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Abstract. With the help of weighted sharing of sets we deal with the problem of unique
range set for meromorphic functions with deficient values and obtain a result which imp-
roves, generalizes and extends some previous results. We provide two examples to show

that the condition in one of our results is the best possible.
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1. INTRODUCTION: DEFINITIONS AND RESULTS

Throughout the paper by meromorphic functions we always mean meromorphic
functions in the complex plane C, and the letter E' will denote any set of positive
real numbers of finite linear measure, not necessarily the same at each occurrence.
For any non-constant meromorphic function h(z) we denote by S(r, k) any quantity
satisfying S(r, h) = o(T'(r, h)), (r — oo, r € E).

We denote by T'(r) the maximum of T'(r, f) and T'(r, g), and by S(r) any quantity
satisfying S(r) = o(T'(r)) as r — o0, r € E.

Also, we adopt the standard notation of the Nevanlinna theory of meromorphic
functions as explained in [6]. For a € CU {co} we define_

sl N(r,af)
O(a; /) =1 l?i?ip T f)

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, if f —a and g — a have the same
zeros with the same multiplicities. Similarly, we say that f and g share a IM, if f —a
and g — a have the same zeros ignoring multiplicities. In addition, we say that f and
g share co CM, if 1/f and 1/g share 0 CM, and f and g share oo IM, if 1/f and 1/g
share 0 IM. .

Let S be a set of distinct elements of C U {oo} and E¢(S) = [J,eg{2 : f(2) = a},
where each point is counted according to its multiplicity. If we do not count the
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multiplicity the set U,es{z : f(z) = a} is denoted by E’(fﬂl-ﬁ E;(S) = Eg(S) we
say that f and g share the set § CM. On the other hand, ﬂE{(S') ='ET,(S) we say
that f and g share the set S M. Evidently, these definitions coincide w1t:h the usual
definitions of CM (resp., IM) shared values, provided that the set S contains only one

element. \
and let f and g be two non-constant meromorphic (resp.,

Let S (S c C) be a set, : :
entire) functions. If E¢(S) = Eq(S) implies f = g, then S is called a unique range
in brief URSM (resp., URSE).

set for meromorphic (resp., entire) functions or in

In 1926, R. Nevanlinna showed that a meromorphic function on the complex plane
C is uniquely determined by the images (ignoring multiplicities) of 5 distinct values.
A few years later he showed that when multiplicities are counted, then 4 points are
sufficient (with one exceptional situation). In [4] Gross raised the problem of finding
out a fnite set S so that an entire function is determined by the single pre-image
(counting multiplicities) of S.

In 1982 F. Gross and C. C. Yang [5] proved the following theorem:

Theorem A. Let S={z€C:ef+z= 0}, and let f, g be two entire functions
satisfying E¢(S) = Eg(S). Then f=g.

Since in Theorem A, S is an infinite set, it does not provide a solution to the
Gross’ problem. In 1994 H.X. Yi [16] established a URSE with 15 elements, and in
1995 P. Li and C.C. Yang [14] established a URSM with 15 elements and a URSE
with 7 elements. Since then to find & URSM with minimum cardinality becomes an
increasing interest among the researchers.

In 1998 G. Frank and M. Reinders (2] obtained a URSM with 11 element, which
is the smallest available URSM to the knowledge of the authors.

A polynomial P in C is called a strong uniqueness polynomial for meromorphic
(resp., entire) functions if for any non-constant meromorphic (resp., entire) functions
f and g, P(f) = cP(g) implies f = g, where c is a suitable nonzero constant. We say
P is SUPM (resp., SUPE) in brief. On the other hand, for a polynomial P in C if
the condition P(f) = P(g) implies f = g for any non-constant meromorphic (resp.,
entire) function f and g, then P is called a uniqueness polynomial for meromorphic
(resp., entire) functions. We say P is a UPM (resp., UPE) in brief.

