Известия НАН Армении. Математика, том 48, н. 6, 2013, стр. 15-26.

MEROMORPHIC FUNCTIONS WITH DEFICIENCIES GENERATING UNIQUE RANGE SETS

ABHIJIT BANERJEE AND SUJOY MAJUMDER

Department of Mathematics, University of Kalyani, West Bengal, India.

Department of Mathematics, Katwa College, Burdwan, India.

E-mails: abanerjee_kal@yahoo.co.in; sujoy.katwa@gmail.com

Abstract. With the help of weighted sharing of sets we deal with the problem of unique range set for meromorphic functions with deficient values and obtain a result which improves, generalizes and extends some previous results. We provide two examples to show that the condition in one of our results is the best possible.

MSC2010 numbers: 30D35.

Keywords: Meromorphic functions, unique range set, weighted sharing, shared set.

1. INTRODUCTION: DEFINITIONS AND RESULTS

Throughout the paper by meromorphic functions we always mean meromorphic functions in the complex plane \mathbb{C} , and the letter E will denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For any non-constant meromorphic function h(z) we denote by S(r,h) any quantity satisfying S(r,h) = o(T(r,h)), $(r \longrightarrow \infty, r \notin E)$.

We denote by T(r) the maximum of T(r, f) and T(r, g), and by S(r) any quantity satisfying S(r) = o(T(r)) as $r \to \infty$, $r \notin E$.

Also, we adopt the standard notation of the Nevanlinna theory of meromorphic functions as explained in [6]. For $a \in \mathbb{C} \cup \{\infty\}$ we define

$$\Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}.$$

Let f and g be two non-constant meromorphic functions and let a be a finite complex number. We say that f and g share a CM, if f-a and g-a have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, if f-a and g-a have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and f and g share ∞ IM, if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and $E_f(S) = \bigcup_{a \in S} \{z : f(z) = a\}$, where each point is counted according to its multiplicity. If we do not count the

¹The first author is thankful to DST-PURSE programme for financial support.

multiplicity the set $\bigcup_{a \in S} \{z : f(z) = a\}$ is denoted by $\overline{E}_f(S)$. If $E_f(S) = E_g(S)$ we say that f and g share the set S CM. On the other hand, if $\overline{E}_f(S) = \overline{E}_g(S)$ we say that f and g share the set S IM. Evidently, these definitions coincide with the usual definitions of CM (resp., IM) shared values, provided that the set S contains only one element.

Let S ($S \subset \mathbb{C}$) be a set, and let f and g be two non-constant meromorphic (resp., entire) functions. If $E_f(S) = E_g(S)$ implies $f \equiv g$, then S is called a unique range set for meromorphic (resp., entire) functions or in brief URSM (resp., URSE).

In 1926, R. Nevanlinna showed that a meromorphic function on the complex plane \mathbb{C} is uniquely determined by the images (ignoring multiplicities) of 5 distinct values. A few years later he showed that when multiplicities are counted, then 4 points are sufficient (with one exceptional situation). In [4] Gross raised the problem of finding out a finite set S so that an entire function is determined by the single pre-image (counting multiplicities) of S.

In 1982 F. Gross and C. C. Yang [5] proved the following theorem:

Theorem A. Let $S = \{z \in \mathbb{C} : e^z + z = 0\}$, and let f, g be two entire functions satisfying $E_f(S) = E_g(S)$. Then $f \equiv g$.

Since in Theorem A, S is an infinite set, it does not provide a solution to the Gross' problem. In 1994 H.X. Yi [16] established a URSE with 15 elements, and in 1995 P. Li and C.C. Yang [14] established a URSM with 15 elements and a URSE with 7 elements. Since then to find a URSM with minimum cardinality becomes an increasing interest among the researchers.

In 1998 G. Frank and M. Reinders [2] obtained a URSM with 11 element, which is the smallest available URSM to the knowledge of the authors.

A polynomial P in $\mathbb C$ is called a strong uniqueness polynomial for meromorphic (resp., entire) functions if for any non-constant meromorphic (resp., entire) functions f and g, $P(f) \equiv cP(g)$ implies $f \equiv g$, where c is a suitable nonzero constant. We say P is SUPM (resp., SUPE) in brief. On the other hand, for a polynomial P in $\mathbb C$ if the condition $P(f) \equiv P(g)$ implies $f \equiv g$ for any non-constant meromorphic (resp., entire) function f and g, then P is called a uniqueness polynomial for meromorphic (resp., entire) functions. We say P is a UPM (resp., UPE) in brief.

Suppose that P is a polynomial of degree n in $\mathbb C$ having only simple zeros and S be the set of all zeros of P. If S is a URSM (resp., URSE), then from the definition it follows that P is UPM (resp., UPE). However the converse is not true, in general. For instance, P(z) = az + b ($a \neq 0$) is clearly a UPM, but for $f = -\frac{b}{a}e^z$ and $g = -\frac{b}{a}e^{-z}$ we see that $E_f(S) = E_g(S)$, where $S = \{-\frac{b}{a}\}$ is the set of zeros of P(z) = az + b.

