Hasectug HAH Apmenun, MaremaTuxa, ToM 48, 1. 6, 2013, crp. 3-14.
SOME PROPERTIES OF CERTAIN CLASSES OF p—VALENT
FUNCTIONS DEFINED BY THE HADAMARD PRODUCT

M. K. AOUF AND T. M. SEOUDY

Mansoura University, Fayoum University, Egypt
E-mails: mkaoufl27@yahoo.com; tms00@fayoum.edu.eg

Abstract. In this paper we obtain sandwich type theorems, inclusion relationships,
convolution properties and coefficient estimates of certain classes of p—valent analytic
functions defined by a convolution. Several other new results are also obtained.

MSC2010 numbers: 30C45.
Keywords: p—valent functions, subordination, superordination, linear operator, Hadamard
product, convolution. ]

1. INTRODUCTION

Let H be the class of functions analytic in the open unit disk U = {z € C: |z| < 1}
and let H [a,n] be the subclass of H consisting of function of the form:
- f(@)=a+an" +ant1z2" + .. (z€U).
Let A (p) denote the class of all analytic functions of the form:

(1.1) f(z)=z”+ia,,+kz”+" (peN={1,2,3,..}; zeU).
k=1

We set A(1) = A. If f(2) and g(z) are analytic in U functions, we say that f (z)
is subordinate to g(z), or equivalently, g (z) is superordinate to f(z), and write
f(z) < g(z) (z € U), if there exists a Schwarz function w (z), which is analytic in U
with w (0) = 0 and |w (2)| < 1 such that f(2) = g(w(z)) (z € U). It is known that

f(z) = g(z) = f(0)=9(0) and f(U)C g(U).

Furthermore, if the function g(z) is univalent in U, then we have the following
equivalence (see [5], (18] and [19]): f(2) < g(z) <= f(0) = g(0) and f(U) C g(U).
For functions f (z) given by (1.1) and

(1.2) g(z)=z’+ib,,+gz”+" (peEN;zeU),
k=1
the Hadamard product or convolution of f (z) and g (z) is defined by
(£*9)(2) = 22 + ) apyubpsnz™* = (g% f) (2).
k=1
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For functions f,g € A(p), we define the linear operator D} , : A(p) = A(p) (A 2
0,p€N,n€No=NU{0}) by: D3 ,(f*9)(z) = (f * g)(z), ﬂnd

A ’
DY, (f »9)(2) = Daglf »0)(2) = (L= A)(f =0)(@) + - (£ x0)()',

and (in general)
D}, (F*9)(z) = Dap(Di7 (f*9)(2)
(1.3) = 2+ i (p s Ak) Gktpbrtpz™? (A 20).
rErR
From (1. 3) we can easily deduce that

(1.4) —= (D3 ,(f *9)(2)) = D3EH(f * 9)(2) — (1 = N)D3,(f * 9)(2) (A > 0).

The linea.r operator D}, (f*g)(2) = D3 (f* g)(z) was introduced by Aouf and Seoudy
in [3]. Observe that the operator D} ,(f*g)(z) reduces to known operators for specific
choices of g,n and A. Some of %hem follows.

(i) For A =1 and g(z) = — — we have D (f *9)(2) = D} f(2), where D} is the
p—valent Salagean operator introduced and atud.lgd by Kamali and Orhan.

(i) For n =0 and g(2) = 2P + Y oy [ ”Ak] 28 (A > 0;p €;1,5 € Np), we get

D3 o(f *9)(2) = (F * 9)(2) = (A ) f(2),

where I3(), 1) is the generalized multiplier transformation, which was introduced by
Cétas [7]. Notice that the operator I3(A,[) contains, as special cases, the multiplier
transformation (see [8]), the generalized Salége#in operator introduced and studied by
Al-Oboudi [1], which in turn, contains as special case the Saligein operator ([24]).

(#i%) For n = 0 and

_p 3 (odi(ade
W=+ By B

where oy, 8; € C* = C\{0}, (i = 1,2,..1), (j = 1,2,...8),l < s+ 1,1,8 € Np, we
obtain

DS p(f % 9)(2) = (f *9)(2) = Hpy,a(c1)£(2),

where Hp,,s(c) is the Dziok-Srivastava operator introduced and studied in [9] (see
also [10] and [11]). The operator Hps(x;1), in turn contains a number of other
interesting operators such as, the Hohlov linear operator (see [12]), the Carlson-Shaffer
linear operator (see [6] and [23]), the Ruscheweyh derivative operator (see [22]), the
Bernardi-Libera-Livingston operator (see [4], [14] and [15]), and the Owa-Srivastava
fractional derivative operator (see [20]).