Suppose that P is a polynomial of degree n in C having only simple zeros and S
be the set of all zeros of P. If S is a URSM (resp., URSE), then from the definition it
follows that P is UPM (resp., UPE). However the converse is not true, in general. For

instance, P(z) = az+b (a # 0) is clearly a UPM, but for f = v-ge’ and g = —Ee"
a
we see that Ef(S) = Eg(S), where S = {—2} is the set of zeros of P(z) = az +b.
To find conditions under which the converse is true, H. Fujimoto [3] first invented a
special property of polynomials, which he called the property (H). Fujimoto’s property
16
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(H) may be stated as follows: A polynomial P is said to satisfy the property (H) if
P(a) # P(B) for any two distinct zeros o and B of the derivative P’. Fujimoto found
a sufficient condition for a set of zeros S of a SUPM (resp., SUPE) P to be a URSM
(resp., URSE). Specifically, in [3] H. Fujimoto proved the following result.
Theorem B. [3] Let P be a polynomial of degree n in C having only simple zeros and
satisfying the condition (H). Let P’ have k distinct zeros and either k > 3 or k=2
and P’ has no a simple zero. Further suppose that P is a SUPM (resp., SUPE). If S
is the set of zeros of P andn > 2k+7 (resp., n > 2k +3), then S is a URSM (resp.,
URSE).

To deal with the the Gross’ problem and its counterpart for meromorphic functions
on C, Yi [17] and Li and Yang [14]-[15] have investigated the zero sets of polynomials
of the form P(z) = 2" +az" ™+ b, where n > m > 1 and a and b are chosen so that
P has n distinct roots. Clearly P(z) satisfies the property (H). In [18] it has been
shown that when m > 2 the zero set S of P(z) is a URSM and hence P(z) is a UPM.
But when m = 1, the situation is completely different. So, a natural question would
be whether for m = 1, the zero set S of P(z) can be a URSM or even a URSE.

In this direction, independently Yi [17] and Li-Yang [14] had already made some
contributions for entire functions. In paricular, they proved the following result.
Theorem C. Let S = {z:2" — 2% —1=0}. If f and g are two non-constant entire
functions satisfying E¢(S) = Ey(S) then f =g.

Clearly z7—2%—1 is an UPE. To obtain a counterpart of Theorem C for meromorphic
functions and for more general polynomials, in 1996 Yi proved the following result.

Theorem D. [18] Let S = {z: 2" + az" ™ + b = 0}, where m, n are two positive
integers such that m and n have no common factors, n > 2m + 8 (m > 2), and a,
b are nonzero constants such that the algebraic equation z™ + az""™ + b =0 has no
multiple roots. Then Ef(S) = Ey(S) implies f = g.

>From Theorem D we infer that a URS of meromorpﬁ.ic functions of the form as
given in Theorem B consists of 13 elements. In [18] Yi also explored the case m = 1,
and obtained the following version of Theorem D in this case.

Theorem E. [18] Let S = {z: 2" + az™"! + b = 0}, where n (> 11) is an integer, a
and b are two nonzero constants such that the algebraic equation z" +az™ ' +b=0
has no multiple roots. If f and g are non-constant meromorphic functions satisfying
Ey(8) = Eq(S) then either f = g or f = —20C=0) g — 802D yhereh = L,

Clearly under the assumptions of Theorem E, S can not be a URSM.

In 1998 Fang and Hua (1] have extended Theorem C to the case of meromorphic
functions with some additional conditions on the ramification indices of f and g.
Specifically, in [1] was proved the followin result.
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Theorem F. [1] Let S be as in Theorem C. If two meromorphic functions fandg
; - # = E,(S) then f=g.

are such that O(c0; f) > 4, ©(c0; g) > {3 and %.‘J;L . ,(of)m it D

We eedthefollowingdeﬁnition,knownasweigh '
re:;m a useful tool for the purpose of relaxation of the nature of sharing the sets.

Definition 1.1. [8, 9] Let k be a nonnegative integer or inﬁnit;;(. Fora € .C .U.{cc}
we denote by Ex(a; f) the set of all a-points of f, where an a-point of multiplicity m
is counted m times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a; g), we say

that f, g share the value a with weight k. ' )
W£ fvrite f, g share (a,k) to mean that f, g share the value a with weight k.

