < 0, where @ = (Bg, N W) & {—re|0 < r < Rs}.

Again applying Lemma 2.3, we conclude that J possesses a critical value ¢/ > p > 0,
where ¢/ = infper, SUPyeq, J(h(u)), and T’y = {h € C(Ql, E}) | hlag, = id}.

If ¢ # cg, then the proof is finished. If ¢/ = ¢g, then sup J(u) = cg. Due to the
uEQ:

inequalities J|ag < 0 and J|sq, < 0, J attains its maximum at some points in the

interiors of the sets @ and Q;. However, Q N@; C W and J(u) < 0 for any u € W.
Therefore, there exists a point v’ € Ej such that ' # % and J(v') = ¢ = ¢. This

completes the proof of Theorem 1.5. O

135



XIA LIU, YUANBIAO ZHANG, HAIPING SHI, XIAOQING DENG

4. EXAMPLES
In this section we give two examples that illustrate our results obtained in Theorems
1.4 and 1.5. 2

Example 4.1. For n € Z(1,k) consider the BVP:

(4.1) = T N, 22
—UUp41 — Un—1 + 3tn = O1Un [so(ﬂ) (upt1 +“3=)1L T+on—1) (un+ “‘31—1)1L 1]

with boundary value conditions
(4.2) ug + auy =0, uk1 +Pux =0,

where oy > 2, a > —2and 8> -2, p(s)(s € R) is continuously differentiable and
¢(n) > 0 with ¢(0) = 0. It is easy to check that all the conditions of Theorem 1.4
are satisfied, and hence the BVP (4.1) with (4.2) possesses.at least two nontrivial

solutions.

Example 4.2. For n € Z(1, k) consider the BVP:
(4.3) o5 1T et
—6Un41 — 6un—1 + 12up = pitin [ﬂa (WA +ud) T +(n—1)% (un+4d ) ]

with boundary value conditions
(4.4) o+ oty =0, Ugs1 + Puk =0,

where g > 2, @ = f = —1. It is easy to verify that all conditions of Theorem 1.5
are satisfied, and hence the BVP (4.3) with (4.4) possesses at least two nontrivial

solutions.
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