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1. INTRODUCTION

In this paper we consider the following wave equation with a viscoelastic damping

term:

e = (1 +a(t) "V“Hn) Au— [} h(t — s)Au(s)ds + f(t,z), in @ x Ry
(1.1) u=0, onT xRy
(-'B 0) = uo(z), wm(z,0)=w(z), in Q,

where Q is a bounded domain in R™ with smooth boundary I' = 9Q; the functions
uo(z) and u; (z) are given initial data; the (nonnegative) relaxation function h(t), the
(non-negative) function a(t) and f(t,z) will be specified later, and |-[|; stands for the
L2-norm.

The equation in (1.1) describes the motion of a viscoelastic body according to the
Kirchhoff model (see [8,18]). The integral term in (1.1) represents the memory term
or the dependence on the history and the kernel involved is the relaxation function.

Kirchhoff type problems (with different dissipations) and viscoelastic problems
have been investigated independently by several authors during the last decades (see,
e.g., [2-19]). A number of results on well-posedness and asymptotic behavior of the
solutions have been established. Among them only few papers deal with problems of
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the type (1.1). It should be noticed that the study of the problem of interest leads to
some considerable new complications.

In the above cited papers were extensively used the boundedness of energy to
estimate the quantities of interest. In our case, due to the presence of the forcing
term f(¢,z) in the Kirchhoff problem, the derivative of the energy is not necessarily
negative, and hence we cannot use the boundedness of the energy to estimate some
terms like the one involving the coefficient of diffusion a(t) || Vul|2 Au. Moreover, even
without this forcing term, since the relaxation function h(t) generally is not non-
increasing (see [17]), again we cannot use the boundedness of the energy to estimate
the corresponding terms. In this paper we resolve this problem with the help of an
inequality due to Airapetyan et al. [1]. Note that the well-posedness of the problem
can be proved using the Faedo Galerkin method (see, [1,8,18]).

Theorem. Let (ug,u1) € H?(Q) N HY(Q) x L2(Q) and h(t) be a nonnegative
summable kernel. Then there ezists a unique solution u of the problem (1.1) satisfying
u € C ([0, T); HX(Q) N H}(Q)) and

w € C ([0, T]; L*(R)) n L*([0, T7; H3(R))

for some T > 0.

The paper is organized as follows: in Section 2 we prepare some material needed to
prove the main results of the paper (equivalence of the classical and modified energy
functionals and some lemmas). Section 3 is devoted to the statement and proof of our
decay result. In Section 4 we present some simple examples illustrating our findings.

2. PRELIMINARIES

In this section we introduce different functionals we will work with, prove the
equivalence of the classical and modified energy functionals, and state a useful identity
and a lemma which constitutes the key tool in our contribution. We define the
(classical) energy by

a(t
B(®) = 5 (ool + 1vel) + 22 jwupg, ¢ > 0

where ||.||, denotes the norm in L3(R). It follows from the equation (1); that if a(t)
is a differentiable function, then

E'(t) = ./nVug /: h(t — 8)Vu(s)dsdz + -@ ||Vu||; +-Ltl1f(t, z)dz, t > 0.
Observe that

t
2 [ Vi [ - o) Vu(o)dsdz = [ (¥OVu)dz — bt [l -
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-4 { [oavaus- (f neoras) nouiz}.

: 2
(0)e) = [ he—a) u(®)~w(e)ds, £ 2
Therefore, modifying E(t) to
et = & It + (1= [ o) vl + 22 1w + | vz

we obtain, fort > 0

&/(t) = } Jo(WOVu)dz — M2 |Vully + {3 | Vuls + [ uef (4, 2)de
< } [, (WOVa)dz — 22 [Vul + =2 [Vl + 6 uel} + & 1713, 5> 0.
These steps will be justified later. Clearly €'(t) is not necessarily negative at this stage,
and this already eliminates several possible methods and techniques. We assume that

the kernel is such that

(2.2) T j; S =1 k50

Next, we define the standard functionals: & (t) = [ ueudz,
() =~ [ e [ e 8)(ut) ~ (o) .

The next functional was introduced in [17]:

as(0)= [ [ Holt— o) Va0 dods,

where

@2.1)

where

23) 5,0 =207 [ Kenoas,

and (t) will be determined later (see (H3) below). The modified energy we will work
with is given by

(24) L) =€) + 3, Mi(t)

for some A; > 0, i = 1,2, 3, to be determined.
The next result states that L(t) and E(t) + ®3(t) are equivalent.