Clealy if f, g share (a, k) then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a,cc)
ectively.
r]:t::lnit‘l:l: 1.2. [8] Let S be a set of distinct elements of CU {oc} and k be a
nonnegative integer or co. We denote by E¢(S, k) the set Ef(S) = Uges{z: f(2)—a=
0}. Clearly E¢(S) = E¢(S,0) and E(S) = E4(S,0).
Definition 1.3. [7] For a € CU {oc} we denote by N(r,a; f |= 1) the counting
function of simple a-points of f. For a positive integer m we denote by N(r,a; fl] < m)
(resp., N(r, a; f]> m) the counting function of those a-points of f whose multiplicities
are not greater(resp., less) than m, where each a-point is counted according to its
multiplicity. The functions N(r, a; f |< m) and N(r, a; f | m) are defined similarly,
where in counting the a-points of f we ignore the multiplicities. Also, the functions
N(r,a; f.|< m),N(r,a; f |[> m),N(r,a; f |[< m) and N(r,a; f |> m) are defined
analogously. ! 1D
We define d2(a; f)=1—limsup L,’.‘(E,':—'}'P, where Na(r, a; f)=N(r,a; f)+N(r,a; f |> 2).
r—o0

Lahiri [10] improved Theorem F in the following direction.
Theorem G. [10] Let S be as in Theorem C. If for two non-constant meromorphic
functions f and g, ©(co; f) + 6(00;9) > 3 and Ey(S,2) = Ey(S,2) then f =g.

In 2004 Lahiri and Banerjee [11] further improved Theorem C in a more compact
and convenient way, and obtained the following result.
Theorem H. [11] Let S = {2z : z"+az""'+b = 0}, where n (> 9) is an integer, and
a, b are two nonzero constants such that z" +az™ ' + b = 0 has no multiple roots. If
E4(S,2) = Ey(S,2) and ©(co; f) + 6(00; ) > 25, then f=g.

The following example shows that the set S in Theorems G-H cannot be replaced
by an arbitrary set containing six distinct elements.
Example 1.1. Let f(z) = v/aBye* and g(z) = VaBye™ *, and let S = {a/B, a\/7,
Bve, B\/7,1v/@,vv/B}, where a, B and v are nonzero distinct complex numbers.
Then it is easy to see that Ey(S, 00) = Ey(S,00) but f # g.

So we observe that deficiencies of poles play a vital role in order to find sufficient
conditions for which the conclusions of Theorems F, and G-H holds true.
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We naturally raise the following questions.
Question 1: Is there any significant contribution of the deficiencies of the other
values in Theorems G and H?
Question 2: What happens if we reduce the degree of the equation defining S in
Theorem H?

In this paper we give some affirmative answers to the above questions, which in
turn will further improve, generalize and extend Theorems G and H.

The following theorem is the main result of the paper.
Theorem 1.1. Let S = {z : 2" + az™! + b = 0}, where n (> 6) i5 an integer,
and a, b are two nonzero constants such that z™ + az"' + b = 0 has no multiple
roots. Suppose that f and g are two non-constant meromorphic functions satisfying
E¢(S,m) = E4(S, m). If one of the following conditions is satisfied:

(i) m > 2 and 6 + 6, > max{1%=2 nil}
(i) m =1 and 7 + Oy > max{12, 2tl}
(iii) m =0 and O + Oy > max{1:2, 241},
then f = g, where ©5 = (0; f) + ©(—a%:2; ) + ©(co; f) + £02(—a; f) and 6, can
be defined similarly.
The examples that follow show that the condition ©f + 6, > 241 in Theorem 1.1
is sharp, when n > 8 and m > 2. _
Example 1.2. (Example 2, [11]). Let f = —0-11:_5,:,.: and g = —ah-lf-_t',:,,;l, where
h=9"0 o — egp(2xi) and n(> 3) is an integer.
Then we have T(r, f) = (n — 1)T'(r,h) + O(1); T(r,g) = (n — 1)T(r,h) + O(1)
and T'(r,h) = T(r,e*) + O(1). Next, we see that h # a,c?, and so for any complex
number v # @, a? we have N(r,v;h) ~ T(r,h). Also, we note that. arootof h =1

is not a pole and zero of f and g. Hence ©(oo; f) = ©(c0;g) = ==5. On the other
n—2
hand, we have Y N(r,*%;h) + N(r, 00; h)
5 e =] k=1 =
G R Ly e e P