To find conditions under which the converse is true, H. Fujimoto [3] first invented a special property of polynomials, which he called the property (H). Fujimoto's property

(H) may be stated as follows: A polynomial P is said to satisfy the property (H) if $P(\alpha) \neq P(\beta)$ for any two distinct zeros α and β of the derivative P'. Fujimoto found a sufficient condition for a set of zeros S of a SUPM (resp., SUPE) P to be a URSM (resp., URSE). Specifically, in [3] H. Fujimoto proved the following result.

Theorem B. [3] Let P be a polynomial of degree n in \mathbb{C} having only simple zeros and satisfying the condition (H). Let P' have k distinct zeros and either $k \geq 3$ or k = 2 and P' has no a simple zero. Further suppose that P is a SUPM (resp., SUPE). If S is the set of zeros of P and $n \geq 2k+7$ (resp., $n \geq 2k+3$), then S is a URSM (resp., URSE).

To deal with the the Gross' problem and its counterpart for meromorphic functions on C, Yi [17] and Li and Yang [14]-[15] have investigated the zero sets of polynomials of the form $P(z) = z^n + az^{n-m} + b$, where $n > m \ge 1$ and a and b are chosen so that P has n distinct roots. Clearly P(z) satisfies the property (H). In [18] it has been shown that when $m \ge 2$ the zero set S of P(z) is a URSM and hence P(z) is a UPM. But when m = 1, the situation is completely different. So, a natural question would be whether for m = 1, the zero set S of P(z) can be a URSM or even a URSE.

In this direction, independently Yi [17] and Li-Yang [14] had already made some contributions for entire functions. In paricular, they proved the following result.

Theorem C. Let $S = \{z : z^7 - z^6 - 1 = 0\}$. If f and g are two non-constant entire functions satisfying $E_f(S) = E_g(S)$ then $f \equiv g$.

Clearly z^7-z^6-1 is an UPE. To obtain a counterpart of Theorem C for meromorphic functions and for more general polynomials, in 1996 Yi proved the following result.

Theorem D. [18] Let $S = \{z : z^n + az^{n-m} + b = 0\}$, where m, n are two positive integers such that m and n have no common factors, n > 2m + 8 ($m \ge 2$), and a, b are nonzero constants such that the algebraic equation $z^n + az^{n-m} + b = 0$ has no multiple roots. Then $E_f(S) = E_g(S)$ implies $f \equiv g$.

>From Theorem D we infer that a URS of meromorphic functions of the form as given in Theorem B consists of 13 elements. In [18] Yi also explored the case m=1, and obtained the following version of Theorem D in this case.

Theorem E. [18] Let $S = \{z : z^n + az^{n-1} + b = 0\}$, where $n \ge 11$ is an integer, a and b are two nonzero constants such that the algebraic equation $z^n + az^{n-1} + b = 0$ has no multiple roots. If f and g are non-constant meromorphic functions satisfying $E_f(S) = E_g(S)$ then either $f \equiv g$ or $f = -\frac{ah(h^{n-1}-1)}{h^n-1}$, $g = -\frac{a(h^{n-1}-1)}{h^n-1}$, where $h = \frac{f}{g}$.

Clearly under the assumptions of Theorem E, S can not be a URSM.

In 1998 Fang and Hua [1] have extended Theorem C to the case of meromorphic functions with some additional conditions on the ramification indices of f and g. Specifically, in [1] was proved the followin result.

Theorem F. [1] Let S be as in Theorem C. If two meromorphic functions f and g are such that $\Theta(\infty; f) > \frac{11}{12}$, $\Theta(\infty; g) > \frac{11}{12}$ and $E_f(S) = E_g(S)$ then $f \equiv g$.

We need the following definition, known as weighted sharing of sets and values, which renders a useful tool for the purpose of relaxation of the nature of sharing the sets.

Definition 1.1. [8, 9] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and k+1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞)

respectively.

Definition 1.2. [8] Let S be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and k be a nonnegative integer or ∞ . We denote by $E_f(S,k)$ the set $E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\}$. Clearly $E_f(S) = E_f(S,\infty)$ and $\overline{E}_f(S) = E_f(S,0)$.

Definition 1.3. [7] For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $N(r,a;f \mid = 1)$ the counting function of simple a-points of f. For a positive integer m we denote by $N(r,a;f \mid \leq m)$ (resp., $N(r,a;f \mid \geq m)$ the counting function of those a-points of f whose multiplicities are not greater(resp., less) than m, where each a-point is counted according to its multiplicity. The functions $\overline{N}(r,a;f \mid \leq m)$ and $\overline{N}(r,a;f \mid \geq m)$ are defined similarly, where in counting the a-points of f we ignore the multiplicities. Also, the functions $N(r,a;f \mid < m)$, $N(r,a;f \mid > m)$, $\overline{N}(r,a;f \mid < m)$ and $\overline{N}(r,a;f \mid > m)$ are defined analogously.

We define $\delta_2(a; f) = 1 - \limsup_{r \to \infty} \frac{N_2(r, a; f)}{T(r, f)}$, where $N_2(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f) \ge 2$. Lahiri [10] improved Theorem F in the following direction.

Theorem G. [10] Let S be as in Theorem C. If for two non-constant meromorphic functions f and g, $\Theta(\infty; f) + \Theta(\infty; g) > \frac{3}{2}$ and $E_f(S, 2) = E_g(S, 2)$ then $f \equiv g$.

In 2004 Lahiri and Banerjee [11] further improved Theorem C in a more compact and convenient way, and obtained the following result.

