Известия НАН Армении. Математика, том 48, н. 6, 2013, стр. 3-14.

SOME PROPERTIES OF CERTAIN CLASSES OF p-VALENT FUNCTIONS DEFINED BY THE HADAMARD PRODUCT

M. K. AOUF AND T. M. SEOUDY

Mansoura University, Fayoum University, Egypt
E-mails: mkaouf127@yahoo.com; tms00@fayoum.edu.eg

Abstract. In this paper we obtain sandwich type theorems, inclusion relationships, convolution properties and coefficient estimates of certain classes of p-valent analytic functions defined by a convolution. Several other new results are also obtained.

MSC2010 numbers: 30C45.

Keywords: p-valent functions, subordination, superordination, linear operator, Hadamard product, convolution.

1. Introduction

Let H be the class of functions analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let H[a, n] be the subclass of H consisting of function of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots (z \in U).$$

Let A(p) denote the class of all analytic functions of the form:

(1.1)
$$f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad (p \in \mathbb{N} = \{1, 2, 3, ...\}; \ z \in U).$$

We set A(1) = A. If f(z) and g(z) are analytic in U functions, we say that f(z) is subordinate to g(z), or equivalently, g(z) is superordinate to f(z), and write $f(z) \prec g(z)$ ($z \in U$), if there exists a Schwarz function $\omega(z)$, which is analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$ such that $f(z) = g(\omega(z))$ ($z \in U$). It is known that

$$f(z) \prec g(z) \implies f(0) = g(0)$$
 and $f(U) \subset g(U)$.

Furthermore, if the function g(z) is univalent in U, then we have the following equivalence (see [5], [18] and [19]): $f(z) \prec g(z) \iff f(0) = g(0)$ and $f(U) \subset g(U)$. For functions f(z) given by (1.1) and

(1.2)
$$g(z) = z^{p} + \sum_{k=1}^{\infty} b_{p+k} z^{p+k} \quad (p \in \mathbb{N}; z \in U),$$

the Hadamard product or convolution of f(z) and g(z) is defined by

$$(f * g)(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k} = (g * f)(z).$$

For functions $f,g\in A(p)$, we define the linear operator $D^n_{\lambda,p}:A(p)\to A(p)$ $(\lambda\geq 0,p\in\mathbb{N},n\in\mathbb{N}_0=\mathbb{N}\cup\{0\})$ by: $D^0_{\lambda,p}(f*g)(z)=(f*g)(z)$, and

$$D^1_{\lambda,p}(f*g)(z) = D_{\lambda,p}(f*g)(z) = (1-\lambda)(f*g)(z) + \frac{\lambda z}{p}\left((f*g)(z)\right)',$$

and (in general)

$$D_{\lambda,p}^{n}(f * g)(z) = D_{\lambda,p}(D_{\lambda,p}^{n-1}(f * g)(z))$$

$$= z^{p} + \sum_{k=1}^{\infty} \left(\frac{p + \lambda k}{p}\right)^{n} a_{k+p} b_{k+p} z^{k+p} \quad (\lambda \geq 0).$$
(1.3)

From (1.3), we can easily deduce that

$$(1.4) \qquad \frac{\lambda}{p} z \left(D_{\lambda,p}^n(f * g)(z) \right)' = D_{\lambda,p}^{n+1}(f * g)(z) - (1 - \lambda) D_{\lambda,p}^n(f * g)(z) \ (\lambda > 0).$$

The linear operator $D_{\lambda,1}^n(f*g)(z) = D_{\lambda}^n(f*g)(z)$ was introduced by Aouf and Seoudy in [3]. Observe that the operator $D_{\lambda,p}^n(f*g)(z)$ reduces to known operators for specific choices of g, n and λ . Some of them follows.

(i) For $\lambda=1$ and $g(z)=\frac{z^p}{1-z}$ we have $D_{p,1}^n(f*g)(z)=D_p^nf(z)$, where D_p^n is the p-valent Salagean operator introduced and studied by Kamali and Orhan.

(ii) For
$$n=0$$
 and $g(z)=z^p+\sum_{k=1}^{\infty}\left[\frac{p+l+\lambda k}{p+l}\right]^sz^k\ (\lambda>0;p\in ;l,s\in\mathbb{N}_0),$ we get
$$D^0_{\lambda,p}(f*g)(z)=(f*g)(z)=I^s_p(\lambda,l)f(z),$$

where $I_p^s(\lambda, l)$ is the generalized multiplier transformation, which was introduced by Cătas [7]. Notice that the operator $I_p^s(\lambda, l)$ contains, as special cases, the multiplier transformation (see [8]), the generalized Salăgeăn operator introduced and studied by Al-Oboudi [1], which in turn, contains as special case the Salăgeăn operator ([24]).