and

"f N(r, % h) + N(r, 0; h)
6(0,9)—1—11msup =0,

= (n —1)T(r,h) + O(1)
= 2miy

RIS é"('_‘: 3]? 'lteﬁh;‘fu 2N(r,0;h) _n-3

A S e M= DR+ 0 n—1
and 2N (r, co; h) _n- 3

ba(-aig) =1 im0

Observe that the polynomial ('n l)z —nz""141 has double zero at the point z = 1.
Consequently it has n— 1 distinct zeros, which we denote by ug, k=1,...,n— 1. So,
we have
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El N (r, ux; €°)
6(—a> ; 1;f) =1- J{E‘_,“‘;P (n ﬁl)T(r,e‘) o) . ;

and ' 'f)f;l N(r,vj;€)
9(—-an ; 1:9) == EEE&P (n —J=1;T(r, e*) +0(1) e

where v; = L,j = 1,...,n — 1. Therefore O5 + 6, = 241 Clearly Ef(S,00) =

E, (S, 00) because f*~(f +a) = g" (9 +a) but f #g. ) '
Egcsamosl)e 1.3. Le{f m(:{i g bzl as in Example 1.2, where h = 1(:"T::i—u. a = exp(%)

an%:égw.?;) gveanmlzl.teeﬁfﬁ-nitions and notation which are used in the rest of the paper
Definition 1.4. [19] Let f and g be two non-constant meromorphic functions such
that f and g share (a,0). Let zo be an a-point of f with multiplicity p, an a-point of
g with multiplicity g. We denote by Nyi(r,a; f) the reduced counting function of those
a-points of f and g wherep > g, by N 1) (r,a; f) the counting function of those a-points
of f and g wherep=gq =1, and by N_:-(f, a; f) the reduced counting function of those
a-points of f and g where p = q > 2. In the same way we can define the functions
Ni(r,a;9), Ng(r,a;g), ﬁ;(r,a;g); and the functions Np(r,a; f) and Ni(r,a;g)

for a € CU {o0}. )
Observe that when f and g share (a,m), m > 1, then N¢/(r,a; f) = N(r,q; f |= 1).
Definition 1.5. We denote by N(r,a; f |= k) the mdumf counting function of those

a-points of f whose multiplicities is ezactly k, where k > 2 is an integer.
Definition 1.6. [8, 9] Let f, g share a value a IM. We denote by N.(r,a; f,g) the

reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.
2. LEMMAS

In this section we present some lemmas which will be needed in the sequel. Let F

and G be two non-constant meromorphic functions defined as follows,

SN Ya) s g g+ a)
1) Fal U N0 Mg gmWta)

Also, we will use the function H defined as follows:

o G 2@
&4 H=(F‘FT)"SE“E':1‘)-
Lemma 2.1. [13] Let f be & non-constanit m hic furiction and let

-1
R(f) =Y arf* (E bjf’)
k=0 3=0
be an irreducible rational function in f with constant coefficients {ax} and {b;}, where
an # 0 and by, # 0. Then T'(r, R(f)) = dT(r, f) + S(r, f), where d = max{n,m}.
20
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‘Lemma 2.2. [19] Let F, G be two non-constant meromorphic functions such that
they share (1,0) and H # 0, where H is defined by (2.2). Then

NR(rL;F |=1) = N2(r,1,G |=1) < N(r, H) + 5(r, F) + 5(r, G).
Lemma 2.3. Let S = {z: 2" + az"~* + b = 0}, where a, b are nonzero constants
such that z™ + az™! + b = 0 has no multiple roots, n (> 3) is an integer, and let
F, G be given by (2.1). If for two non-constant meromorphic functions f and g,
E¢(S,0) = Ey4(S,0) and H # 0, then
N(r,H) < N(r0,f)+N(r,0;9) +F(r.oo f)+N(r,oo..q) +TV'(r, —a;f|>2)

+N(r,—a;g |> 2) + N(r, L ,f)+N(r, L .g)+N.(r,1 F,G)

+No(r,0;f) + No(r, 0;9 ),
where No(r,0; f') is the reduced counting function of those zeros of ', which are not

the zeros of f(f +a)(f +a%L)(F — 1) and No(r,0;g') is defined similarly.
Proof. Since E¢(S,0) = E,(S,0) it follows that F' and G share (1,0). From

(2.1) we have F' = [nf + (n—1)a]f*~2f'/(~b) and G’ = [ng+ (n—1)alg"~2g' /(~b).
It can easily be verified that the possible poles of H occur at: (i) zeros of f and g,
(ii) multiple zeros of f + a and g + a, (iii) zeros of nf + a(n — 1) and ng + a(n — 1),
(iv) poles of f and g, (v) those 1-points of F' and G with different multiplicities, (vi)
zeros of f', which are not the zeros of f(f +a) (f + a%=L) (F — 1), (vii) zeros of g,
which are not zeros of g(g + a) (9 + a®=L) (G — 1). Since H has only simple poles,
the result follows from above. Lemma 2.3 is proved.