Theorem H. [11] Let $S = \{z : z^n + az^{n-1} + b = 0\}$, where $n \ge 9$ is an integer, and a, b are two nonzero constants such that $z^n + az^{n-1} + b = 0$ has no multiple roots. If $E_f(S,2) = E_g(S,2)$ and $\Theta(\infty;f) + \Theta(\infty;g) > \frac{4}{n-1}$, then $f \equiv g$.

The following example shows that the set S in Theorems G-H cannot be replaced by an arbitrary set containing six distinct elements.

Example 1.1. Let $f(z) = \sqrt{\alpha\beta\gamma}e^z$ and $g(z) = \sqrt{\alpha\beta\gamma}e^{-z}$, and let $S = \{\alpha\sqrt{\beta}, \alpha\sqrt{\gamma}, \beta\sqrt{\alpha}, \gamma\sqrt{\alpha}, \gamma\sqrt{\beta}\}$, where α , β and γ are nonzero distinct complex numbers. Then it is easy to see that $E_f(S, \infty) = E_g(S, \infty)$ but $f \not\equiv g$.

So we observe that deficiencies of poles play a vital role in order to find sufficient conditions for which the conclusions of Theorems F, and G-H holds true.

We naturally raise the following questions.

Question 1: Is there any significant contribution of the deficiencies of the other values in Theorems G and H?

Question 2: What happens if we reduce the degree of the equation defining S in Theorem H?

In this paper we give some affirmative answers to the above questions, which in turn will further improve, generalize and extend Theorems G and H.

The following theorem is the main result of the paper.

Theorem 1.1. Let $S = \{z : z^n + az^{n-1} + b = 0\}$, where $n \geq 6$ is an integer, and a, b are two nonzero constants such that $z^n + az^{n-1} + b = 0$ has no multiple roots. Suppose that f and g are two non-constant meromorphic functions satisfying $E_f(S,m) = E_g(S,m)$. If one of the following conditions is satisfied:

(i)
$$m \ge 2$$
 and $\Theta_f + \Theta_g > \max\{\frac{10-n}{2}, \frac{n+1}{n-1}\}$
(ii) $m = 1$ and $\Theta_f + \Theta_g > \max\{\frac{11-n}{2}, \frac{n+1}{n-1}\}$

(ii)
$$m = 1$$
 and $\Theta_f + \Theta_g > \max\{\frac{11-n}{2}, \frac{n+1}{n-1}\}$

(iii)
$$m = 0$$
 and $\Theta_f + \Theta_g > \max\{\frac{16-n}{3}, \frac{n+1}{n-1}\},$

and

then $f \equiv g$, where $\Theta_f = \Theta(0; f) + \Theta(-a \frac{n-1}{n}; f) + \Theta(\infty; f) + \frac{1}{2} \delta_2(-a; f)$ and Θ_g can be defined similarly.

The examples that follow show that the condition $\Theta_f + \Theta_g > \frac{n+1}{n-1}$ in Theorem 1.1 is sharp, when $n \geq 8$ and $m \geq 2$.

Example 1.2. (Example 2, [11]). Let $f = -a \frac{1-h^{n-1}}{1-h^n}$ and $g = -ah \frac{1-h^{n-1}}{1-h^n}$, where $h = \frac{\alpha^2(e^z-1)}{e^z-\alpha}$, $\alpha = exp(\frac{2\pi i}{n})$ and $n(\geq 3)$ is an integer.

Then we have T(r, f) = (n-1)T(r, h) + O(1); T(r, g) = (n-1)T(r, h) + O(1)and $T(r,h) = T(r,e^z) + O(1)$. Next, we see that $h \neq \alpha, \alpha^2$, and so for any complex number $\gamma \neq \alpha, \alpha^2$ we have $\overline{N}(r, \gamma; h) \sim T(r, h)$. Also, we note that a root of h = 1is not a pole and zero of f and g. Hence $\Theta(\infty; f) = \Theta(\infty; g) = \frac{2}{n-1}$. On the other hand, we have

 $\Theta(0; f) = 1 - \limsup_{r \to \infty} \frac{\sum_{k=1}^{n-2} \overline{N}(r, \beta^k; h) + \overline{N}(r, \infty; h)}{(n-1)T(r, h) + O(1)} = 0$ $\Theta(0; g) = 1 - \limsup_{r \to \infty} \frac{\sum_{k=1}^{n-2} \overline{N}(r, \beta^k; h) + \overline{N}(r, 0; h)}{(n-1)T(r, h) + O(1)} = 0,$ $(2\pi i) \quad \text{Add}$

where $\beta = exp\left(\frac{2\pi i}{n-1}\right)$. Also, we have $\delta_2(-a;f)=1-\limsup_{r\longrightarrow\infty}rac{2\overline{N}(r,0;h)}{(n-1)T(r,h)+O(1)}=rac{n-3}{n-1}$ and

 $\delta_2(-a;g) = 1 - \limsup_{r \to \infty} \frac{2\overline{N}(r,\infty;h)}{(n-1)T(r,h) + O(1)} = \frac{n-3}{n-1}.$