(iii) For n=0 and

$$g(z) = z^p + \sum_{k=1}^{\infty} \frac{(\alpha_1)_k ... (\alpha_l)_k}{(\beta_1)_k ... (\beta_s)_k (1)_k} z^{k+p},$$

where $\alpha_i, \beta_j \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, (i = 1, 2, ...l), (j = 1, 2, ...s), $l \leq s + 1$, $l, s \in \mathbb{N}_0$, we obtain

$$D^0_{\lambda,p}(f*g)(z) = (f*g)(z) = H_{p,l,s}(\alpha_1)f(z),$$

where $H_{p,l,s}(\alpha_1)$ is the Dziok-Srivastava operator introduced and studied in [9] (see also [10] and [11]). The operator $H_{p,l,s}(\alpha_1)$, in turn contains a number of other interesting operators such as, the Hohlov linear operator (see [12]), the Carlson-Shaffer linear operator (see [6] and [23]), the Ruscheweyh derivative operator (see [22]), the Bernardi-Libera-Livingston operator (see [4], [14] and [15]), and the Owa-Srivastava fractional derivative operator (see [20]).

Using the linear operator $D_{\lambda,p}^n(f*g)$, we define a new subclass $C_{\lambda,p}^n(f,g;\alpha,A,B)$ of the class A(p) as follows:

Definition 1.1. Let $g \in A(p)$ be defined by (1.3). A function $f \in A(p)$ is said to be in the class $\mathcal{C}_{\lambda,p}^n(f,g;\alpha,A,B)$ if it satisfies the following subordination condition:

$$(1-\alpha)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}\prec\frac{1+Az}{1+Bz}$$
$$(p\in\mathbb{N};n\in\mathbb{N}_{0};\lambda>0;\alpha\in\mathbb{C};-1\leq B< A\leq 1;z\in U).$$

Let $C^n_{\lambda,p}(f,g;0,A,B) = C^n_{\lambda,p}(f,g;A,B)$, and $C^n_{\lambda,p}(f,g;\alpha,1-2\beta,-1) = C^n_{\lambda,p}(f,g;\alpha,\beta)$, where $C^n_{\lambda,p}(f,g;\alpha,\beta)$ denotes the class of functions from A(p) satisfying

$$\Re\left\{ \left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}\right\} >\beta,$$

 $p \in \mathbb{N}; n \in \mathbb{N}_0; \lambda > 0; \alpha \in \mathbb{C}; 0 \le \beta < 1; z \in U.$ We set $\mathcal{C}^n_{\lambda,p}(f,g;0,\beta) = \mathcal{C}^n_{\lambda,p}(f,g;\beta)$.

In the present paper we establish subordination and superordination properties, convolution properties, inclusion relationships and embedding properties for the class $\mathcal{C}_{\lambda,p}^n(f,g;\alpha,A,B)$. Several other new results are also obtained.

2. PRELIMINARY RESULTS

In order to state and prove our main results, we need the following definition and a number of known lemmas.

Definition 2.1. [18]. Define Q as the set of all functions f(z) that are analytic and injective on $\overline{U}\setminus E(f)$, where

$$E\left(f\right) = \left\{\zeta \in \partial U : \lim_{z \to \zeta} f\left(z\right) = \infty\right\},\,$$

and satisfy $f'(\zeta) \neq 0$ for $\zeta \in \bar{U} \setminus E(f)$.

Lemma 2.1. [19]. Let h(z) be an analytic and convex (univalent) function in U with h(0) = 1. Suppose also that the function $\phi(z)$ given by

(2.1)
$$\phi(z) = 1 + c_1 z + c_2 z^2 + \dots$$

is analytic in U. If $\phi(z) + \frac{z\phi'(z)}{\gamma} \prec h(z)$ $(\Re(\gamma) > 0; \gamma \neq 0)$, then

$$\phi\left(z\right) \prec \psi\left(z\right) = \gamma z^{-\gamma} \int_{0}^{z} h\left(t\right) t^{\gamma - 1} dt \prec h\left(z\right),$$

and $\psi(z)$ is the best dominant.

Lemma 2.2. [25]. Let q(z) be a convex univalent function in U and let $\sigma \in \mathbb{C}, \eta \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\Re\left(1+\frac{zq^{''}\left(z\right)}{q^{'}\left(z\right)}\right) > \max\left\{0,-\Re\left(\frac{\sigma}{\eta}\right)\right\}.$$

If the function $\phi(z)$ is analytic in U and $\sigma\phi(z) + \eta z\phi'(z) \prec \sigma q(z) + \eta zq'(z)$, then $\phi(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 2.3. [18]. Let q(z) be a convex univalent function in U and $\kappa \in \mathbb{C}$. Further assume that $\Re(\bar{\kappa}) > 0$. If $\phi(z) \in H[q(0), 1] \cap Q$, and $\phi(z) + \kappa z \phi'(z)$ is univalent in U, then $q(z) + \kappa z q'(z) \prec \phi(z) + \kappa z \phi'(z)$ implies $q(z) \prec \phi(z)$ and q(z) is the best subdominant.