Lemma 2.4. [11]. Let f, g be two non-constant meromorphic functions. Then

" Yf +a)g™ (g + a) # b, where a, b are nonzero finite constants and n (> 5) is

an integer.
Lemma 2 5. Let f, g be two non-constant meromorphic functions such that Oy +

8y > 2l where ©; and ©, are as in in the Theorem 1.1. Then f*~'(f +a) =
9" (g + a) implies f = g, where n (> 2) is an integer and a is a nonzero finite
constant.

Proof. Let
(23) F"f +a) =" g +a)
and suppose f # g. We consider two cases:
Case I Let y = 3 be a constant. Then it follows from (2.3) that y # 1, y»~! # 1,

y*#land f= —aL,fy— is a constant, which is impossible.

Case Il Let y = } be non-constant. Then

l_yn—l yn—l )
24 = - = -1).
(24) =0 1-y a(1+y+y’+...+y“"1 1
and i
(r=1)_  1-¢™' (=1)_ (-1 -ny"'+1
(25) f+a T e T e +a = n@ =y :
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Assuming = 0 and p(1) = (1) =0. So
i 2) = (n—1)z" —nz 141, we have p(0) #
s a5 N(r. —a2=L; f), where uj, j=1,2,.
from (2.5) we obtain Y. N(ruj¥) < (r,—a2 1) i '2,
j=1
have the same meaning as in Example 1.5
>From (2.4) and Lemma 2.1 we obtain 7(r, f) = (n — 1)T(n, y)+ S(r,y). We first
note that the zeros of 1+y+ 32 +.-- +¥" " contributes to the zeros of both f and
g. In addition, the poles of y contributes to the zeros of f and since g = fy the zeros
of y contriputes to the zeros of g. So from (2.4) e, find i
> N(r,v5iy) + N(r,00; ) <N 0:5), Y, N wiiy) < N(r,00; f),

= k=1 2jmi s £
whereufk!_—gzp(zﬁﬁ)fork= 1,2,...,n—landvj=e-’rp(;j:.—1)f°f: =1,2,...,n=-2.

Also, from (2.4) we have N(,0;y) < 3Na(r,—a; f )-

sy —1,

Hence by the second fundament:‘a‘.l__tiheorem we can _vgrite Rl
(Bn-4)T(ry) < N(rooiy)+ Y N(ruiv)+) Nrvsiv)+ kz_: N (r,wxiv)
i=1 i=1 =1

-Fﬁ(f‘, 0; I)‘) + S (r! y)

< (0 f)+N(r,—a" ; L f)+N(r,00; f) + %N:(r. -a; f) + S(r,v)
< (§-001)-0(-a"1if) - O ) ~ gl f) + ) 76,1
+5(r,9)
= (-1 (3-0r+e) T+ 500
e
(26) 2 1) < (3-0s+2) T +800)

where 0 < 2 < O + ©,. Again putting 1 = 1 and noting that T(r,y) =
T(r,1) + O(1), we can use the above arguments to obtain

en  Lir6is(3-00+e) T+ SO0,

Adding (2.6) and (2.7) we get (%’-55 —7+0;+6,— 25) T(r,y) < S(r,y), which
is & contradiction. Hence f = g, and the result follows. Lemma 2.5 is proved.
Lemma 2.8. Let f be a non-constant meromorphic function and leta;, i = 1,2,...,n,
be finite distinct complez numbers, where n > 2. Then

N0 f) < T(rf)+Nrooif) = 3 mirai; f) +S(n )
Proof. Let F = ‘21 7—_%, then ?m(r,m; £)E'm(r, F) + O(1). Note that
= = '

m(r,F) <m0+ mln, 30 1) =T, 1) = N 05 1) + S(r, ).
g 4

Also, observe that T'(r, f) = m(r, f )+ N(r, f') < T(r, f) + N(r, f) + S(r, f) and the
result follows. Lemma 2.6 is proved.
22
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3. PROOF OF THEOREM 1.1

We know from the assumption that the zeros of 2" +az"~*+b are simple; we denote
them by wj, 7 = 1,2,...n. Let F, G be given by (2.1). Since E(S,m) = E,(S,m) it
follows that F, G share (1,m).