Observe that the polynomial $(n-1)z^n - nz^{n-1} + 1$ has double zero at the point z = 1. Consequently it has n-1 distinct zeros, which we denote by $u_k, k=1,\ldots,n-1$. So, we have

$$\Theta(-a\frac{n-1}{n};f) = 1 - \limsup_{r \to \infty} \frac{\sum_{k=1}^{n-1} \overline{N}(r, u_k; e^z)}{(n-1)T(r, e^z) + O(1)} = 0$$

$$\Theta(-a\frac{n-1}{n};g) = 1 - \limsup_{r \to \infty} \frac{\sum_{j=1}^{n-1} \overline{N}(r, v_j; e^z)}{(n-1)T(r, e^z) + O(1)} = 0,$$

where $v_j = \frac{1}{u_j}, j = 1, \ldots, n-1$. Therefore $\Theta_f + \Theta_g = \frac{n+1}{n-1}$. Clearly $E_f(S, \infty) = \frac{1}{n-1}$

 $E_g(S,\infty)$ because $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ but $f \not\equiv g$. Example 1.3. Let f and g be as in Example 1.2, where $h = \frac{\alpha(\alpha e^z - 1)}{e^z - 1}$, $\alpha = exp(\frac{2\pi i}{n})$

and $n(\geq 3)$ is an integer.

and

Now we give some definitions and notation which are used in the rest of the paper Definition 1.4. [19] Let f and g be two non-constant meromorphic functions such that f and g share (a,0). Let zo be an a-point of f with multiplicity p, an a-point of g with multiplicity q. We denote by $\overline{N}_L(r,a;f)$ the reduced counting function of those a-points of f and g where p > q, by $N_{E_i}^{(1)}(r, a; f)$ the counting function of those a-points of f and g where p=q=1, and by $\overline{N}_{E}^{(2)}(r,a;f)$ the reduced counting function of those a-points of f and g where $p=q\geq 2$. In the same way we can define the functions $\overline{N}_L(r,a;g), \ N_E^{(1)}(r,a;g), \ \overline{N}_E^{(2)}(r,a;g);$ and the functions $\overline{N}_L(r,a;f)$ and $\overline{N}_L(r,a;g)$ for $a \in \mathbb{C} \cup \{\infty\}$.

Observe that when f and g share (a, m), $m \ge 1$, then $N_E^{(1)}(r, a; f) = N(r, a; f | = 1)$. Definition 1.5. We denote by $\overline{N}(r, a; f | = k)$ the reduced counting function of those

a-points of f whose multiplicities is exactly k, where $k \geq 2$ is an integer.

Definition 1.6. [8, 9] Let f, g share a value a IM. We denote by $\overline{N}_*(r, a; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel. Let F and G be two non-constant meromorphic functions defined as follows.

(2.1)
$$F = \frac{f^{n-1}(f+a)}{-b}, \quad G = \frac{g^{n-1}(g+a)}{-b}.$$

Also, we will use the function H defined as follows:

$$H = \left(\frac{F''}{F'} - \frac{2F'}{F-1}\right) - \left(\frac{G''}{G'} - \frac{2G'}{G-1}\right).$$
 Lemma 2.1. [13] Let f be a non-constant meromorphic function and let

$$R(f) = \sum_{k=0}^{n} a_k f^k \left(\sum_{j=0}^{m} b_j f^j \right)^{-1}$$

be an irreducible rational function in f with constant coefficients $\{a_k\}$ and $\{b_j\}$, where $a_n \neq 0$ and $b_m \neq 0$. Then T(r, R(f)) = dT(r, f) + S(r, f), where $d = \max\{n, m\}$.

Lemma 2.2. [19] Let F, G be two non-constant meromorphic functions such that they share (1,0) and $H \not\equiv 0$, where H is defined by (2.2). Then

 $N_E^{1)}(r,1;F\mid=1)=N_E^{1)}(r,1;G\mid=1)\leq N(r,H)+S(r,F)+S(r,G).$ Lemma 2.3. Let $S=\{z:z^n+az^{n-1}+b=0\}$, where a,b are nonzero constants such that $z^n+az^{n-1}+b=0$ has no multiple roots, $n\ (\geq 3)$ is an integer, and let F,G be given by (2.1). If for two non-constant meromorphic functions f and g, $E_f(S,0)=E_g(S,0)$ and $H\not\equiv 0$, then

$$N(r,H) \leq \overline{N}(r,0,f) + \overline{N}(r,0;g) + \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) + \overline{N}(r,-a;f| \geq 2)$$

$$+ \overline{N}(r,-a;g| \geq 2) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,-a\frac{n-1}{n};g) + \overline{N}_{*}(r,1;F,G)$$

$$+ \overline{N}_{0}(r,0;f') + \overline{N}_{0}(r,0;g'),$$

where $\overline{N}_0(r,0;f')$ is the reduced counting function of those zeros of f', which are not the zeros of $f(f+a)(f+a\frac{n-1}{n})(F-1)$ and $\overline{N}_0(r,0;g')$ is defined similarly. Proof. Since $E_f(S,0)=E_g(S,0)$ it follows that F and G share (1,0). From

Proof. Since $E_f(S,0) = E_g(S,0)$ it follows that F and G share (1,0). From (2.1) we have $F' = [nf + (n-1)a]f^{n-2}f'/(-b)$ and $G' = [ng + (n-1)a]g^{n-2}g'/(-b)$. It can easily be verified that the possible poles of H occur at: (i) zeros of f and g, (ii) multiple zeros of f + a and g + a, (iii) zeros of nf + a(n-1) and ng + a(n-1), (iv) poles of f and g, (v) those 1-points of F and G with different multiplicities, (vi) zeros of f', which are not the zeros of $f(f + a) (f + a\frac{n-1}{n}) (F - 1)$, (vii) zeros of g', which are not zeros of $g(g + a) (g + a\frac{n-1}{n}) (G - 1)$. Since H has only simple poles, the result follows from above. Lemma 2.3 is proved.