Proposition 2.1. There ezist constants p; > 0, i = 1,2, such that
p1[E(t) + B5(t)] < L(t) < pa[E(E) + Da(t)]

for allt > 0 and small enough X\;, i=1,2.
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" Proof. By Poincaré inequality we have
@)= [ weude < Ll + 2 vuld,
where Cj, is the Poincaré constant, and also
s (t) < = el + 921’-:: jr; (hOVw)dz

where we have used the inequalities

Jo hlt — 8) (u(t) — u(s)) ds
< Jo VA o 8)\/h(t — s) (u(t) — u(s)) ds
< (s ne - s)da) (/s hlt — s) (u(t) — u(s)) ds)
The last two estimates imply
L) < 3 (142 + ) el + § (1= [3 hs)ds + MGy [Vl

+3 (14 A2Cpk) [ (ROVu)dz + Ag®s(2).

On the other hand we have
C2L(8) 2 (1= M — A) fluell? + (1~ X2Cpk) [o(hOVu)dz
+1 -5 —MCy) ||V“"z + 2)\3®3(2).
Therefore, py[€(t)+ ®a(t)] < L(t) < pa[€(t) + ®3(2)] for some constants p; > 0,
i = 1,2, and small enough X, i = 1,2, such that \; < min {1, (1 - x)/Cp} and
A2 < min {E},‘E’ 1- 4\1} . Proposition 2.1 is proved.
We will need the following identity: for continuous functions h and v defined on

(0,00) and t > 0

(28) el o :

ot) j; (¢~ s)u(s)ds = 3 ( [ h(s)ds) O +5 /ﬂ h(t — Yo (s)ds — 2(CI) ).
The proof is straightforward.

The following lemma, which was proved in [1], plays a key role in the proofs of our
results.

Lemma 2.1. Let x(t), o(t), B(t) € C[0,0). If there egists a positive function u(t) €
C[0,00) such that

£(t) K (®) L ()
0300552 (x0- 575). 100 < 35 (x - 3.
then a nonnegative solution v(t) of the following inequality
v'(t) < —x()v(t) + o () (2) + B(2)
such that ;4(0)v(0) < 1, satisfies the inequality v(t) < ﬁi)‘
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3. ASYMPTOTIC BEHAVIOR

In this section we state and prove the main result of this paper. We first introduce
some notation (see [11]). Let h and x be as in (1.1) and (2.2), respectively. We set

w=1=E and for a measurable set A C R*, we define the probability measure h by

(3.1) h(A) =~ L h(s)ds.

The flatness set and the flatness rate of h are defined by

(3.2) Qy :={seR*: h(s) > 0and ' (s) =0}
and

(3.3) Rn = h(Qn),

respectively. Also, we define
Gpe == {s € RT:0< s < ¢, h(t—3) > 0and h'(t —s) =0},

and let £, > 0 be a number such that [;* h(s)ds = hs > 0.
We impose the following assumptions on the kernel h(t).
(H1) h(t) >0 forall t >0 and 0 < & = [ h(s)ds < 1.
(H2) h(t) is an absolutely continuous function such that A’() < 0 for almost all
t>0.
(H3) There exists a non-decreasing function ~y(t) > 0 such that n(t) := 7/(¢)/(?)
is a decreasing function and fu+°° h(s)y(s)ds < +oo.
(H14) The function a(t) is & continuously differentiable, and f € L*(£2) is a continuous
function in .
Remark 3.1. Note that the assumption (H8) is satisfied for a broad class of functions
including polynomials and exponential functions. Moreover, we are considering kernels
satisfying (H2) and (H3) just for simplicity. Our approach can be applied for other
more general kernels as well. In particular, for occasionally increasing kernels (see
[17]).

Theorem 3.1. Let the hypotheses (H1)-(H4) be satisfied, and let H,(0) < 5=k
and Ry, < 1/4, where H,(t) and Ry, are as in (2.8) and (8.8), respectively. If there
ezists a positive function u(t) € C*[0,00) such that

0 SRS < 41 (a0 - ).
1713 < 785 (A) - &8
where al, (t) := sup{0,a’(t)} and B is given in (9.20) below, then E(t) < C/u(t) for
t > 0 in the cases:
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(8) Lim¢yo0n(t) = 71 # 0 and A(t) = A = p;' max{Cs, Xs7i} (Cs is as in (3.19)
and A3 will be chosen), or

(b) limi—00n(t) = 0 and A(t) = An(t) = p;* max{1, As}, t > 0 for some positive
constant C provided that p(0)L(0) < 1.