Case 1. We first consider the case H # 0, where H is given by (2.2).
Subcase 1.1. m > 1. Assuming first that m > 2 and using Lemma 2.6 with n =3,

fa.5) 0 02 = —0 and 7 04 FH FUEBETED) + Na(r, 1, F, G) < No(r, 0;9)
+ N(r1;G|>2)+N(r,1;G|>3) < No(r,0;9)
1

+ ;{ﬁ(n wji g |=2) + 2N (r,ws; 9[> 3)} < N(r,0;¢ | g #0,—a, —aﬂ'; )
< N(0;9) - N(r,0;9) + N(r,0;9) — N(r,~a;9) + N(r, ~a; g)
—N(r, _an — 1:9) —N(r, —ﬂn; 1'9)

= N(T'to g) r N(r: 00, g) + N(r; —a; 9) +N(’J’, _a' 19) 2T(r, g) =+ S(ra g)
Hence using (3.1) and Lemmas 2.1 — 2.3, from secord fundamental theorem we

have for any € > 0
(32) (n+2)T(1',f)<N(r,0 f)-l"N('l", a:f)'i'N(r:-a 1f)

+N(r,oo;f)+N(r,1;F ‘= 1) +N(‘l“,1;F |2 2) —Nu(f,o;f')'l‘s(ﬂf)
< (7— 20(0, f) —28(o0, f) — 29(-—-an_ l;f) — da(—a; f) + ls) T(r, f)

+(5-26(0,0) - 20(e0,0) ~ 20(-0"10) ~ a(ai9) + 5¢ ) 79

+8(r, f) + S(r, 9) < (12 —20; — 20, +€) T(r) + S(r).
In a similar way we can obtain

(3.3) (n+2) T(r,g) < (11— 205 — 20, +¢€) T(r) + S(r).
Combining (3.2) and (3.3) we conclude that
(3.4) (n—10+205 + 20, —€) T'(r) < 5(r).

Since & > 0, (3.4) leads to a contradiction. As for the case m = 1, we use Lemma 2.6
to get the following counterpart of formula (3.1):

(3.5) No(r,0;9) + N(r,1;G |> 2) + Nu(r,1; F,G)
No(r,0:9') + N(r,1;G |2 2) + N1(r, 1;G) + Ni(r, 1; F)
N(r,0;9' | g #0, Ha,—a"' 1.f\"(r,c:-f’|f;.eo —H—a “;1)

N(T:U g)+N(r,—a,g)+N(r,—a !g)'l'N(T: o0;9) —27(r,9) + 5 {N(T:U f)

IA

IA

IA

+ﬁ(r,—-a;f)+ﬁ(r,—an; i f) +N(7‘,00;f)} =T(r, f) + S(r, f)+S(r',g).
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So using (3.5), Lemmas 2.2 and 2.3, and proceeding as in (3.2), from second
fundamental theorem we have for e>0
{ ~L )+ Neroon) |

(3.6) n+2)T(r,f) <2 N(r,0; )+ N{(r, il

19) + N(r,oo,g)} ot Nﬂ(f! _a|9)

+N;(r, —a; f)2 {N(r, 0;9) + N(r, St
-1-% {J_V-(r,o;f) +N(r,—a; f) + N(r, —a-—n—; f) +N(r,o00; f)} —2T(r,g) = T(r, f)
+8(r, f) + S(r,g) < (11 — 265 — 26, + ) T(r) + 2T'(r) + S(r).

Similarly we can obtain

(3.7) (n+2) T(r,g) < (11—285 — 26, + &) T(r) + 2T°(r) + S(r).

Combining (3.6) and (3.7) we conclude that

(3.8) (n—11+265+20, —¢) T(r) < S(r).

Since £ > 0, (3.8) leads to a contradiction.