Lemma 2.4. [11]. Let f, g be two non-constant meromorphic functions. Then $f^{n-1}(f+a)g^{n-1}(g+a) \not\equiv b$, where a, b are nonzero finite constants and $n \geq 5$ is an integer.

Lemma 2.5. Let f, g be two non-constant meromorphic functions such that $\Theta_f + \Theta_g > \frac{n+1}{n-1}$, where Θ_f and Θ_g are as in in the Theorem 1.1. Then $f^{n-1}(f+a) \equiv g^{n-1}(g+a)$ implies $f \equiv g$, where $n \geq 2$ is an integer and a is a nonzero finite constant.

Proof. Let

(2.3)
$$f^{n-1}(f+a) \equiv g^{n-1}(g+a)$$

and suppose $f \not\equiv g$. We consider two cases:

Case I Let $y=\frac{q}{f}$ be a constant. Then it follows from (2.3) that $y\neq 1$, $y^{n-1}\neq 1$, $y^n\neq 1$ and $f\equiv -a\frac{1-y^{n-1}}{1-y^n}$ is a constant, which is impossible.

Case II Let $y = \frac{q}{l}$ be non-constant. Then

(2.4)
$$f \equiv -a \frac{1 - y^{n-1}}{1 - y^n} \equiv a \left(\frac{y^{n-1}}{1 + y + y^2 + \dots + y^{n-1}} - 1 \right).$$

and

$$(2.5) f + a \frac{(n-1)}{n} \equiv -a \frac{1 - y^{n-1}}{1 - y^n} + a \frac{(n-1)}{n} \equiv -a \frac{(n-1)y^n - ny^{n-1} + 1}{n(1 - y^n)}.$$

Assuming $p(z) = (n-1)z^n - nz^{n-1} + 1$, we have $p(0) \neq 0$ and p(1) = p'(1) = 0. So from (2.5) we obtain $\sum_{j=1}^{n-1} \overline{N}(r, u_j; y) \leq \overline{N}(r, -a\frac{n-1}{n}; f)$, where $u_j, j = 1, 2, \ldots, n-1$, have the same meaning as in Example 1.2.

>From (2.4) and Lemma 2.1 we obtain T(r, f) = (n-1)T(r, y) + S(r, y). We first note that the zeros of $1 + y + y^2 + \ldots + y^{n-2}$ contributes to the zeros of both f and g. In addition, the poles of g contributes to the zeros of g and since g = fy the zeros of g contributes to the zeros of g. So from (2.4) me_1 find

 $\sum_{j=1}^{n-2} \overline{N}(r, v_j; y) + \overline{N}(r, \infty; y) \leq \overline{N}(r, 0; f), \sum_{k=1}^{n-2} \overline{N}(r, w_k; y) \leq \overline{N}(r, \infty; f),$ where $w_k^{j=1} = exp\left(\frac{2k\pi i}{n}\right)$ for $k = 1, 2, \ldots, n-1$ and $v_j^{j} = exp\left(\frac{2j\pi i}{n-1}\right)$ for $j = 1, 2, \ldots, n-2$.
Also, from (2.4) we have $\overline{N}(r, 0; y) \leq \frac{1}{2}N_2(r, -a; f)$.

Hence by the second fundamental theorem we can write
$$(3n-4) T(r,y) \leq \overline{N}(r,\infty;y) + \sum_{i=1}^{n-1} \overline{N}(r,u_i;y) + \sum_{j=1}^{n-1} \overline{N}(r,v_j;y) + \sum_{k=1}^{n-1} \overline{N}(r,w_k;y) + \overline{N}(r,0;y) + S(r,y)$$

$$\leq \overline{N}(r,0;f) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,\infty;f) + \frac{1}{2}N_2(r,-a;f) + S(r,y)$$

$$\leq \left(\frac{7}{2} - \Theta(0;f) - \Theta(-a\frac{n-1}{n};f) - \Theta(\infty;f) - \frac{1}{2}\delta_2(-a;f) + \varepsilon\right) T(r,f)$$

$$+S(r,y)$$

$$= (n-1) \left(\frac{7}{2} - \Theta_f + \varepsilon\right) T(r,y) + S(r,y),$$

implying

(2.6)
$$\frac{3n-4}{n-1} T(r,y) \le \left(\frac{7}{2} - \Theta_f + \varepsilon\right) T(r,y) + S(r,y),$$
 where $0 < 2\varepsilon < \Theta_f + \Theta_g$. Again putting $y_1 = \frac{1}{y}$ and noting that $T(r,y) = \frac{1}{y}$

 $T(r, y_1) + O(1)$, we can use the above arguments to obtain

(2.7)
$$\frac{3n-4}{n-1} T(r,y) \leq \left(\frac{7}{2} - \Theta_g + \varepsilon\right) T(r,y) + S(r,y).$$