Remark 3.2. The conditions imposed on Ry, and H.(0) may be relaxed with a trade-
off on . Moreover, the existence of such a function s is illustrated by some examples
given in Section 4.

Proof of Theorem 8.1. A differentiation of ®; () with respect to ¢ along trajectories
of (1.1) gives

1 (t) = llucllz ~ [ Vull; + fn Vu fn " h(t— 8)Vu(s)dsda — a(t) [Vald + fn ufdz

and, by the identity (2.5), we obtain
(3.4)
() < fluellz — (1- %) ||V“||2 +§Jy R 8) IVu(s) I2ds — § [ (hOVu)dz
—a(t) IIVulIa +6:1Cp HV‘-‘Hz T ﬂ" "f"z 0 > 0
For ®5(t) we have

Bh(t) = — [ uee fy h(t — s) (u(t) — u(s)) dsdz
= Jove Iy (¢ = 8) (ult) - u(e)) ds + e J; h(s)ds] o

or
@4(8) = - fo [(1 - Jy h(e)ds) Au+ [} h(t - 8) (Au(t) - Au(s)) ds
+a(t) [Vully Au + £(t, )] fy h(t = 8) (u(®) — u(s)) dodiz — ([ h(e)ds) [l
= Jque Jy W (t — 8) (u(t) — u(s)) dsdz.
Therefore
(3.5)

®h(t) = (1 = h(s)ds) Jo Vu J h(t — 5) (Vu(t) — Vu(s)) dsdz
+a(t) |Vull3 [, Vau f§ h(t — 8) (Vu(t) — Vu(s)) dsdz
= Jo £(t,) Jy bt — ) (u(t) - u(s)) dsdz — ( f; h(s)ds) [fuel
+ o | fy 1t = ) (Vu(e) — V(o)) d o — f e JE 1t — 8) (ult) — u(s) dd.

Now we estimate the terms on the right-hand side of expression (3.5). We start with
the second term, for which clearly we have
a(t) [Vull3 [ Vu. fiy h(t — 8) (Vu(t) — Vu(s)) dsdz
< 20 |vul} [ vul} + (fJ h(s)ds) Jo(hOVu)dz]
< | vuly + 42 | Vul (f; h(s)ds) fp(hOVu)dz

< z%ﬁi%},a’(t) + n—_,%,a*(t) = o8 (7).
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forthethirdte:montheﬁght—handsideof(?:ﬂwehave

Jo f(t,2) f h(t — 8) (u(t) — u(s)) dsdz
67 < 520y (2 ho)ds) [o(hIVu)dz + g5 1118, &2 >0

Regarding the first term on the right-hand side of (3.5), for any measurable sets A
and Q such that A =R*\Q, we have
Jq Vu 2 h(t — 8) (Vu(t) — Vu(s)) dsdz
f | h(t —8) (Vu(t) — Vu(s)) dsdz
+ JqVu fn h(t — 8) (Vu(t) — Vu(s)) dsdz
< Ja Vu [4, h(E— 8) (Vu(t) — Vu(s)) dsdz
+ (fa, 1t — s)ds) [ Vll3 = Jo Vo fo, bt = 3)Vu(s)dsdz,

where we have adopted the notation: B¢ := B N[0, t]. It is easy to see that for d3 > 0

Ja Vu [4, h(t —3). (Vu(t) — Vu(s)) dsdz
(3.9) < 65 | Vull2 + & Joy [, Bl — 8) [Vuu(t) — Vu(s)|? dadz,

Next,

(38)

fn Vu J'n‘ h(t — 8)Vu(s)dsdz
(3.10) <} ( Jo, Bt - a)d.s) IVull3 + § Jo, bt — 8) [ Vu(s)(13 ds.

