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1. INTRODUCTION

Geometry of the tangent bundle TM of an n-dimensional Riemannian manifold
(M, g) with Sasaki metric has been extensively studied since the 60's. Nevertheless,
the rigidity of this metric has incited some geometers to tackle the problem of
construction and study of other metrics on TM (see [1, 21]). The Cheeger-Gromoll
metric has appeared as a nicely fitted one to overcome this rigidity (see [6]). Then
using the concept of naturality, O. Kowalski and M. Sekizawa [17] have given a
complete classification of metrics which are naturally constructed from a metric g
on the base M, assuming that M is oriented. Other presentations of the basic results
from [17] (involving also the non-oriented case and something more) can be found
in [16]. These metrics, called in [2] g-natural metrics on TM, had been extensively
studied during last years. It has been proved that some subclasses of g-natural metrics
such as natural diagonal lift type metrics offer very interesting geometrical features
and research horizons (see [11, 12]).

Fiber bundles have important applications in geometry and modern theoretical
physics. They are used in a number of physical fields, such as gauge theory, which
was invented by Weyl [7]. Tensor bundles TPM of type (p,g) over a differentiable
manifold M are particular examples of fiber bundles, which were studied by a number
of mathematicians such as Ledger, Yano, Cengiz, Gezer and Salimov (see [3] — [5],
[14, 18, 19]). The tangent bundle TM and cotangent bundle T*M are the special
cases of tensor bundles (see, e.g., [8] — [13], which deal with g-natural structures on
TM and T*M).
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In [20], Salimov and Gezer have introduced the Sasaki metric Sg on tht‘e (%,1.)-
tensor bundle T2 M of a Riemannian manifold M and have calculated the Levi-Civita
connection of this metric and its Riemannian curvature tensor.

In this paper, using a similar method, applied to a t-angent bu.nd'le, we deﬁn?
the Cheeger-Gromoll type metric CGg on T} M, which is an-extanswn of Sasaki
metric. Then we calculate the Levi-Civita connection, Riemannian curvature tensor,
Ricci tensor, scalar curvature and sectional curvature of this metric and establish
some relationships between the geometric properties of the base manifold (M, g) and
(T2M,®Cyg). Finally, we introduce a para-Nordenian structure on (7§ M, °Cg) and
find equivalence conditions for para-Kéhlerian properties of this structure.

2. PRELIMINARIES

Let M be an C° manifold of finite dimension n. Then the set T3 M = [] ¢, T1 (p)
is defined to be the tensor bundle of type (1,1) over M, where ]| denotes the
disjoint union of the tensor spaces 77 (p) for all p € M. For any point p € TIM the
surjective correspondence § — p determines the natural projection = : TIM = M.
The projection 7 defines the natural differentiable manifold structure of T{ M, that
is, TM is a C*°-manifold of dimension n + n®. A local coordinate neighborhood
{(U;27,5=1,...,n)} in M induces on T} M a local coordinate neighborhood

{w‘I(U);z-",m3=t_‘;,j= L,...,mi=n+jiG=n+1,...,n+n?)},

where 7 = t} are the components of the (1,1)-tensor field £ in each (1,1)-tensor
space T (p) (p € U) with respect to the natural base.

We denote by S1(M) the module over F(M) of all C* tensor fields of type (1,1)
on M, where F(M) is the ring of real-valued C* functions on M. If a € 9}(M),
then by contraction it is regarded as a function on T3} M, which we denote by . If o
has the local expression & = of z2; ® dz* in a coordinate neighborhood U(z?) € M,
then 12(a) = a(t) has the local expression 1a = af ti with respect to the coordinates
(z7,27) in 7=}(U). Suppose that A € S!(M). Then there is & unique vector field
V A € S(T} M) such that for a € S (M) )

(2.1) VA@a) = a(4) ow =" (a(4)),

where ¥ (a(A)) is the vertical lift of the function a(4) € F(M) (see [18]. We note
that the vertical lift V f = f o of an arbitrary function f € F(M) is constant along
each fibre 71 (p). Put VA =V 4*8; +V A¥8g, where

d a

(7]
S = =2 VgE._V 4h
G : oz’ L 8z* aip’ A e

Then by (2.1), we obtain ¥ A* = 0 and V. A* = A}. Thus the vertical lift VA of A has
the components
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4= (3)-(4)

with respect to the coordinates (27,27) in T} M (see [3]). Let £y be the Lie derivation
with respect to V € S§(M). The complete lift V of V to TE M is defined by

(2.3) CV(1a) = 1(Lya),
for @ € (M) (see [18)). If °V =€ V*5; +C V¥, then by (2.3), it follows that the
complete lift °V has the following components
Cyi Vi
Cy — —

@4 v=(ov )= ( pamZaeym )
with respect to the coordinates (z7,27) in T} M (see [3]).