Lemma 2.4. [16]. Let \mathcal{F} be an analytic and convex function in U. If $f,g \in A$ and $f,g \prec \mathcal{F}$ then $\lambda f + (1-\lambda)g \prec \mathcal{F}$ $(0 \le \lambda < 1)$.

Lemma 2.5.[21]. Let $f(z) = 1 + \sum_{k=1} a_k z^k$ be analytic in U and $g(z) = 1 + \sum_{k=1} b_k z^k$ be analytic and convex in U. If $f \prec g$, then $|a_k| \leq |b_1|$ $(k \in \mathbb{N})$.

The next lemma contains three well-known identities for the Gauss hypergeometric function ${}_2F_1$ defined by

$$(2.2) \ _2F_1\left(a,b;c;z\right) = \sum_{k=0}^{\infty} \frac{(a)_k \, (b)_k}{(c)_k \, (1)_k} z^k \ \left(a,b,c \in \mathbb{C}; c \notin \mathbb{Z}_0^- = \{0,-1,-2,\ldots\}; z \in U\right).$$

Notice that the series in (2.2) converges absolutely for $z \in U$, and hence ${}_2F_1$ represents an analytic function in U (for details we refer [26, Chapter 14]).

Lemma 2.6. [26]. For real or complex parameters a, b, and c ($c \notin Z_0^-$), the following identities hold ($\Re(c) > \Re(b) > 0$):

(2.3)
$$\int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt = \frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)} {}_{2}F_{1}(a,b;c;z);$$

(2.4)
$$_2F_1(a,b;c;z) = (1-z)^{-a} _2F_1(a,c-b;c;\frac{z}{z-1});$$

(2.5)
$${}_{2}F_{1}(a,b;c;z) = {}_{2}F_{1}(b,a;c;z)$$
.

3. MAIN RESULTS

In what follows, unless otherwise stated, we assume that $p \in \mathbb{N}$, $n \in \mathbb{N}_0$, $-1 \le B < A \le 1$, $\lambda > 0$ and g(z) is the function given by (1.2).

Our first result concerns subordination property.

Theorem 3.1. Let $f \in \mathcal{C}^n_{\lambda,p}(f,g;\alpha,A,B)$ with $\Re\{\alpha\} > 0$. Then

(3.1)
$$\frac{D_{\lambda,p}^{n}\left(f*g\right)\left(z\right)}{z^{p}} \prec \psi\left(z\right) \prec \frac{1+Az}{1+Bz},$$

where the function $\psi(z)$ given by

(3.2)
$$\psi(z) = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) (1 + Bz)^{-1} {}_{2}F_{1}\left(1, 1; \frac{p}{\alpha\lambda} + 1; \frac{Bz}{Bz+1}\right), & \text{if } B \neq 0, \\ 1 + \frac{p}{\alpha\lambda + p}Az, & \text{if } B = 0. \end{cases}$$

is the best dominant of (3.1). Furthermore,

(3.3)
$$\Re\left\{\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}\right\} > \eta \quad (z\in U),$$

where
$$\eta = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) \left(1 - B\right)^{-1} {}_{2}F_{1}\left(1, 1; \frac{p}{\alpha\lambda} + 1; \frac{B}{B-1}\right), & if \ B \neq 0, \\ 1 - \frac{p}{\alpha\lambda + p}A, & if \ B = 0. \end{cases}$$

The estimate (3.3) is the best possible.

Proof. Consider the function

(3.4)
$$\phi(z) = \frac{D_{\lambda,p}^{n}(f * g)(z)}{z^{p}} \quad (z \in U),$$

and observe that $\phi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.5) with respect to z and using the identity (1.5), we get

$$(1-\alpha)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}=\phi\left(z\right)+\frac{\alpha\lambda}{p}z\phi'\left(z\right)\prec\frac{1+Az}{1+Bz}\quad\left(z\in U\right).$$

Now, using Lemma 2.1 for $\gamma = \frac{\alpha \lambda}{p}$, we obtain

$$\begin{split} \frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}} & \prec & \psi\left(z\right) = \frac{p}{\alpha\lambda}\;z^{-\frac{p}{\alpha\lambda}}\int_{0}^{z}\frac{1+At}{1+Bt}\;t^{\frac{p}{\alpha\lambda}-1}dt\\ & = & \begin{cases} \frac{A}{B}+\left(1-\frac{A}{B}\right)\left(1+Bz\right)^{-1}\;_{2}F_{1}\left(1,1;\frac{p}{\alpha\lambda}+1;\frac{Bz}{Bz+1}\right), & if B\neq0,\\ 1+\frac{p}{\alpha\lambda+p}Az, & if B=0, \end{cases} \end{split}$$

where we have made a change of variable followed by the use of identities (2.3) - (2.5) with a = 1, $b = \frac{p}{a\lambda}$ and c = b + 1. This proves the assertion (3.1).