Adding (2.6) and (2.7) we get $\left(\frac{6n-8}{n-1}-7+\Theta_f+\Theta_g-2\varepsilon\right)$ $T(r,y)\leq S(r,y)$, which is a contradiction. Hence $f\equiv g$, and the result follows. Lemma 2.5 is proved. Lemma 2.6. Let f be a non-constant meromorphic function and let a_i , $i=1,2,\ldots,n$, be finite distinct complex numbers, where $n\geq 2$. Then

$$N(r,0;f') \leq T(r,f) + \overline{N}(r,\infty;f) - \sum_{i=1}^{n} m(r,a_{i};f) + S(r,f)$$
Proof. Let $F = \sum_{i=1}^{n} \frac{1}{f-a_{i}}$, then $\sum_{i=1}^{n} m(r,a_{i};f) \stackrel{i=1}{=} m(r,F) + O(1)$. Note that $m(r,F) \leq m(r,0;f') + m(r,\sum_{i=1}^{n} \frac{f'}{f-a_{i}}) = T(r,f') - N(r,0;f') + S(r,f)$.

Also, observe that $T(r, f') = m(r, f') + N(r, f') \le T(r, f) + \overline{N}(r, f) + S(r, f)$ and the result follows. Lemma 2.6 is proved.

3. Proof of Theorem 1.1

We know from the assumption that the zeros of $z^n + az^{n-1} + b$ are simple; we denote them by ω_j , j = 1, 2, ... n. Let F, G be given by (2.1). Since $E_f(S, m) = E_g(S, m)$ it follows that F, G share (1, m).

Case 1. We first consider the case $H \not\equiv 0$, where H is given by (2.2).

Subcase 1.1. $m \ge 1$. Assuming first that $m \ge 2$ and using Lemma 2.6 with n = 3,

$$(3.\overline{1})^{0}, a_{2} = -a \text{ and } \overline{N}_{0}[\overline{r}, \overline{0}; a_{g}^{n-1}] + \overline{N}(r, 1; G) \stackrel{\text{tit}}{\stackrel{\circ}{\sim}} (2) + \overline{N}_{*}(r, 1; F, G) \leq \overline{N}_{0}(r, 0; g')$$

+
$$\overline{N}(r,1;G|\geq 2) + \overline{N}(r,1;G|\geq 3) \leq \overline{N}_0(r,0;g')$$

$$+ \sum_{j=1}^{n} \{ \overline{N}(r, \omega_{j}; g \mid = 2) + 2\overline{N}(r, \omega_{j}; g \mid \geq 3) \} \le N(r, 0; g' \mid g \neq 0, -a, -a \frac{n-1}{n})$$

$$\leq N(r,0;g') - N(r,0;g) + \overline{N}(r,0;g) - N(r,-a;g) + \overline{N}(r,-a;g) \\ - N(r,-a\frac{n-1}{n};g) - \overline{N}(r,-a\frac{n-1}{n};g)$$

= $\overline{N}(r,0;g) + \overline{N}(r,\infty;g) + \overline{N}(r,-a;g) + \overline{N}(r,-a;\frac{n-1}{r};g) - 2T(r,g) + S(r,g)$. Hence using (3.1) and Lemmas 2.1 – 2.3, from second fundamental theorem we have for any $\varepsilon > 0$

$$(3.2) \quad (n+2) T(r,f) \leq \overline{N}(r,0;f) + \overline{N}(r,-a;f) + \overline{N}(r,-a\frac{n-1}{n};f) \\ + \overline{N}(r,\infty;f) + N(r,1;F |= 1) + \overline{N}(r,1;F |\geq 2) - N_0(r,0;f') + S(r,f) \\ \leq \left(7 - 2\Theta(0,f) - 2\Theta(\infty,f) - 2\Theta(-a\frac{n-1}{n};f) - \delta_2(-a;f) + \frac{1}{2}\varepsilon\right) T(r,f) \\ + \left(5 - 2\Theta(0,g) - 2\Theta(\infty,g) - 2\Theta(-a\frac{n-1}{n};g) - \delta_2(-a;g) + \frac{1}{2}\varepsilon\right) T(r,g) \\ + S(r,f) + S(r,g) \leq (12 - 2\Theta_f - 2\Theta_g + \varepsilon) T(r) + S(r).$$

In a similar way we can obtain
(3.3) $(n+2) T(r,g) \le (11-2\Theta_f-2\Theta_g+\varepsilon) T(r) + S(r)$.