The horizontal lift 7V € S§(T}M) of V € S§(M) to T{ M is defined by (see [18]):
HY(1a) =1(Vya), a€ }(M), where V is a symmetric affine connection on M. It
is easy to see that #V has the components

&5 V= (a1 )= (veege - roep ).

with respect to the coordinates (27, z7) in T} M, where I'}; are the local components
of V on M. Let U(z") be a local chart in M. Using (2.2) a.nd (2.5) we obtain

(2.6) ej:=H8; = H(5hoy) = 620, + (TYutk - T5,3)0r,

(2.7) ej : = V(8 ® do?) = V(3¥6], 64 ® da") = 6}y,

where &7 is the Kronecker symbol and j = n+1,...,n+n? These n+n? vector fields
are linearly independent and generate the horizontal distribution of V and the vertical
distribution of 7 M, respectively. Indeed, we have #X = X7Je; and VA = Ale; (see
[20]). The set {eg} = {ej, e;} is called the frame adapted to the affine connect.lon v
on =~}(U) C T} M.

3. A CHEEGER-GROMOLL TYPE METRIC ON TiM

For each p € M the extension of a scalar product g, denoted by G, is defined on
the tensor space 77(p) = T{(p) by G(4, B) = gug’ A;Bf, A,B € S}(p), where
gij and g are the local covariant and contravariant tensors, respectively, associated
with the metric g on M.

We consider a Riemannian metric ©Cg of Cheeger-Gromoll type defined on T3 M
as follows:

(3.1) CGg(VA,Y B) = V(aG(4, B) + bG(t, A)G(t, B)),
(3.2) COHYARY) =0,
(3.3) RS Y) =Y (g(XY)),
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1(M), where a and b are smooth functions of
all X,Y € Q}(M) and A, B € (M), Lo -
ior= 12l = t}t,‘g::(a:)gi' (z) defined on 7'M and satisfying the conditions a > 0 and
a +br > 0. The symmetric (2n X 2n)-type matrix

; 0
(3.4) ( gél agﬂgu+bﬁ’ﬂ ) 1

associated with the metric C®g in the adapted frame {es}, has the inverse

BT Y e R
(35) ( 0 :‘;leg“ = R#)_t;_t‘f 1 i g’ Giklp
Notice that in the special case where a =1 and b = 0, we have the Sasaki metric 5g
(see [20]). Let ¢ = ¢} z2 ®da’ be a tensor field defined on M. Then vp = (t]'¢l,) 2
and Y = (t:ngo;?‘)gg;— are vector fields defined on 77 M, and the bracket operation of
vertical and horizontal vector fields is given by the formulas:

(3.6) [V4Y Bl =0, [FX,Y A=Y (Vx4),
3.7) EFx "y =¥ [X,Y]+ G -7RXY),
where R denotes the curvature tensor field of the connection V and F—v:ip—>

{ i 0 1
93 (T} M) is an operator defined by (F—7)¢ = ( th, 07 — Pk, for p € 9}(M).

Proposition 3.1. The Levi-Civita connection CGy associated with the Riemannian
metric ©Cg on the tensor bundle T{ M has the following form:

COVuxBY = H(VxY)+5(F - NRX,Y),
06y LBY = 2 (M Rlts, A)Y +gae(t(g™ o R(, V)AY)),
C6VuxVB = Y(VxB)+ 5 (" R(ts, B)X + gus(t(6™ o R(, X)BY)),
C6y, VB = L(G(t,A)Y B+ G(t, B)Y A) + MG(A, B)Vt + NG(t, A)G(t, B)"t,
whereL::%‘, M:=;:;’_5E—" andN:z;f;}’;“;’)E.
Proof. By straightforward computation we obtain
(3.8) Bx(r)=0, YA(T)=2g:g"tiA] = 2G(t, A).
Next, using (3.6) - (3.8) and the Koszul formula:
20Cg(99v ¥, Z) = XCC(Y,Z) + Y°%(Z,X) - Z°%(X,Y)
+9%(IX,¥),2) - °°9(IY, 2), X) + °°9((Z, X),Y),
where X, ¥, Z € S}(T} M), we obtain the components of °V,
Putting 6V, eg =€ I3 g€y, and using Proposition 1, we obtain:
cory =1y, Oy = %( Ry, - Ryt), %I =0,  9OIF =, .
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r a 8L Ta0 T38 . a r
CGF]J' 5 '—(gtﬂR ; ta (2% -quisj tb)! ccrff?j(ghR’jl rt‘: = gﬁ’Rill tg)!
COrT = (4ol —T4.67),  COTELE0167 +E0167) + MgUigut? + NTHL.