The inequalities (3.9) and (3.10) together with (3.8) imply

(3.11)
Jo Vu [ h(t — 8) (Vu(t) — Vu(s)) dsdz

< (b5 + 3 Jo, h(t — a)ds) [Vull3 + & Jo Lo, bt ~ ) Vu(t) — Vu(s)] dadz
+5 fo, bt = 9) [ Vu(s)llz ds

where h is defined by formula (3.1).
Thus, it remains to estimate the last two terms on the right-hand side of (3.5). For
the next to the last term we have

Jo | 1t = ) (Vutt) = V(o)) |
(3.12) < (14 £)5 fo [a, Bt — 8) [Vu(t) — Vu(s)|" dadz
+(1+84) (f"a‘ h(t — a)das Jo Jo, h(t — 8) [Vu(t) — Vu(s)|? dsdz, 64 > 0.

Finally, the last term on the right-hand side of (3.5) is estimated for any d; > 0 as
follows
Jawe Jo W (t - 8) (u(t) — u(s)) deda
(3.13) < s Jluell3 + & (J; IW'(0)| de) Jo(IW| OVu)dz
< & |lutllz — ZA(0) [o(WOVu)da.
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Teking into account (3.6)-(3.13), from (3.5), we obtain

() < (1= ho) 83 + 3 Jo, h(t — 8)ds] [Vull3 + (85 ~ h) fuel
+820p ([ he)ds) Jo(hOVWdz + g 1£13 + folBre2()
(3.14) 1 [1 3 + &] [, Ly, Bt — ) |Vu(t) - Vu(o)]? dodz
+3 (1= h,) fo, h(t — 8) [[Vu(s)|l3 ds
—2h(0) [, Ju, B (t = 5) [Vu(t) — Vu(s)|* dsdz
F(T+6) ( Jo, Bt - s)ds) Ja Jo, bt — 8) |Vu(t) — Vu(s)|* dsdz.

Further, a differentiation of ®3(t) yields
(3.15)
B4(t) = H, (0) [ Vully + Jo Hi(t ~ 8) [[Vu(s)]l3 ds
= H,(0) | Vulla ~ Jy ZE=5 H ¢ — 5) [|Vu(s)|3 ds — [ h(t — s) [ Vu(s)||2 ds
< Hy(0) [IVully = n(t) Jy Ha(t = ) [ Vu(s)[3 ds — f; (t ~ s) [ Vu(s)|2 ds,
where we have used the fact that n(t) := +/(¢)/7(t) is a non-increasing function.
Taking into account the estimates (2.1), (3.4), (3.14) and (3.15), we can write

L'(t) < § [o(WOVu)dz — 2222h(0) [, [, (¢t — 8) |Vu(t) — Vu(s)|? dsdz
+ (<42 — Ma@®)] IVullf + 54+ Ax + (85 — ha)da] fluel2

+4 [F+ 3+ 2] 1903 + 228 0a82() - dam(t)@a(0)

+{M8:Cp + 2o (1 - h) [65+ 3 Jo, bt~ 8)ds] + AaHy(0) — Ma(1 - §)}
X [IVully + (3 + 20578 — 55) [2 bt — 8) | Vu(s)]3 do

ok [a,o, +1+ 2 4 2] [ [, bt~ 8) [Vut) - Vu(s)? dsdz

+ [A,J,c,n + (1+64)A2 fo, h(t — s)ds - A,L]

x Jo Jo, h(t —s) |Vu(t) — Vu(s)|? dsdz.

(3.16)

Consider the following sets (see [1 i])
Ani={s € R* :nk'(s) +h(s) < 0}, n €N,
and observe that
UAn = R\ {2a UNa},
n

where N, is the null set where A’ is not defined and Qj, is as in (3.2).
Furthermore, denoting Q, = R*\A,, and taking into account that Q.+ C Q, for
all n and (N, Qu = Qn UNj, we obtain limp_e0 A(2s) = A(Q). Define the sets

Ape = {seR*:0<s<t nh'(t—s)+h(t—s) <0}, neN.
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In (3.16), we take A := Ane, Q= Qne and A = (ha —€) A2 for some small enough

£ > 0, to obtain

(3.17) :
@) <} [1 % %h(ﬂ)] Jo [, H(t = 8) [Vu(t) = Vu(s)[* dsdz

+ [£0 — xua(o)] IVull + § [3 + L5222+ 8] 171 + G2e2aE70)
—Aan(t)@s(t) + {6:1Cp (he —€) Az + A2 (1 = ha) |03+ § [5, h(t - s)ds]
FAsHy(0) — (he —€) Xa(1— §)} IVull3 + [6 + (J5 — €) Az] [|uell3

+ (G222 — ) [y bt - ) [ Vu(e)llzds

+ Em (1 +6,Cp + 1 + g:) - ;‘;] Jo Sz, h(t — 8) [Vu(t) — Vu(s)|® dsdz
+)z [62Cpr + (1+04) [5_, h(t —8)ds — Lozt

x fo Ja., ht—8)[Vu(t) - Vu(s)|? dsdz.