Combining (3.2) and (3.3) we conclude that

$$(3.4) (n-10+2\Theta_f+2\Theta_g-\varepsilon) T(r) \leq S(r).$$

Since $\varepsilon > 0$, (3.4) leads to a contradiction. As for the case m = 1, we use Lemma 2.6 to get the following counterpart of formula (3.1):

$$(3.5) \quad \overline{N}_{0}(r,0;g') + \overline{N}(r,1;G| \geq 2) + \overline{N}_{*}(r,1;F,G)$$

$$\leq \overline{N}_{0}(r,0;g') + \overline{N}(r,1;G| \geq 2) + \overline{N}_{L}(r,1;G) + \overline{N}_{L}(r,1;F)$$

$$\leq N(r,0;g'|g \neq 0, -a, -a\frac{n-1}{n}) + \frac{1}{2}N(r,0;f'|f \neq 0, -a, -a\frac{n-1}{n})$$

$$\leq \overline{N}(r,0;g) + \overline{N}(r,-a;g) + \overline{N}(r,-a\frac{n-1}{n};g) + \overline{N}(r,\infty;g) - 2T(r,g) + \frac{1}{2}\left\{\overline{N}(r,0;f) + \overline{N}(r,-a;f) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,\infty;f)\right\} - T(r,f) + S(r,f) + S(r,g).$$

So using (3.5), Lemmas 2.2 and 2.3, and proceeding as in (3.2), from second fundamental theorem we have for any $\varepsilon > 0$

damental theorem we have for any
$$\varepsilon > 0$$

$$(3.6) \qquad (n+2) \ T(r,f) \leq 2 \left\{ \overline{N}(r,0;f) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,\infty;f) \right\}$$

$$+ N_2(r,-a;f) 2 \left\{ \overline{N}(r,0;g) + \overline{N}(r,-a\frac{n-1}{n};g) + \overline{N}(r,\infty;g) \right\} + N_2(r,-a;g)$$

$$+ \frac{1}{2} \left\{ \overline{N}(r,0;f) + \overline{N}(r,-a;f) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,\infty;f) \right\} - 2T(r,g) - T(r,f)$$

$$+ S(r,f) + S(r,g) \leq (11 - 2\Theta_f - 2\Theta_g + \varepsilon) T(r) + 2T(r) + S(r).$$

Similarly we can obtain

$$(3.7) (n+2) T(r,g) \le (11 - 2\Theta_f - 2\Theta_g + \varepsilon) T(r) + 2T(r) + S(r).$$

Combining (3.6) and (3.7) we conclude that

$$(3.8) (n-11+2\Theta_f+2\Theta_g-\varepsilon) T(r) \leq S(r).$$

Since $\varepsilon > 0$, (3.8) leads to a contradiction.

Subcase 1.2. m = 0. Using Lemma 2.6 we observe that

$$(3.9) \qquad \overline{N}_{0}(r,0;g') + \overline{N}_{E}^{(2)}(r,1;F) + 2\overline{N}_{L}(r,1;G) + 2\overline{N}_{L}(r,1;F) \\ \leq \overline{N}_{0}(r,0;g') + \overline{N}_{E}^{(2)}(r,1;G) + \overline{N}_{L}(r,1;G) + \overline{N}_{L}(r,1;G) + 2\overline{N}_{L}(r,1;F) \\ \leq \overline{N}_{0}(r,0;g') + \overline{N}(r,1;G| \geq 2) + \overline{N}_{L}(r,1;G) + 2\overline{N}_{L}(r,1;F) \\ \leq N(r,0;g'|g \neq 0, -a, -a\frac{n-1}{n}) + \overline{N}(r,1;G| \geq 2) + 2\overline{N}(r,1;F| \geq 2) \\ \leq 2\left\{ \overline{N}(r,0;g) + \overline{N}(r,\infty;g) + \overline{N}(r,-a;g) + \overline{N}(r,-a\frac{n-1}{n};g) + \overline{N}(r,0;f) + \overline{N}(r,\infty;f) + \overline{N}(r,-a;f) + \overline{N}(r,-a\frac{n-1}{n};f) \right\} \\ -4T(r,f) - 4T(r,g) + S(r,f) + S(r,g).$$

Hence using (3.9) and Lemmas 2.2 and 2.3, from second fundamental theorem we have for any $\varepsilon > 0$

$$(3.10) (n+2) T(r,f)$$

$$\leq \overline{N}(r,0;f) + \overline{N}(r,-a;f) + \overline{N}(r,-a\frac{n-1}{n};f) + \overline{N}(r,\infty;f) + N_E^{(1)}(r,1;F)$$

$$+ \overline{N}_L(r,1;F) + \overline{N}_L(r,1;G) + \overline{N}_E^{(2)}(r,1;F) - N_0(r,0;f') + S(r,f)$$

$$\leq 2 \left\{ \overline{N}(r,0;f) + \overline{N}(r,\infty;f) + \overline{N}(r,-a\frac{n-1}{n};f) \right\} + N_2(r,-a;f)$$

$$+ \overline{N}(r,0;g) + \overline{N}(r,-a\frac{n-1}{n};g) + \overline{N}(r,\infty;g) + \overline{N}(r,-a;g|\geq 2) + \overline{N}_E^{(2)}(r,1;F)$$

$$+ 2\overline{N}_L(r,1;G) + 2\overline{N}_L(r,1;F) + \overline{N}_0(r,0;g') + S(r,f) + S(r,g)$$

$$\leq (16 - 3\Theta_f - 3\Theta_g + \varepsilon) T(r) + 2T(r) + S(r).$$

In a similar manner we can obtain

$$(3.11) (n+2) T(r,g) \le (16 - 3\Theta_f - 3\Theta_g + \varepsilon) T(r) + 2T(r) + S(r).$$

Combining (3.10) and (3.11) we conclude that

$$(3.12) (n-16+3\Theta_f+3\Theta_g-\varepsilon)T(r) \leq S(r).$$

Since $\varepsilon > 0$, (3.12) leads to a contradiction.