Using the linear operator D} ,(f * g), we define a new subclass Chp(fi9:2, 4, B)
of the class A(p) as follows:
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Definition 1.1. Let g € A (p) be defined by (1.3). A function f € A (p) is said to
be in the class €} , (f, g; @, 4, B) if it satisfies the following subordination condition:
D%, (f *9)(2) +GD§$‘ (f*9)(z)  1+4:

zP zP 1+ Bz
(PEN;neN;A>0aeC—-1<B<A<1;zel).
Let €} , (f,9:0, 4, B) = €}, (f,9: A, B), and €}, (f, 9: 2,1 — 28, -1) = €} , (£, 9: 2, ),
where €%  (f,9; @, 8) denotes the class of functions from 4 (p) satisfying
D}, (F*9)(2) Dit(f+g)(2)
R {(1 -a) > +a %
peEN;neN;;A>0aeC;0<f<1;ze U Weset C’:\'_p(f,g;ﬂ,ﬁ) =€}, (f,9:8)-

In the present paper we establish subordination and superordination properties,
convolution properties, inclusion relationships and embedding properties for the class
ey, (figia, A, B). Several other new results are also obtained.

(1-a)

> B,

2. PRELIMINARY RESULTS

In order to state and prove our main results, we need the following definition and
a number of known lemmas.
Definition 2.1. [18]. Define @ as the set of all functions f (z) that are analytic and
injective on U\E (f), where

EU)={ceav=ggf&)=a}.

and satisfy f (¢) #£0 for ¢ € U\E(f).
Lemma 2.1. [19]. Let h(z) be an analytic and convez (univalent) function in U with
h(0) = 1. Suppose also that the function ¢ (z) given by

(2.1) 6(z)=1+c1z+c22® +...
is analytic in U. If6(2) + 22 <h(z) (R(7) > 03y #0),then

6@ <@ =7 [ hOrT de<h(),

and ¢ (2) is the best dominant.
Lemma 2.2. [25]. Let q(z) be a convez univalent function in U and let ¢ € C,n €

C* = C\ {0} with
(58 refon(3)

If the function ¢ (z) is analytic in U ando¢ (z) + nz¢ (2) < oq(z) +nzq (z), then
@ (z) < q(z) and q(z) is the best dominant.
5
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Lemma 2.8. [18]. Let g(z) be a convez univalent function in U fmd & € C. Further
assume that R (8) > 0. If¢(z) € H[g(0), 1]NQ, and¢ (z) + K29 (2) is univalent in
U, theng(z) + xzq (2) < ¢(2) + kz¢ (z) implies q(z) < ¢ (z)and g(z) is the best
subdominant. :
Lemma 2.4. [16]. Let F be an analytic and convez function in U. If f,g €
" Aand f,g<F then \f+(1—-N)g<F (0<A<1).
Lemma 2.5.[21]. Letf (2) = 143 jo ax2* be analytic in U andg (2) = 1+ Y pey ez
be analytic and convez in U. If f < g, then |ax| < |b1] (keN). )

The next lemma contains three well-known identities for the Gauss hypergeometric

function 2 F1 defined by
o0
(2.2) oF; (a,b;c;2) = E-Mzk (a,b,c€C;c ¢ Zyg = {0,-1, -2,..};z€U).
= ()i (1)
Notice that the series in (2.2) converges absolutely for z € U, and hence 2F} represents
an analytic function in U (for details we refer [26, Chapter 14]).
Lemma 2.8. [26]. For real or complex parameters a, b, and c (¢ ¢ Zg ), the following
identities hold (R (c) > ®(b) > 0):
1

(2.3) f 21 (1 et (1 gty et = — ) (b)IF ((5_ Y .5 (e bici2);
0

(2.4) oFy (a,b;¢62) = (1—2)"% oy (a,c — b c; S i 1) H

(2.5) 2F (a,b;¢,2) = 2F (b,a;c;2) .

3. MAIN RESULTS

In what follows, unless otherwise stated, we assume that pe N,n € Np, -1 < B <
A <1, ) >0 and g(z) is the function given by (1.2).