4. THE CURVATURE TENSOR OF €V

It is known that the curvature tensor CCR of €€V is obtained from the formula

(4.1) COR(X,Y)Z = O°V§V3Z - OOVEOVZ - OOV 5 52,
where X, Y, Z € S}(T1M). Putting CR(ea, ep)e, = CCR, gex, we get
(4.2) “CRg" =0,
(4.3) CGRijF =0,
(4.4) °°R.5 =0,

1
(45)  “ORp" = Z{VmBue"t] = ViRensi"t] + ViBens 't — Vm Ry, 87},
r a 8L Ti0 T8
(4'6) CGRij = E{gtuva !j by = vamRuj b}t
(47 PR = 2{0iaVmBY "t - VIRYTHE + ¢PViRy T th — VimBiy 15},

r r a r r
CGRmu = Rpy;" + -{ykn(R’ 5 Ry;f — ~R* TR 2R, R D)tats
+§ka (R!h I‘R“‘ R!fl rRlJp AL 2th rRm'pk)tatP
+g" (Ryp! Rt — Rogmr Ry + 2Ry} Ry )5t
(4.8) +9"(Rignr Rijp* — Rist "Ronjet — 2chermlpk)t=t§}s
i a
CGRmG’ = Rpyi*6! - R, 67 + ‘{Qta(Rmf- FRP " = Ry, R"j B e
+Gia(Rinp "Rt — Rynpy B ")t242 + 9”’(Rmr "R
— Rt Ript ")ty + 07 (Ropnd’ Rigt™ — Ripg " Ripm) 6247}
+M(9HR' tk o, thleuth)t
(4.9) +L(Ryn,"t — Ry, t0)84,
2
r a a.
R, = ~0T(GiaR "ty — ¢ Rig8}) + T {902 R P R385
_%RslkrgﬁRpj":lt:t: 4 ng-tphrgl'ﬂR,jni'tgt:
. s a
_QhRuh rgJ bR(pn?l‘tatg} 25 5{91 IR““: K gﬂ-al jmr
+L(giaRYt? — ¢ Rigrn 1), + L(gtaR™ 112 — g Rypyr 138

(4.10) +(Mg" gy + NLE )t (gka R TES — 9" Ry, T80)},
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=
COR T = — (o 82 = Bonj 81+ L(Rnje "t = Bony "t
+ M (gex Rtk — g Rmjmtth)tr}
+5{01aF; " Ront 83t — 8" Regy Rne 8]
(4.12) —GtaR* P Ry 1243 + 9" Rep Rt}
OOR 1 = 4T (9B 15 — 9 Resf 8) — 6T (Gna R} Tt = ™ R 1)
a! r h
+ﬂ(§mRm;- T— leﬁmj r) + I{ngmh yu.Rﬂj t:t:
—Gta Rllhr Gnb Rpr;n ht‘;‘t; + Gta R‘lhr gmb Rnpjht:t:
~0na R "0 Ry t28] + 0 Repil 9na R "t5t5
—g™ Rophata R ' 8htG + 9™ Ry "9 Ry, 1

(4.12) —g" Reg 9™ Rups it}
COR_F = Fy[EnEoL7 — LH 07 05) + Falg™gnifrd} — 97 9ud'5,)
(4.13) +F3 (g gt ts — g™ gnifith),

where Fy := 2L’ — [? = N(1 - Lt), Fy := L — M(1+7L) and Fy := 2M’ + M? —
N(1 -7M).

Theorem 4.1. Let (M,g) be a Riemannian manifold and T{ M be its (1,1)-tensor
bundle with the metric ©Cg. If TLM is flat, then M is a flat manifold.