Noticing that £ [Vull§ < £2Yre2(t), we chose &5 = &/2, As = L= and ),
satisfying Aa < gz 80d

1—h. 1 1
vamiem— e e
Azk (1+520p+ i3 +54) = Ci, C1 >0,

to get
3.18
(L’(t; < —Ma(t) [Vulls + 3 [} i %:] I£117 + 5'*1‘(1%‘5‘;@8’(0
—Xn(t)Bs(t) + da {81Gp (e — &) + (1 — bs) [b3+§ [, blt — s)ds]
+43908,(0) - (he — &) (1= )} IVully + [5 — 0] fluel}
+a [B2Cpm + (1+60) f5,, bt — 8)ds haze ]
% Jo Ja,, bt — 8) Vu(t) = Vu(s)]* dsdz — G [ [3,, hlt — 8) [Vu(t) = Vu(s) ? dada.
For small enough & and d4 and large enough values of n and t,, we have k(Qj) < 1/4

and
hi b

(1+60)wh(2q) 2=

<0,

implying
(1+54)jt h(t—s)da—h'—£<o
Dnl 2

%5(1 ~ ha) L [ ' 3)ds < p(fe —¢) (1 o ;)

with p = } [1 - gfE#) ] Note that p < 1/2. For the remaining 1 — p we require
that :

LoEH0) < (1= ) (b =) (1- ).
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This relation is satisfied for H,(0) < 9—;—"5 and sufficiently large ¢.. Therefore, for
small enough d;, i = 1,2, 3 and § we obtain

(3.19)
L (t) + 4Aza(t)

20 < ~Caet) + L e 1 1120 224 28] yesuntyenn,

for ¢ 2 t, and some positive constant C5.
(8) If limyo0 77(t) = 7 # O, then n(t) > #, and by Proposition 2.1 there exist
Cs > 0 such that

aly (t) + 4)2a(t)

(320) L'(t) < -CsL(t) + 20— R LA(t) + i— (3 + ”ﬁ—':’ ) 1712

Applying Lemma 3.1 with
o _al,(t) + 4Aqa(t) _1/1 kA X 2

X)) =Cs, oft) = 220, g = % (3452432 113

we infer that E(t) < C/u(t), t > 0 for some positive constant C.
(b) If lim¢— 00 7(t) = 0, there exist £ > ¢, such that q(t) < C; for all ¢ > £. Therefore
¢
(821) L'(t) < ~Cen(®)L(t) + £+ 4300) 15y + i L0 AT
RA(1—K)? I

for some Cy > 0. Taking x(t) = Cyn(t) we conclude that

E(t) < C/ult), t > 0.
This completes the proof of Theorem 3.1.

4. EXAMPLES

First, as it was mentioned above (see Remark 3.1), polynomials and exponential
functions satisfy the assumption (H3). Indeed, for y(t) = (1 +t)%, @ > 0, we have
n(t) = (£)/7(t) = a(1+1t)™*, and for 4(t) = e, a > 0, we find 7(t) = v/ (t)/7(t) =
o

Next, we give two examples that illustrate both possible cases in Theorem 3.1.
Example 4.1. Let o(t) = oge”* for some positive constants oo and v, which may
result when a(t) = ae**) and B(t) = Boe™™* for some positive constant fo. This
situation can occur, for instance, if the function f(t,z) is of the form g(z)e™ ¥t. Then
K(t) = poe”* with g satisfying oo < 42 (xo—v) and fo < 53=(xo —v), where xo = C3
(see formula (3.20)). This is possible when ¥ < xp and 4g0fp < (X0 — v)%.
Example 4.2. Assume that Cyn(t) = (1 +£)~! (see (3.21)). This can occur if ()
is of the form (1 + £)*), o(t) < oo(1 + £)** and B(t) = Bo(l + t)**. For instance,

this is the case when the functions a(f) and f(t,z) are of the form a(l + ¢)* and
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h(z)(1 + £)"2/2, respectively, with 21 +vz < —2, @ > 201 +1) and 16006 < o?.
Then, there exists a constant C such that u(t) =C(1+¢t)” with v =14 +1.
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