Our first result concerns subordination property.
Theorem 3.1. Let f € €}, (f,9; @, A, B) with R{a} > 0. Then

(3.1) w*'f’(‘)* :igi’

where the function 1 (z) given by
(32 ()= {ﬁ +(1-$) @+ B oR (L5 + 1 g8), if BAO,
© 1+ 354, if B=0.
is the best dominant of (3.1). Furthermore,
6
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(3.3) - ae{—L——D:"- (i:g)(')}n (zeU),

§+0-4)a-B)" oR (LLZ+LgRr), if BAO,

where 1 =
{l - ﬁA, if B=0.
The estimate (3.3) is the best possible.
Proof. Consider the function
D}, (f *g) (2)

(34) be)= 22208 (zev),

and observe that ¢(z) is of the form (2.1) and is analytic in U. Differentiating (3.5)
with raspect to z and using the identity (1.5), we get

Di‘H-l A
(1-a) f*y)(z) (f*g)(x) ¢(z)+%_z¢ ) i:g; (e D).
Now, using Lemma 2.1 for vy = e ,weobt.am
D}, (f*g) (2) ik 1+ At
e i, :'!x/t, e
g+(1-4)0+B)7" o (L5 +1g8), ifB#Q,
1+ K542, ifB=0,

where we have made a change of variable followed by the use of identities (2.3) - (2.5)
with a =1, b= & and ¢ = b+ 1. This proves the assertion (3.1).

Next, in order to prove (3.3), it is enough to show that infj,j<1 {R (¥ (2))} =
¥ (—1). Indeed, we have for 2| <7 < 1,

1+ Az 1-Ar
> .
R(1+Bz) =1

Setting G (z,8) = J‘—B% and dv (s) Bsax ds (0<s<1), which is a positive
measure on [0, 1],we get ¥ (z) f G (z,8)dv (s), so that

lAsr

R v (z )}>f Tiv(e)=9(-r) (sl <r<1).
Letting r — 1~ in the last mequahty, we obtain the assertion (3.3).

Finally, the estimate (3.3) is the best possible because ¥ () is the best dominant
of (3.1). Theorem 3.1 is proved.

Taking @ = 1 in Theorem 3.1, we obtain the following result.
Corollary 3.1. The following inclusion property holds true for the class C}, , (f, 9; 4, B) :

1 (f,9,4,B) C C}p(fig9:0) C €}, (f,9: 4, B),
7
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4+0-4)a-B)" 2R (1,1;§+1;,E—1), if B#0,

T if B=0.
The result is beet, possible. _ _

Taking A=1-28(0<8<1) and B = —1 in Corollary 3.1, we obtain the following

Corollary 8.2. The following inclusion holds: Cy5* (f,9: 8) € CX, (f,9; 0:) CcC},(f,9:8),

where o = 8+ (1 — 8) { 2F1 (1,1; % +1; 3) — 1} . The result is best possible.

Theorem 3.2. For f € C}, (f,9: A, B) the function Fsp (f) defined by (see [15])

(35) B (@) =2 [(#is@a 6>-p)
belongs to the class C}, ; (f,9; 4, B) and satisfies
P, Pl (D100 ) ( Lihs
where the function k() given by
i P 1 ;5 1; f‘ L] fB?éoa

(3.6) k(z)={1§+(:: «ﬁ)(1+Bz) 27 (1 Lio+p+1; 553 :fB=0

+ T A% )
is the best dominant of (3.7). Furthermore,
(3.7) R {D;‘ﬂi (Fanpzs;f) * g) (2)} > x (z € U) ]
where

(3.8) _[#+(-4)a-B)" =F1(1.1;6+p+1;3%;). if B#0,
I CE= V' if B=0.
The estimate (3.7) is the best possible.
Proof. From (3.5) we have

(39) z(D3p (Fsp (£)*9) (2)) = (6+) D}, (f *9) (2) — 6D, (Fiop (f) %) (2).

We define
D} (F *xg)(z

(3.10) 4)= 22 NN1DG (),
and observe that the function ¢(z) is of the form (2.1) and is analytic in U. Differentiating
(3.9) with respect to z and using the identity (3.8), we get

D}, (f*g) (2) 24 (z)  1+Az -

PN RN e T

2P ¢(2)+ d+p -<1+Bz'

The rest of the proof is similar to that of Theorem 3.1. Theorem 3.2 is proved.
Theorem 3.3. Iffe CT" (.flg;.e) (053‘( 1): then f Eci‘lp(flg:alﬁ) (0 <B< laa>p)

for |z| < R, where
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(3.11) R= 1+(°”\) @\

p p
The bound R is the best possible.

Proof. Since f € C}, (f,g; B), we can write 22200 _ g1 (1 _ g)u(z) (z € U).
It is easy to see that the functlon u(2) is of the form (2 1), is analytic and has a positive
real part in U. Differentiating (3.7) with respect to z and using (1.4), we obtain

n * n+1
e ﬁ {(l_a) D;m(ip 9@ Dik (iv:g)(z) }=u(z}P 5_;;_”- o

Using the following well-known estimate (see, e.g., [17]):
@) o
R{u(z)} ~ 1-12
in view of (3.11) we obtain

n 'n+1 *
R(ﬁ{(l_a)Dl-p(i:g)(z)_l_ D% (%) (2) ﬁ})

(2| =r<1)

zP

(313) > R{u()} (1-%).