Proof. Let T}M be a flat manifold. Then we have ““R = 0, or eqivalently,
CGR A = (. Hence from (4.8) at the point (zf,#]) = (2%,0) € T}M we get
0= C(I%.ij")(,;‘o) = R,,;"(z*). Thus we have R = 0, implying that (M, g) is a
flat manifold.

Next, let M be a flat manifold. Then in view of (4.2) - (4.13) we conclude that
all the components of ““R are zero except ““R_jF. But “R_;= = 0 if and only if
F, = F; = F3 = 0. Thus we have the following result.

Theorem 4.2. Let (M,g) be a flat Riemannian manifold and T{M be its (1,1)-
tensor bundle with the metric ©Cg. Then Tt M is flat if and only if Fy = F3 = F3 = 0.

Taking into account that for Sasaki metric g we have F} = F; = F3 = 0, from
Theorems 4.1 and 4.2 we infer the following result.

Corollary 4.1. Let (M,g) be a Riemannian manifold and TLM be its (1,1)—tensor
bundle with the Sasaki metric Sg. Then M is flat if and only if T1M is flat.
The Ricci tensor and the scalar curvature of the metric ®Cg are defined by °C R, =
COR, .4 and °C8 =CGgab CGR , respectively. Using (4.2) - (4.13), we can write
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%Ry = (1 =) - F)E& + (1 ~ )2 + 7Fa)gug"
+E43{9"’ F9ia R MYtY — g R gun RP M5t
g Ro " R 28]+ ra R Ry M2},

CCRy, = 'g'{gthrR' 'f'ts — 9" Ve ReyiTt3),

%Ry = 3{0VoRY 8 — VR,

CCRyj = Ruj+ 5{0™ R Roup "8t — gaR*" Ry Pt81
~g" Riy; "Rty "85 + g R* "R, 1287}
~F{okaR™ TRy P3th + 9o R Ry it
+g"™ Ryl Ry M52 + g™ R, PRy, VE242),

with respect to the frame {eg}. Also, the scalar curvature of metric ®Cg is given by

205 =5+ (2 - 21— nt)F - Ry
+HE — (= s 4 7F)

a j ur
—'4'9"59“9"9 Ratho Rpjrrtath
a
~ 9049 ™ Rt Ry P15t + S R R HEES
Thus we have the following result.

Theorem 4.8. Let M be a Riemannian manifold with the metric g, and T} M be its
(1,1)-tensor bundle egquipped with the metric ©Cg. Let S be the scalar curvature of g,
and ©C8S be the scalar curvature of °Cg. Then the following equation holds:

T 2
995 = 5+(C - i": 37) (@ = n)F; — Fo) + (% - "-‘(Tb‘:';b'—;)-)((l —n?)F, +7Fy)

- 49“"9""9" 9" (tR)athy (ER)bjkr — Egmg"' 9" g™ (Re)2in (Re) s + %T.
where (tR)athy = Ratnoty, (Re)fy, = Rp*ts and T = Ry, "Ry 587,
Let (M, g) be a Riemannian manifold of dimension n > 2 and constant curvature &:
(4.14) Rimi = K(0R9ms — O gks)-

Then.5'=n(n—1)ua.ndwehavethefollawingtheore:q.
65



E. PEYGHAN, A. TAYEBI AND L. NOURMOHAMMADIFAR

Theorem 4.4. Let (M,g) be a Riemannian
constant curvature k. Then the scalar curvature

CGS = (1 = n)[{; = ab(ffr_:ﬂgr) )((1 +ﬂ’)Fl Fs) o ( G(G ¥ bT) )((1 o ﬂ)Fg

(4.15) +7F3) — k(n — al[t][%)] + ax?((trt)® — trtz).

manifold of dimension n > 2 and
cGg af(TlM CGQ) is given by

Proof. Direct calculations yield:

005 = 5.+ (£ - 2Ly (@ -n)F - F)

ﬂi br 2 @ ab_hk _lj vr
HE ey S Bt 7R = 700 79" Raino Rpjkriaty
a a r
(4.16) —-Egcag”g“g""ﬂru. R, Ptsty + 597%™ R

Next, it follows from (4.14) that
(417) Geag” g™ g™ Ry RyyFtetE = g™ 946" Rano Rpsiertety = 26%|t]]* (n — 1),