Case 2. $H \equiv 0$. By integration we get from (2.2)

$$\frac{1}{F-1} \equiv \frac{A}{G-1} + B,$$

where A and B are constants and $A \neq 0$. >From (3.13) we obtain

(3.14)
$$F \equiv \frac{(B+1)G + A - B - 1}{BG + A - B}.$$

Clearly (3.14) together with Lemma 2.1 yields

(3.15)
$$T(r,f) = T(r,g) + O(1).$$

Subcase 2.1. Assume that $B \neq 0, -1$.

If $A-B-1\neq 0$, then from (3.14) we obtain $\overline{N}(r,\frac{B+1-A}{B+1};G)=\overline{N}(r,0;F)$. Hence using Lemma 2.1 and the second fundamental theorem we obtain

$$nT(r,g) < \overline{N}(r,\infty;G) + \overline{N}(r,0;G) + \overline{N}(r,\frac{B+1-A}{B+1};G) + S(r,g)$$

$$\leq \overline{N}(r,\infty;g) + \overline{N}(r,0;g) + \overline{N}(r,0;g+a) + \overline{N}(r,0;f) + \overline{N}(r,0;f+a) + S(r,g)$$

$$\leq 2T(r,f) + 3T(r,g) + S(r,g),$$

which, in view of (3.15), leads to a contradiction because $n \ge 6$. Thus A - B - 1 = 0, and hence (3.14) reduces to $F \equiv \frac{(B+1)G}{BG+1}$, implying $\overline{N}(r, \frac{-1}{B}; G) = \overline{N}(r, \infty; f)$. Again by Lemma 2.1 and the second fundamental theorem we have

$$nT(r,g) < \overline{N}(r,\infty;G) + \overline{N}(r,0;G) + \overline{N}(r,\frac{-1}{B};G) + S(r,g)$$

$$\leq \overline{N}(r,\infty;g) + \overline{N}(r,0;g) + \overline{N}(r,0;g+a) + \overline{N}(r,\infty;f) + S(r,g)$$

$$\leq T(r,f) + 3T(r,g) + S(r,g),$$

which, in view of (3.15), leads to a contradiction because $n \ge 6$. Subcase 2.2. Assume that B = -1. From (3.14) we have

$$(3.16) F \equiv \frac{A}{-G+A+1}.$$

If $A+1 \neq 0$, then from (3.17) we obtain $\overline{N}(r,A+1;G) = \overline{N}(r,\infty;f)$. So repeating the arguments used in the Subcase 2.1, we again get a contradiction. Hence A+1=0, and from (3.17) we infer $FG \equiv 1$, implying $f^{n-1}(f+a)g^{n-1}(g+a) \equiv b^2$, which is impossible by Lemma 2.4.

ABHIJIT BANERJEE AND SUJOY MAJUMDER

Subcase 2.3. Assome that B = 0. From (3.14) we obtain

(3.17)
$$F \equiv \frac{G + A - 1}{A}.$$

If $A-1\neq 0$, then from (3.17) we obtain $\overline{N}(r,1-A;G)=\overline{N}(r,0;F)$. So in the same manner as above we again get a contradiction. So A=1 and hence $F\equiv G$, that is, $f^{n-1}(f+a)\equiv g^{n-1}(g+a)$. Now the assertion of the theorem follows from Lemma 2.5. This completes the proof of Theorem 1.1.

REFERENCES

- M. Fang and X. Hua, Meromorphic functions that share one finite set CM, J. Nanjing Univ. Math. Biquarterly, 15(1)(1998), 15-22.
- [2] G. Frank and M. Reinders, A unique range set for meromorphic functions with 11 elements. Complex Var. Theory Appl. 37 (1)(1998), 185-193.
- [3] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122 (2000), 1175-1203.
- [4] F.Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, Kentucky(1976); Lecture Notes in Math., 599(1977), 51-69, Springer(Berlin).
- [5] F.Gross and C.C.Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acad., 58 (1982), 17-20.
- [6] W.K.Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
- [7] I.Lahiri, Value distribution of certain differential polynomials. Int. J. Math. Math. Sci., 28(2)(2001), 83-91.
- [8] I.Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
- [9] I.Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, 46(2001), 241-253.
- [10] I.Lahiri, A question of gross and weighted sharing of a finite set by meromorphic functions, Applied Math. E-Notes, 2(2002), 16-21
- [11] I.Lahiri, and A.Banerjee, Uniqueness of meromorphic functions with deficient poles, Kyungpook Math. J., 44(2004), 575-584.
- [12] I.Lahiri, and S.Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26 (2003), 95-100.
- [13] A.Z.Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Functions. Funct. Anal. Appl., 14 (1971), 83-87.
- [14] P.Li and C.C.Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 13(1995), 437-450.
- [15] P.Li and C.C. Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124 (1996), 177-185.
- [16] H.X.Yi, On a problem of Gross, Sci. China, Ser.A, 24 (1994), 1137-1144.
- [17] H.X.Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J., 138(1995), 169-177.
- [18] H.X.Yi, Unicity theorems for meromorphic or entire functions III, Bull. Austral. Math. Soc., 53(1996), 71-82.
- [19] H.X.Yi, Meromorphic functions that share one or two values II, Kodai Math. J., 22 (1999), 264-272.

Поступила 7 ноября 2012