It is easy to see that the right-hand side of (3.12) is positive, provided that r < R,
where R is given by (3.10). In order to show that the bound R is the best possible,
we consider the function f € A (p) defined by

D3, (f *9) (2)
”T =p+(1- ﬁ)

142

S (z€0).

By noting that

1 %o (f*9)(2) D"H (f*g)( _1+z 2oz
__ﬂ{(l_a) PzP e =¥ _1—z+p(1-z)2

for |z| = R, we conclude that the bound R is the best possible. Theorem 3.3 is proved.
Theorem 3.4. Let q(z) be a univalent function in U and a € C*. Suppose also that

q(z) satisfies
R {l + z;”(gz):) } > max {0, —%SR (é) } .

If f € A(p) satisfies the following subordination condition
D3, (f*9)(2) D55 (F*9) ()
2P

zP

u+%ﬁw.

(314)  (1,-0)

then w ~< q(2), and q(z) is the best dominant.
9
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Proof. Let the function ¢ (z) be defined by (3.5). From (3.13) we find that
(3.15) o (z) + f'p—*w’ (z2)<aq(2)+ %zq’ (2)-
By using Lemma 2.2 and (3.14), we easily get the assertion of Theorem 3.4.

Taking q(z) = £82 (-1<B<AS< 1) in Theorem 3.4, we get the following

result.
Corollary 8.8. Let a € C* and —1 < B < A < 1. Suppose also that

¢ (152) > mmfo-te )

If f € A(p) satisfies the following subordination condition:

D3, (f*9)(2)  Dip'(F*9)(s)  1+4z od(A-B)z

zP 2P 1+Bz  p (1+Bz)

(1-a)

then 222020 1442 and the function 135% is the best dominant.

Theorem 3.5. Let g (2) be a convez univalent function in U and a € C tg_tt); R)(a;) >
ro(f*g)(= t o (f+o)(= DYEY (1w

0. Also let D3pU29)z) (f,’)( ) ¢ H(g(0),1]NnQ and (1—a) D*"(f,g){ ) + a2 i, 9)(= be

univalent in U. If

D}, (f *9) (2) I GD:_';I (f*g)(2)
2P : !

1)+ 2 () < (1- ) .

then g (2) < w, and the function q(z) is the best subdominant.
Proof. Let the function ¢ (z) be defined by (3.2). Then

D}, (f*9)(2) . Dyt (£0)(2)
Ap - o Ap =

q(z)+ %\zq' (2)<(1—a) =¢(2)+ %\z:ﬁ' (2).

An application of Lemma 3.3 yields the assertion. Theorem 3.5 is proved.
Teking g (z) = 134 in Theorem 5, we get the following result.
Corollary 3.4. Let g (z) be a convez univalent function in U and —-1< B< A<,

a € C with R (a) > 0. Also let 22U ¢ 10(0),1]0Q, and

Palfaal), 255 (200

(1-a)

be univalent in U. If
14+ Az +9_ri(A—B)z
1+Bz  p (1+ Bz)*

M%«ﬁ’%ﬂ, and the function $EEZ is the best subdominant.
Combining the above results of subordination and superordination, we easily get
the following “sandwich-type” result.

zP

D}, (F*g)(2) = Dyt (fxg)(2)
AP 2P +a Ap P ]

<(1-a)

10
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Corollary 3.5. Let gy (z) be a conver univalent and gz (z) be a univalent functions
in U, and a € C with R (a) > 0. Assume also that g; () satisfies (3.5). If

2000 ¢ g, 10,

+ o —2e is univalent in U, and also

Di» (f*g) (2) _D“"" (f*y)( )
P

n wg)(z m+l
and (1 —a) Da.,({, g)(2) Dy (J’ »g9)(z) .

0 () + 50, (2) < (1-a) <@ )+ 222, (),

then gy (2) < -IE%‘M =< g2 (2), and g1 (2) and g2 (2) are the best subordinant and
the best dominant, respectively.