(4.18) 97" R Ry SE5t5 = 263 (8585 — t518).
>From formulas (4.16) - (4.18) and the equality § = n(n — 1), we obtain
G0 et T_ bt 0 g
S=n(n-1)r+ (- a(a+b¢))((1 n*)F — F3)
n br
he(e== m)((l =
Finally, using the equality tth — t5tf = (th_r'a:)2 — trt2, from the last equation we infer
the relation (4.15), and the result follows. It is known that for a local frame a sectional
curvature on (T3 M, ©Cg) is given by
) kymyiyi
419 CCK(A) = — SemyyU V7
(4 &) =~ coy @7y 004 (v, V)~ g0, VI
where A = (U, V) denotes the plane spanned by (U, V).
Let {X;}7, be alocal orthonormal frame, || 4*||2 = G(4%, A®) = 1, and G(A4, A7) =
0 for i# 7 and A € S} 1(M),i=n+1,...,n% Then from the definition of ®Cg, it is
easy to see that {#X3,...,7X,,VA),...,YA"'} is a local frame on T!M. In view
of (4.2) - (4.13) and (4.19], we obtain

1 5
%°K("A,YB) = 2{Fi(¢" gnns — g gnin )&
+F3 (9" 90" ™ ghn — 9™ 9t g™ gne) + Fs (g™ gri¥e — g gui¥y B } AT B AL B,
a
CGK(HX: VB) A _4_3{91*9“9 gld krRm ‘J‘ft"l‘."

900" (6" B’ B 628 + 90 B! B 1215)
(4.20) +9ueg*g™ Ry’ Ryttt } X™ B X7 B,
66
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XK (Hx ) HY) = —{Rmujk + %(9’ J"Rmk; Ruhpgnbt:t: + GueRmis lep‘ﬂdt:fg

(4.21) +  9ae0™ Rk’ Rugp“teth + 9asg™ Ry Risn"t588) } X ™Y XY ¥,
where A = V(a + bG?*(t,A))V(a + bG?(t, B)) — bVG(t,A)VG(t,B), B = V(a +
bG?(t, B)), °°K(¥X,HY), °CGK(7X,VB) denote the sectional curvature of the
plane spanned by (7X,#Y), (#X,YA) and (VA,VB) on (T1M,%Cg). Hence we
can state the following result.
Theorem 4.5. Let (M, g) be a Riemannian manifold and T{ M be its (1,1)~tensor
bundle with metric ©Cg. Suppose that (T} M,%Sg) is a Riemannian manifold of
constant sectional curvature °CK = k. Then the sectional curvature of (M, g) is
equal to K. Moreover, (M, g) cannot have a non-zero constant sectional curvature.

Proof. Let (T} M,Cg) be a Riemannian manifold of constant sectional curvature
CCK = k. Then we have K(¥X,#Y) = x. Writing (4.21) at (z*,0), we obtain

k= CKHEX,AY) = ~RupX™Y'XIY* = K(X,Y),

where K(X,Y) is the sectional curvature of (M, g). This implies that (M, g) has a
constant sectional curvature equal to x. Also, from the equation (4.20) written at
(z*,0), we infer x = °CK(F X,V B) = 0. :

5. PARA-KAHLER STRUCTURES ON (T} M, ©Cg)

An almost product structure F on a differentiable manifold M is a (1, 1)-tensor field
F on M such that F2 = 1. The pair (M, F) is called an almost product manifold. An
almost paracomplez manifold (or almost B-manifold) is an almost product manifold
(M, F) such that the two eigenbundles T+M and T—M associated with the two
eigenvalues +1 and -1 of F, respectively, have the same rank.. An almost paracomplex
structure on a 2n-dimensional manifold M may alternatively be defined as a G-
structure on M with structural group GL(n, R) x GL(n, R). A paracomplex manifold
(or B-manifold) is an almost paracomplex manifold (M, F') such that the G-structure
defined by the tensor field F' is integrable ( see [15]). If an almost paracomplex
manifold (M, F) admits a Riemannian metric g such that

9(FX,FY)=g(X,Y), VXY €S3(M),

then (M, g, F) is called an almost para-Nordenian manifold. It is well known that,
an almost para-Nordenian manifold is a para-Kihler manifold if and only if VF =0,
where V is the Levi-Civita connection of g (see [20]). Let now E € S3(M) be a
nowhere zero vector field on M. For any X € S3(M) and E = go E € S)(M), we

define the vertical lift V(X ® E) of X with respect to E. The map X = V(X @ E)
is a monomorphism of S3(M) — S§(T1M). Hence an n-dimensional C™ vertical
distribution V" is defined on T} M. Let V- be the distribution on T!M which is
orthogonal to H and VZ. Then H, VE and V+ are mutually orthogonal distributions
with respect to the metric °@g. We define a tensor field F of type (1,1) on T} M by