Next, in order to prove (3.3), it is enough to show that $\inf_{|z|<1} \{\Re (\psi(z))\} = \psi(-1)$. Indeed, we have for $|z| \le r < 1$,

$$\Re\left(\frac{1+Az}{1+Bz}\right) \ge \frac{1-Ar}{1-Br}.$$

Setting $G\left(z,s\right)=\frac{1+Asz}{1+Bsz}$ and $dv\left(s\right)=\frac{p}{\alpha\lambda}s^{-\frac{p}{\alpha\lambda}}\ ds\ \left(0\leq s\leq 1\right)$, which is a positive measure on [0,1], we get $\psi\left(z\right)=\int\limits_{0}^{1}G\left(z,s\right)dv\left(s\right)$, so that

$$\Re\left\{\psi\left(z\right)\right\} \geq \int\limits_{0}^{1} \frac{1 - Asr}{1 - Bsr} dv\left(s\right) = \psi\left(-r\right) \quad \left(|z| \leq r < 1\right).$$

Letting $r \to 1^-$ in the last inequality, we obtain the assertion (3.3).

Finally, the estimate (3.3) is the best possible because $\psi(z)$ is the best dominant of (3.1). Theorem 3.1 is proved.

Taking $\alpha = 1$ in Theorem 3.1, we obtain the following result.

Corollary 3.1. The following inclusion property holds true for the class $C_{\lambda,p}^n(f,g;A,B)$:

$$\mathbb{C}^{n+1}_{\lambda,p}\left(f,g,A,B\right)\subset C^n_{\lambda,p}\left(f,g;\sigma\right)\subset \mathbb{C}^n_{\lambda,p}\left(f,g;A,B\right)$$

where
$$\sigma = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) \left(1 - B\right)^{-1} {}_{2}F_{1}\left(1, 1; \frac{p}{\lambda} + 1; \frac{B}{B-1}\right), & \text{if } B \neq 0, \\ 1 - \frac{p}{\lambda + p}A, & \text{if } B = 0. \end{cases}$$

Taking $A = 1 - 2\beta$ ($0 \le \beta < 1$) and B = -1 in Corollary 3.1, we obtain the following Corollary 3.2. The following inclusion holds: $C_{\lambda,p}^{n+1}\left(f,g;\beta\right)\subset C_{\lambda,p}^{n}\left(f,g;\sigma\right)\subset C_{\lambda,p}^{n}\left(f,g;\beta\right)$, where $\sigma=\beta+(1-\beta)\left\{\ _{2}F_{1}\left(1,1;\frac{p}{\lambda}+1;\frac{1}{2}\right)-1\right\}$. The result is best possible. Theorem 3.2. For $f \in C^n_{\lambda,p}(f,g;A,B)$ the function $F_{\delta,p}(f)$ defined by (see [15])

(3.5)
$$F_{\delta,p}(f)(z) = \frac{\delta+p}{z^{\delta}} \int_0^z t^{\delta-1} f(t) dt \quad (\delta > -p)$$

belongs to the class $C_{\lambda,p}^n(f,g;A,B)$ and satisfies

$$\frac{D_{\lambda,p}^{n}\left(F_{\delta,p}\left(f\right)*g\right)\left(z\right)}{z^{p}} \prec k\left(z\right) \prec \frac{1+Az}{1+Bz},$$

where the function k(z) given by

(3.6)
$$k(z) = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right)(1 + Bz)^{-1} {}_{2}F_{1}\left(1, 1; \delta + p + 1; \frac{Bz}{Bz + 1}\right), & if B \neq 0, \\ 1 + \frac{\delta + p}{\delta + p + 1}Az, & if B = 0, \end{cases}$$

is the best dominant of (3.7). Furthermore,

(3.7)
$$\Re\left\{\frac{D_{\lambda,p}^{n}\left(F_{\delta,p}\left(f\right)*g\right)\left(z\right)}{z^{p}}\right\}>\chi\quad\left(z\in U\right),$$

where

(3.8)
$$\chi = \begin{cases} \frac{A}{B} + \left(1 - \frac{A}{B}\right) \left(1 - B\right)^{-1} {}_{2}F_{1}\left(1, 1; \delta + p + 1; \frac{B}{B - 1}\right), & \text{if } B \neq 0, \\ 1 - \frac{\delta + p}{\delta + p + 1}A & \text{if } B = 0. \end{cases}$$

The estimate (3.7) is the best possible.