Teking g1 (2) = 42 and ga(2) = 34 (-1< By < B <A <A;<1)in
Corollary 3.5, we get the following result.
Corollary 3.6. Let o € C with R (a) > 0, and let R (}-;—51-) > max {0, —R (&)} .

g)(z T _(feg)(z """ *g)(z
in U, rmd also

1+AIZ+CI_/\(A1—31)Z
1+Biz  p (1+Bz)’

is univalent

(1-a)

1+ A4z al (Az —Bz)z
‘+'_ 7

1+ B2z  p (14 Bg2)

Mﬁk«—"‘m-{ s ”,andthcﬁmchom-%tandliﬁ; are the best

subordinant and best dominant, respectively.
Theorem 3.6. Let ap > oy >0 and —1< By < By < Ay < A; <1. Then

(3'16) ci:p(-ﬂ ‘N 02,1‘12‘ B?) = o;:,p(flg; aliA].:Bl)-
Proof. Assuming that f € C},(f, g; a2, A2, Ba), we get
n u+1
Cog) DBaF*9)@) | Diy (F*9) () | 1+ 4az
(1= as) zP el zP 2 1+ Baz’
Since ~1 < B; < By < As < A; <1, we easily find that

D} (Ff*9)(2)  D'(f*0)(2) 1+4Asz 1+ Az
(847) ( o) 2P i zP i 1+ B3z = 14+ Bz’

implying f € C} ,(f,9; @2, A1, B1). Thus Theorem 3.6 holds for ap = a3 > 0. If
a2 > og 2 0, then by Theorem 3.1 and (3.21), we infer f € C3},(f,9; A1, B1),

implying

D3, (f*g)(z) . Dit(f+g)(2)
Ap = o AP =5

-

Ao (f*9)(2) 1+ Az
2P 1+ Bz’

(3.18)

At the same time, we have
11
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R (f*9) (2) +a1D£$1 (f=9) () _ (1—-“—‘) D}, (f*9)(2)

(1- o1) o > = =
n * Dn-l-l f * )(Z)
(3.19) +% (1= a3) 22 (J; - 9@ . Dip (zp g ] _

Moreover, since 0 < & < 1, and the function %(—1£B1<A1$1;36U) is
analytic and convex in U, by (3.16) - ( 3.18) and Lemma 2.5, we find

% Dyt (f*9)(2) 1+4
(I_QI)DLP(.Z:Q)(S)'i'al AP (:; )Z)"1+Bi:;

that is, f € CX,(f. 0 a1, A1, B1), which implies (3.15). Theorem 3.6 is proved.
Theorem 3.7. A necessary and sufficient condition for f € Crp(figia A, B) is that

p+Aak [(p+Ak\" 0 920
(3.20) ( Qktpbk+p F#e (<< ) .
2A-B\ »

Proof. Observe that a function f (z) € C}, (f,9; A, B) if and only if

D}, (Fe0)(s) . DR (f9)(2) |, 1+ Ac¥ _
(1-a) Ap = + a2 = T+ Be® (zeU; 0<8<2m),

which is equivalent to the following
zlp [(1 + Be®) {(1 —a) D}, (f *9) (2) + aD3E! (f *9) (z)} -1+ Ae“*)]

+xak (p+2\" % -
= (1+Be®) 1+ 2 ( )a bripz” | — (14 Ae 0,
10 (1 20 (222 ) - 144

which easily implies the convolution property (3.19). Theorem 3.7 is proved.
Theorem 3.8. A function f (z) belongs to the class C} (f,g; @, 4, B) (a > 0) if its
coefficients satisfy the condition:

XENE
5+ 3a) (EE2) fauspbussl <p(A- B).
k=1 P
Proof. By Theorem 3.7, f (2) € C%,, (f,9:, 4, B) if and only if

P+ dak (p+Ak)" %
ak+pb e 0<68<2m).
EP(A_B) ? k+pbk+p 7 ( )

Thus 'Ek:x FAok (ﬁ;#)nﬂkﬂabkﬂ| < |e%| =1, and the result follows.
Theorem 3.9. Let

(3:21) f@)=2"+) apurz"** € C, (f,g:, A, B).
k=1

Then

12
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p(A-B)( » \"
p+iak \p+2Ak) °
The inequality (3.21) is sharp, with the extremal function given by

(3.22) |@k+pbk+p| <

11+ Azu

1+ Bzu e

i
(323) D3, (F+0) () = Ba? [uss-
0

Proof. Combining (1.3) and (3.20), we obtain

D}, (f*g)(2) , Diy'(f*9)(2)  1+42
(3.24) 1—a) = +a = 1+Bz—1+(A—B)z+....
An application of Lemma 2.5 to ( 3.22) yields
n
(3.25) (” + :‘”"’ ) (” *:“‘) axigbiia S A~ B,

This and (3.23) imply (3.21). Theorem 3.9 is proved.
Acknowledgement: The authors are grateful to the referees for their valuable

suggestions.
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