B e
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FEX) =" (X ® E) + Ba(X, E) (E® E),
F(Y(X ® B)) = 87X + pg(X, E)"E,

F(VA)=VA,
for any X € S3(M) and A € 91(M), where a, 8,6, p are functions on TIM to be
determined. The condition F2 = I leads to the equations

(5.1) ab=1, ap+B5+BpllE|P=0.
Thus we have the following result.

Proposition 5.1. Let (M, g) be a Riemannian manifold and T} M be its (1,1)- tensor
bundle. Then (T1M, F) is an almost paracomplez manifold if and only if (5.1) holds.

The condition “Cg(F(X), F(¥)) = ®®¢(X, ¥) for all X, ¥ € S§(T} M) implies
(52) aa?|El?=1 & =alEI%, 28p+plIEI*=0, 208+ A%E|?=0.
The solution of the system of equations (5.1) and (5.2) is
2va

L HAl . eans e __2/a
8) o=nEva 2= vaEr IElIVa, =157

Thus we have the following result.

Theorem 5.1. Let (M,g) be a Riemannion manifold and T{ M be its (1, 1)-tensor
bundle equipped with metric Cg. Then the triple (T1 M, g, F) is an almost para-
Nordenian manifold if and only if (5.8) holds.

Now, we obtain the covariant derivative of F' as follows:
(C°VuxF)(FY)
= oY (¥ ® [g0 VxE]) - 3~ 1RX,Y) + 8" (E ® B)g(¥, VxE)
+225 (Rl (v © B)X +gult(a™ o R, XV & 5) )
+89(Y,E)[V(VXxE® E+ E®goVxE)
6 +27(MR (B BYX + (g™ o R X(ESE) )],
(°évaxF)(VB)
= 57 (o™ R(ts, BX + gui(t*(g™ o R(, X) BY))
-5 (9" Rite BX + gua(t*(a™ o R(, X) BY)|  E)
-“—f-g(g"’R(t,,, Bj)X + gai(t*(s™* o B(, X)), B) V(E ® ),
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(°CVuxF)(Y ® E)
= (Y ® (90 VxE)) + 53 ~ MOR(X,Y) + pg(¥, E)R(X, E)]
— ‘
5" (6" Rltn, (¥ @ E);)X + gai(t*(6™ o R, X)(Y ® B) )) ® E)
—_— i
~Lo(" Rt (v ® B))X +guit(s™ 0 R, X)(¥ @ ) )), E) ¥ (E ® B)
+o" Eg(Y, VxE) + pg(Y, E)*(Vx E),
(OGVVAF)(VB) =0,
(CGVV{XQE')F)V(Y ® E)
= ~MG(X® E,Y ® E)"t + a(¥, EY* (s"R(ts, V (X ® E))E
—_—t
+0ui(t°(0™ 0 R, )Y (X ® ) ))) + 2 (" Rits, ¥ (X @ B)Y

—_— ¢
(55)  +om(t*(s7 o R(,Y)V(X® F)))),

(CGVV[XQEJ F )(HY)

aay, bl o af,—1 e E
e ([g R(ty, (X ® E))Y + gar(t*(¢7" o R(, Y)(X ® E) ))] '8'5‘)

— t
“%BQ(QHRGM (X ® E)EJY + gnt(tﬂ(g—'l ° R(: Y)(X ® E) ))| E) V(E ® E)
+aMG(X @ E,Y ® E)Vt,

(CGVV (ng:}F ) (VB)
(5.6) = LG(B,t)V (X ® B) — LG(B, 1) (affx +pg(X, E)HE).

Hence we have the following theorem.

Theorem 5.2. Let (M, g) be a Riemannian manifold, T} M be its tensor bundle with
the Riemannian metric ©©g and the almost paracomplez structure F. Then the iriple
(TtM,%Cg, F) is a para-Kihler-Norden manifold if and only if a = constant, b= 0,

R=0and VE =0.