Proof. From (3.5) we have

$$(3.9) z \left(D_{\lambda,p}^{n}(F_{\delta,p}(f)*g)(z)\right)' = (\delta+p)D_{\lambda,p}^{n}(f*g)(z) - \delta D_{\lambda,p}^{n}(F_{\delta,p}(f)*g)(z).$$

We define

(3.10)
$$\phi(z) = \frac{D_{\lambda,p}^n \left(F_{\delta,p}(f) * g\right)(z)}{z^p} \quad (z \in U),$$

and observe that the function $\phi(z)$ is of the form (2.1) and is analytic in U. Differentiating (3.9) with respect to z and using the identity (3.8), we get

$$\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}=\phi\left(z\right)+\frac{z\phi'\left(z\right)}{\delta+p}\prec\frac{1+Az}{1+Bz}.$$

The rest of the proof is similar to that of Theorem 3.1. Theorem 3.2 is proved. Theorem 3.3. If $f \in C^n_{\lambda,p}(f,g;\beta)$ $(0 \le \beta < 1)$, then $f \in C^n_{\lambda,p}(f,g;\alpha,\beta)$ $(0 \le \beta < 1,\alpha > 0)$

for |z| < R, where

(3.11)
$$R = \sqrt{1 + \left(\frac{\alpha\lambda}{p}\right)^2} - \frac{\alpha\lambda}{p}.$$

The bound R is the best possible.

Proof. Since $f \in C^n_{\lambda,p}(f,g;\beta)$, we can write $\frac{D^n_{\lambda,p}(f*g)(z)}{z^p} = \beta + (1-\beta) u(z) \ (z \in U)$. It is easy to see that the function u(z) is of the form (2.1), is analytic and has a positive real part in U. Differentiating (3.7) with respect to z and using (1.4), we obtain

$$(3.12) \ \frac{1}{1-\beta} \left\{ \! \left(1-\alpha\right) \frac{D_{\lambda,p}^{n} \left(f*g\right) \left(z\right)}{z^{p}} + \alpha \frac{D_{\lambda,p}^{n+1} \left(f*g\right) \left(z\right)}{z^{p}} - \beta \! \right\} \! = u \left(z\right) \! + \frac{\lambda \alpha}{p} z u' \left(z\right).$$

Using the following well-known estimate (see, e.g., [17]):

$$\frac{\left|zu'\left(z\right)\right|}{\Re\left\{u\left(z\right)\right\}} \le \frac{2r}{1-r^2} \quad (|z|=r<1)$$

in view of (3.11) we obtain

$$\Re\left(\frac{1}{1-\beta}\left\{\left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}-\beta\right\}\right)$$

$$(3.13) \geq \Re\left\{u\left(z\right)\right\}\left(1-\frac{2\lambda\alpha r}{p\left(1-r^{2}\right)}\right).$$

It is easy to see that the right-hand side of (3.12) is positive, provided that r < R, where R is given by (3.10). In order to show that the bound R is the best possible, we consider the function $f \in A(p)$ defined by

$$\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}=\beta+\left(1-\beta\right)\frac{1+z}{1-z}\quad\left(z\in U\right).$$

By noting that

$$\frac{1}{1-\beta}\left\{\left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}-\beta\right\}=\frac{1+z}{1-z}+\frac{2\lambda\alpha z}{p\left(1-z\right)^{2}}=0$$

for |z| = R, we conclude that the bound R is the best possible. Theorem 3.3 is proved. Theorem 3.4. Let q(z) be a univalent function in U and $\alpha \in \mathbb{C}^*$. Suppose also that q(z) satisfies

$$\Re\left\{1+\frac{zq^{''}(z)}{q^{'}(z)}\right\} > \max\left\{0,-\frac{p}{\lambda}\Re\left(\frac{1}{\alpha}\right)\right\}.$$

If $f \in A(p)$ satisfies the following subordination condition

$$(3.14) \qquad (1 - \alpha) \frac{D_{\lambda,p}^{n}(f * g)(z)}{z^{p}} + \alpha \frac{D_{\lambda,p}^{n+1}(f * g)(z)}{z^{p}} \prec q(z) + \frac{\alpha\lambda}{p} zq'(z),$$

then $\frac{D_{\lambda,p}^{n}(f*g)(z)}{z^{p}} \prec q(z)$, and q(z) is the best dominant.

Proof. Let the function $\phi(z)$ be defined by (3.5). From (3.13) we find that

(3.15)
$$\phi(z) + \frac{\alpha\lambda}{p}z\phi'(z) \prec q(z) + \frac{\alpha\lambda}{p}zq'(z).$$

By using Lemma 2.2 and (3.14), we easily get the assertion of Theorem 3.4.

Taking $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$ in Theorem 3.4, we get the following result.

Corollary 3.3. Let $\alpha \in \mathbb{C}^*$ and $-1 \leq B \leq A < 1$. Suppose also that

$$\Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -\frac{p}{\lambda}\Re\left(\frac{1}{\alpha}\right)\right\}.$$