Subcase 1.2. m = 0. Using Lemma 2.6 we observe that

(3.9) No(r,0;9) + NE (r,1;F) + 2Ny (r,1;G) + 2Ny (r, 1; F)

No(r,0;9) + NS (r, 1;G) + Ni(r,1;G) + Nr(r,1;G) + 2N (r, 1; F)

No(r,0;9) + N(r, ;G > 2) + Ni(r,1;G) + 2Ny (r,1; F)

N(r,0;g" | g #0, —a,-a“ L)+ N(r, ;G |2 2) + 2N(r, 1, F [> 2)

IA IA IA

IA

2{N(r,0i9) + Wr,001) + N(r,~ai0) + W, a2 L1
+N(r,0; f) + N(r, 00; f) + N(r, —a; f) + N (r, —an; L ; f)}
—4T(r, f) — 4T'(r, 9) + S(r, ) + S(r, 9).

Hence using (3.9) and Lemmas 2.2 and 2.3, from second fundamental theorem we
have for any £ > 0

(3.10) (n+2) T(r, )

< N(r,0;f) + N(r,—a; /) + N(r, —a> ,f) + N(r,00; f) + NJ(r, 1; F)
+Ni(r,1;F) + Ni(r, 1;G) + N‘;(r, 1; F) - No(r,0; f') + S(r, )

2 {W(r,ﬂ;f) + N(r, 00; f) + N(r, z gtk 1;f)} + Ny(r, —a; f)

+N("| 19)+N(fa_a ,g)+ﬁ(r, ,g)+1_V'(r,—a,g|>2)+Ng(r,1 F)

+2NL('I",1,G) +2NL(1'11 F) i Nﬂ(rl g ) +S(l", )+S(r)g)
(16 — 387 — 36, +£) T'(r) + 2T'(r) + S(r).
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In a similar manner we can obtain

(8.11) (n+2)T(r,g) < (16 —305 — 36, +¢€)T(r) + 2T(r) + S(r).
Combining (3.10) and (3.11) we conclude that

(3.12) (n—16+307 436, —€)T(r) < S(r).

Since £ > 0, (3.12) leads to a contradiction.
Case 2. H = 0. By integration we get from (2.2)

1 A
(3.13) =z—+5

where A and B are constants md A ;é 0. >From (3.13) we obtain
_ (B+1)G+A-B-1

(3.14) F= BCTA—B
Clearly (3.14) together with Lemma 2.1 yields
(3.15) T(r, f) =T(r,9) +O(1)

Subcase 2.1. Assume that B # 0, —1.
If A— B —1# 0, then from (3.14) we obtain N(r, 2§354; G) = N(r,0; F). Hence
using Lemma 2.1 and the second fundamental theorem we obtain

F(r,0010) + N(r,0,0) + N, 242226 +5(r,0)
N{(r,00;g) + N(r,0;9) + N(r,0; g + a) + N(r,0; f) + N(, 0; f + a) + S(r, g)
27 (r, f) 4+ 3T(r, ) + S(r, 9),

which, in view of (3.15), leads to a contradiction because n > 6. Thus A—B—1=0,
and hence (3.14) reduces to F = %?1—, implying N(r, 3; G) = N(r,00; f). Again
by Lemma 2.1 and the second fundamental theorem we have

nT(r,9)

INIA A

< N(r,00;G) + N(r,0;G) + N(r, ;;; G) +S(r,9)
< N(f‘, 005 9) G W(f, 0; 9) s F(r, 0;9+a)+ W(""l o0; f) + 5(r, 9)
< T(r,f)+3T(r,g9) + S(r, 9),

which, in view of (3.15), leads to a contradiction because n > 6.
Subcase 2.2. Assume that B = —1. From (3.14) we have

A
-G+A+1
If A+1 # 0, then from (3.17) we obtain N(r, A+1; G) = N(r, c0; f). So repeating the
arguments used in the Subcase 2.1, we again get a contradiction. Hence A +1 = 0,
and from (3.17) we infer FG = 1, implying f™(f + a)g" (g + a) = b?, which is
impossible by Lemma 2.4.

nT(r,g)

(3.16) F=
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Subcase 2.8. Assome that B =0. From (3.14) we obtain
G+A-1
(3'17) J = _—T
If A—1 0, then from (3.17) we obtain N(r,1— A;G) = N(r,0; F). So in the same
ma.nnerasaboveweagaingetacontradicﬁon.SoA=1andhenceF5G,thatm,
f*=1(f +a) = g" (g + a). Now the assertion of the theorem follows from Lemma

2.5. This completes the proof of Theorem 1.1.
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