Proof. Obviously, if a = constant, b= 0, R = 0 and VE = 0, then °®VF = 0,
that is, (T{ M, ©Cg, F) is a para-Kéhler-Norden manifold. Conversely, let C6VF = 0.
Then by (5.6) we get L = 0, implying that a = constant. Moreover, from (5.5) we

have M = 0, implying b = 0. Finally, (5.4) gives us R = 0 and VE = 0.

As an immediate consequence of Theorem 7, we can state the following result for

Sasaki metric 9g.
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Corollary 5.1. Let (M,g) be a Riemannian manifold, T{ M be its tensor bundle with
the Sasaki metric 5g and the paracomplez structure F'. Then the triple (T? M, Sg, F)

s upam-KEMer—Nodm manifold if and only if R=0and VE =0.
REFERENCES

(1] M.T.K.Abbanimdliﬁaﬁh.!ﬁlﬁngmﬁddlmmngmb-mzdluwiﬂn(.‘hqm
Gromoll metric, Tsukuba J. Math. 27 (2) (2003), 205-306. e
[2] M.T-K. Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian

manifolds, Arch. Math.(Brno), 41 (2005), 71-92.
[3] N. Cengiz and A. A. Salimov, Complete lifts of derivations to tensor bundles, Bol. Soc.
Mat. Mexicana, 8(3)(2002), 75-82. ! :

[4] N. Cengiz and A. A. Salimov, Geodesics in the tensor bundle of diagonal lifts, Hacettepe
Journal of Mathematics and Statistics, 81 (2002), 1-11. j

(6] N. Cengiz, A.A. Salimov, Diagonal lift in the tensor bundle and its applications, Applied
Mathematics and Computation 142 (2003), 308-319.

[6] J. Cheeger and D. Gromoll, On the siructure of complete manifolds of nonnegative
curvature, Ann. of Math. 96(2)(1972), 413-443.

7] A. Collinucel snd A. Wijns, Topology of Fibre bundles and Global Aspects of Gauge
Theories, arXiv:hep-th/0611201v1, (2006), 1-43.

8] S. L. Druti, Riemannian almost product and para-Hermitian cotangeni bundles of general
matural Iift type, Acts Math. Hung, 17 pp., Online 16.10.2012, DOI: 10.1007/s10474-012-
0271-y.

(8] S. L. Drut#, General naiural Riemannian almost product and para-Hermitian structures on
tangent bundles, Taiwan J. Math., 16(2) (2012), 497-610.

[10] S. L. Druté, Para-Kahler tangent bundles of constant para-holomorphic sectional curvature,
Bull. Iran. Math. Soc., 18 pp, Online 21.06.2011.

[11] 8. L. Drut, Kaehler-Binstein structurea of general natural lifted type on the cotangent
bundles, Balkan J. Geom. Appl., 14(1) (2009), 30-89.

[12] S. L. Drut¥ and V. Oproiu, Tangent sphere bundles of natural diagonal lift type, Balkan J.
Geom. Appl., 15 (2010), 53-67.

[13] 8. L. Drugé and V. Oproiu, Some natural diagonal struciures on the tangent bundles and
on the tangent sphere bundles, ROMAI J., 8 (2010), 121-130. :

[14] A. Gezer and A. A. Salomov, Almost comlez structures on the tensor bundles, The Arabian
Journal for Science and Engineering, 83(2008), 283-286.

[16] S. Kaneyuki and M. Kozal, Paracomplez structures and affine symmeiric spaces, Tokyo J.
Math, 8(1886), 811168,

[16] 1. Kolar, P. W. Michor and J. Slovak, Natural operations in differential geometry, Springer-
Verlag, Berlin 1983. .

[17] O. Kowalski and M. Sekizawa, Natural transformations of Riemannian metrics on manifolds
:ozgwm on tangent bundles -a classification-, Bull. Tokyo Gakugel Univ, 40 (4)(1988),

(18] A. J. Ledger and K. Yano, Almost complez structures on the tensor bundles, J. Diff. Geom,
1(1967), 355-368.

[18] A. A. Salimov and N. Cengis, Lifting of Riemannian metrica to tensor bundles, Russian
Math. (IZ. VUZ.), 47(11), 2003, 47-55.

[20] A. Salimov and A. Gezer, On the geometry of the (1,1)-tensor bundle with Sasaki type

X ;n;tfic, Chin. Ann. Math, 32(B3)(2011), 1-18.

. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll meiric, Tokyo J. Math,

14(2) (1991), 407-417. :

HocTymana 2 oxrabpa 2012