If $f \in A(p)$ satisfies the following subordination condition:

$$(1-\alpha)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}\prec\frac{1+Az}{1+Bz}+\frac{\alpha\lambda}{p}\frac{\left(A-B\right)z}{\left(1+Bz\right)^{2}},$$

then $\frac{D_{\lambda,p}^n(f^*g)(z)}{z^p} \prec \frac{1+Az}{1+Bz}$, and the function $\frac{1+Az}{1+Bz}$ is the best dominant. Theorem 3.5. Let q(z) be a convex univalent function in U and $\alpha \in \mathbb{C}$ with $\Re(\alpha) > 0$. Also let $\frac{D_{\lambda,p}^n(f^*g)(z)}{z^p} \in H[q(0),1] \cap Q$ and $(1-\alpha)\frac{D_{\lambda,p}^n(f^*g)(z)}{z^p} + \alpha\frac{D_{\lambda,p}^{n+1}(f^*g)(z)}{z^p}$ be univalent in U. If

$$q\left(z\right) + \frac{\alpha\lambda}{p}zq'\left(z\right) \prec \left(1 - \alpha\right)\frac{D_{\lambda,p}^{n}\left(f * g\right)\left(z\right)}{z^{p}} + \alpha\frac{D_{\lambda,p}^{n+1}\left(f * g\right)\left(z\right)}{z^{p}},$$

then $q(z) \prec \frac{D_{\lambda,p}^n(f*g)(z)}{z^p}$, and the function q(z) is the best subdominant. Proof. Let the function $\phi(z)$ be defined by (3.2). Then

$$q\left(z\right)+\frac{\alpha\lambda}{p}zq^{'}\left(z\right)\prec\left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}=\phi\left(z\right)+\frac{\alpha\lambda}{p}z\phi^{'}\left(z\right).$$

An application of Lemma 3.3 yields the assertion. Theorem 3.5 is proved.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 5, we get the following result.

Corollary 3.4. Let q(z) be a convex univalent function in U and $-1 \le B < A \le 1$, $\alpha \in \mathbb{C}$ with $\Re(\alpha) > 0$. Also let $\frac{D_{\lambda,p}^n(f^*g)(z)}{z^p} \in H[q(0),1] \cap Q$, and

$$(1-\alpha)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}$$

be univalent in U. If

$$\frac{1+Az}{1+Bz}+\frac{\alpha\lambda}{p}\frac{\left(A-B\right)z}{\left(1+Bz\right)^{2}}\prec\left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}},$$

then $\frac{1+Az}{1+Bz} \prec \frac{D_{\lambda,p}^n(f*y)(z)}{z^p}$, and the function $\frac{1+Az}{1+Bz}$ is the best subdominant.

Combining the above results of subordination and superordination, we easily get the following "sandwich-type" result. Corollary 3.5. Let $q_1(z)$ be a convex univalent and $q_2(z)$ be a univalent functions in U, and $\alpha \in \mathbb{C}$ with $\Re(\alpha) > 0$. Assume also that $q_2(z)$ satisfies (3.5). If

$$\frac{D_{\lambda,p}^{n}\left(f\ast g\right) \left(z\right) }{z^{p}}\in H\left[q\left(0\right) ,1\right] \cap Q,$$

and $(1-\alpha)\frac{D_{\lambda,p}^n(f*g)(z)}{z^p} + \alpha \frac{D_{\lambda,p}^{n+1}(f*g)(z)}{z^p}$ is univalent in U, and also

$$q_{1}\left(z\right)+\frac{\alpha\lambda}{p}zq_{1}^{'}\left(z\right)\prec\left(1-\alpha\right)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}\prec q_{2}\left(z\right)+\frac{\alpha\lambda}{p}zq_{2}^{'}\left(z\right),$$

then $q_1\left(z\right) \prec \frac{D_{\lambda,p}^n\left(f*g\right)\left(z\right)}{z^p} \prec q_2\left(z\right)$, and $q_1\left(z\right)$ and $q_2\left(z\right)$ are the best subordinant and the best dominant, respectively.

Taking $q_1\left(z\right)=\frac{1+A_1z}{1+B_1z}$ and $q_2\left(z\right)=\frac{1+A_2z}{1+B_2z}\left(-1\leq B_2\leq B_1< A_1\leq A_2\leq 1\right)$ in Corollary 3.5, we get the following result.

Corollary 3.6. Let $\alpha \in \mathbb{C}$ with $\Re(\alpha) > 0$, and let $\Re\left(\frac{1-B_2z}{1+B_2z}\right) > \max\left\{0, -\Re\left(\frac{p}{\alpha\lambda}\right)\right\}$. If $\frac{D_{\lambda,p}^n(f*g)(z)}{z^p} \in H\left[q\left(0\right), 1\right] \cap Q$, and $(1-\alpha)\frac{D_{\lambda,p}^n(f*g)(z)}{z^p} + \alpha\frac{D_{\lambda,p}^{n+1}(f*g)(z)}{z^p}$ is univalent in U, and also

$$\frac{1+A_{1}z}{1+B_{1}z} + \frac{\alpha\lambda}{p} \frac{(A_{1}-B_{1})z}{(1+B_{1}z)^{2}} \quad \prec \quad (1-\alpha) \frac{D_{\lambda,p}^{n}(f*g)(z)}{z^{p}} + \alpha \frac{D_{\lambda,p}^{n+1}(f*g)(z)}{z^{p}}$$

$$\quad \prec \quad \frac{1+A_{2}z}{1+B_{2}z} + \frac{\alpha\lambda}{p} \frac{(A_{2}-B_{2})z}{(1+B_{2}z)^{2}},$$

then $\frac{1+A_1z}{1+B_1z} \prec \frac{D_{\lambda,p}^n(f*g)(z)}{z^p} \prec \frac{1+A_2z}{1+B_2z}$, and the functions $\frac{1+A_1z}{1+B_1z}$ and $\frac{1+A_2z}{1+B_2z}$ are the best subordinant and best dominant, respectively.

Theorem 3.6. Let $\alpha_2 \ge \alpha_1 \ge 0$ and $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$. Then

(3.16)
$$C_{\lambda,p}^{n}(f,g;\alpha_{2},A_{2},B_{2}) \subset C_{\lambda,p}^{n}(f,g;\alpha_{1},A_{1},B_{1}).$$

Proof. Assuming that $f \in C_{\lambda,p}^n(f,g;\alpha_2,A_2,B_2)$, we get

$$(1-\alpha_2)\frac{D_{\lambda,p}^n\left(f*g\right)(z)}{z^p}+\alpha_2\frac{D_{\lambda,p}^{n+1}\left(f*g\right)(z)}{z^p}\prec\frac{1+A_2z}{1+B_2z}.$$

Since $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$, we easily find that

$$(3.17) \qquad (1-\alpha_2)\frac{D_{\lambda,p}^n(f*g)(z)}{z^p} + \alpha_2\frac{D_{\lambda,p}^{n+1}(f*g)(z)}{z^p} \prec \frac{1+A_2z}{1+B_2z} \prec \frac{1+A_1z}{1+B_1z},$$

implying $f \in C^n_{\lambda,p}(f,g;\alpha_2,A_1,B_1)$. Thus Theorem 3.6 holds for $\alpha_2 = \alpha_1 \geq 0$. If $\alpha_2 > \alpha_1 \geq 0$, then by Theorem 3.1 and (3.21), we infer $f \in C^n_{\lambda,p}(f,g;A_1,B_1)$, implying

(3.18)
$$\frac{D_{\lambda,p}^{n}(f*g)(z)}{z^{p}} \prec \frac{1+A_{1}z}{1+B_{1}z}$$

At the same time, we have

$$(1 - \alpha_1) \frac{D_{\lambda,p}^n(f * g)(z)}{z^p} + \alpha_1 \frac{D_{\lambda,p}^{n+1}(f * g)(z)}{z^p} = \left(1 - \frac{\alpha_1}{\alpha_2}\right) \frac{D_{\lambda,p}^n(f * g)(z)}{z^p} + \frac{\alpha_1}{\alpha_2} \left[(1 - \alpha_2) \frac{D_{\lambda,p}^n(f * g)(z)}{z^p} + \alpha_2 \frac{D_{\lambda,p}^{n+1}(f * g)(z)}{z^p} \right].$$

Moreover, since $0 \le \frac{\alpha_1}{\alpha_2} < 1$, and the function $\frac{1+A_1z}{1+B_1z} (-1 \le B_1 < A_1 \le 1; z \in U)$ is analytic and convex in U, by (3.16) - (3.18) and Lemma 2.5, we find

$$(1-\alpha_1)\frac{D_{\lambda,p}^n\left(f*g\right)(z)}{z^p}+\alpha_1\frac{D_{\lambda,p}^{n+1}\left(f*g\right)(z)}{z^p}\prec\frac{1+A_1z}{1+B_1z},$$

that is, $f \in C^n_{\lambda,p}(f,g;\alpha_1,A_1,B_1)$, which implies (3.15). Theorem 3.6 is proved. Theorem 3.7. A necessary and sufficient condition for $f \in C^n_{\lambda,p}(f,g;\alpha,A,B)$ is that

$$(3.20) \qquad \sum_{k=1}^{\infty} \frac{p + \lambda \alpha k}{p(A-B)} \left(\frac{p + \lambda k}{p}\right)^n a_{k+p} b_{k+p} \neq e^{i\theta} \quad (0 < \theta < 2\pi).$$

Proof. Observe that a function $f\left(z\right)\in C^{n}_{\lambda,p}\left(f,g;\alpha,A,B\right)$ if and only if

$$(1-\alpha)\frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}}+\alpha\frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}}\neq\frac{1+Ae^{i\theta}}{1+Be^{i\theta}}\quad\left(z\in U;\ 0<\theta<2\pi\right),$$

which is equivalent to the following

$$\frac{1}{z^{p}} \left[(1 + Be^{i\theta}) \left\{ (1 - \alpha) D_{\lambda,p}^{n} (f * g) (z) + \alpha D_{\lambda,p}^{n+1} (f * g) (z) \right\} - (1 + Ae^{i\theta}) \right] \\
= (1 + Be^{i\theta}) \left(1 + \sum_{k=1}^{n} \frac{p + \lambda \alpha k}{p(A - B)} \left(\frac{p + \lambda k}{p} \right)^{n} a_{k+p} b_{k+p} z^{k} \right) - (1 + Ae^{i\theta}) \neq 0,$$

which easily implies the convolution property (3.19). Theorem 3.7 is proved. Theorem 3.8. A function f(z) belongs to the class $C_{\lambda,p}^n(f,g;\alpha,A,B)$ ($\alpha>0$) if its coefficients satisfy the condition:

$$\sum_{k=1} (p + \lambda \alpha k) \left(\frac{p + \lambda k}{p} \right)^n |a_{k+p} b_{k+p}|$$

Proof. By Theorem 3.7, $f(z) \in C_{\lambda,p}^n(f,g;\alpha,A,B)$ if and only if

$$\sum_{k=1} \frac{p + \lambda \alpha k}{p(A - B)} \left(\frac{p + \lambda k}{p}\right)^n a_{k+p} b_{k+p} \neq e^{i\theta} \quad (0 < \theta < 2\pi)$$

Thus $\left|\sum_{k=1}^{p+\lambda\alpha k}\frac{p+\lambda\alpha k}{p(A-B)}\left(\frac{p+\lambda k}{p}\right)^na_{k+p}b_{k+p}\right|<\left|e^{i\theta}\right|=1$, and the result follows. Theorem 3.9. Let

(3.21)
$$f(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \in C_{\lambda,p}^{n}(f, g; \alpha, A, B).$$

Then

$$|a_{k+p}b_{k+p}| \le \frac{p(A-B)}{p+\lambda\alpha k} \left(\frac{p}{p+\lambda k}\right)^n.$$

The inequality (3.21) is sharp, with the extremal function given by

(3.23)
$$D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right) = \frac{p}{\alpha\lambda}z^{p}\int_{0}^{1}u^{\frac{p}{\alpha\lambda}-1}\frac{1+Azu}{1+Bzu}du.$$

Proof. Combining (1.3) and (3.20), we obtain

$$(3.24) \ (1-\alpha) \frac{D_{\lambda,p}^{n}\left(f\ast g\right)\left(z\right)}{z^{p}} + \alpha \frac{D_{\lambda,p}^{n+1}\left(f\ast g\right)\left(z\right)}{z^{p}} \prec \frac{1+Az}{1+Bz} = 1 + (A-B)z + \dots.$$

An application of Lemma 2.5 to (3.22) yields

$$\left| \left(\frac{p + \lambda \alpha k}{p} \right) \left(\frac{p + \lambda k}{p} \right)^n a_{k+p} b_{k+p} \right| \le A - B.$$

This and (3.23) imply (3.21). Theorem 3.9 is proved.

Acknowledgement: The authors are grateful to the referees for their valuable suggestions.

REFERENCES

- F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci., 27 (2004), 1429-1436.
- [2] M. K. Aouf and A. O. Mostafa, On a subclass of n-p-valent prestarlike functions, Comput. Math. Appl., 55 (2008), no.4, 851-861.
- [3] M. K. Aouf and T. M. Seoudy, On differential sandwich theorems of analytic functions defined by certain linear operator, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 64(2010), no 2, 1-14.
- S.D. Bernardi, Convex and univalent functions, Trans. Amer. Math. Soc., 135 (1996), 429-446.
 T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of
- Scientific Book Publ., Cluj-Napoca, 2005.
 [6] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
- [7] A. Cătas, On certain classes of p-valent functions defined by multiplier transformations, in Proc. Book of the Internat. Symposium on Geometric Function Theory and Appls., Istanbul, Turkey, (August 2007), 241-250.
- [8] N. E. Cho and T. G. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), no. 3, 399-410.
- [9] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Com. 103 (1999), 1-13.
- [10] J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5 (2002), 115-125.
- [11] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
- [12] Yu. E. Hohlov, Operators and operations in the univalent functions, Izv. Vysšh. Učebn. Zaved. Mat., 10 (1978), 83-89 (in Russian).
- [13] M. Kamali and H. Orhan, On a subclass of certain starlike functions with negative coefficients, Bull. Korean Math. Soc., 41 (2004), no. 1, 53-71.
- [14] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-658.

M. K. AOUF AND T. M. SEOUDY

- [15] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
- [16] M.-S. Liu, On certain subclass of analytic functions, J. South China Normal Univ., 4(2002),15-20 (in Chinese).
- [17] T.H. Macgregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514-520.
- [18] S.S. Miller and P.T. Mocanu, Subordinats of differential superordinations, Complex Var., 48(2003),815-826.
- [19] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [20] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
- [21] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48(1943), 48-82.
- [22] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
- [23] H. Saitoh, A linear operator ana its applications of flest order differential subordinations, Math. Japon. 44 (1996), 31-38.
- [24] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013, (1983), 362 - 372.
- [25] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential Sandwich theorems for subclasses of analytic functions, Australian J. Math. Anal. Appl., 3(2006), Art. 8, 1-11.
- [26] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridge University Press, Cambridge, 1927.

Поступила 5 сентября 2012