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Abstract. In this paper, we study the problem of existence of positive solution to the fol-

lowing boundary value problem: Dg, u”(t) — g(6)f(u(t) = 0, ¢ € (0,1), w"(0) = u”(1) =
au(0) — bu'(0) = T727% aqu(8i), u(t) + du!(1) = $[272 biu(&:), where DY, is the Riem-

ann-Liouville fractional derivative of order 1 < o < 2 and f is a lower semi-continuous fun-
ction. Using Krasnoselskii’s fixed point theorems in a cone, the existence of one positive
solution and multiple positive solutions for nonlinear singular boundary value problems is

‘established.
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1. INTRODUCTION

The purpose of this paper is to study the problem of existence of positive solutions
for the following m-point boundary value problem for fractional differential equation

Dg.u"(t) — g(t)f (u(t)) = te(0,1),

w(0) = (1) =
au(0) — bu'(0) = ):’"" asu(&:),
cu(l) +du'(1) = T3 bau(&),
where D, is the Riemann-Liouville fractional derivative of order 1 < ¢ < 2, m > 2
(m € N), a,b,e,d > 0, p = ac+bc+ad > 0, & € (0,1), ai,b; € (0,+00) (i =
1,2,...,m-2), g € C((0,1); [0,+00)) and 0 < fnl g(r)dr < co, and f is a nonnegative,
lower semi-continuous function defined on [0, +00).

Fractional differential equations have been of great interest recently. This is because

of both the intensive development of the theory of fractional calculus itself and

(1.1)
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the applications of such constructions in various scientific fields, such as physics,
mechanics, chemistry, engineering, etc. For details we refer to [5, 8, 9] and references
therein.

The solution of differential equations of fractional order is much involved. Some
analytical methods have been developed, such as the popular Laplace transform
method [21, 22], the Fourier transform method [16], the iteration method [23], and
Green function method [15, 24]. Numerical schemes for solving fractional differential
equations also were introduced (see, e.g. [3, 4, 18]). A great deal of effort has been
expended over the last years in attempting to find robust and stable numerical as
well as analytical methods for solving fractional differential equations of physical
interest. The Adomian decomposition method [20], homotopy perturbation method
[19], homotopy analysis method [2], differential transformation method [17] and varia-
tional method [6] are relatively new approaches to provide analytical approximate
solutions to linear and nonlinear fractional differential equations.

The problem of existence of solutions of initial value problems for fractional order
differential equations have been studied in the literature (see [1, 11, 21, 23, 27| and
the references therein).

In [13], Liu and Jia have investigated existence of multiple solutions for the problem:

D¢, (p(t)u'(t)) +a(t)f(t u(t)) =0, t>0, 0<o <1,
p(0)w'(0) =
limg 300 u(t) = fu+m g (t)“(t)dtl

where °Dg, stands for the standard Caputo’s derivative of order o. Some existence
results for the problem (1.1) with o = 2 were obtained by Yanga et al. [25] and Zhao
et al. [28].

In [12], Liu has considered existence of positive solutions for the following generalized
Sturm-Liouville four-point boundary value problem:

u'(t) +9(@)f(u(®) =6, te(0,1),
au(0) — bu'(0) = ayu(ér),
cu(1) + du'(1) = byu(£a),

by using the fixed points of strict-set-contractions,
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In [26], Zhou and Chua have studied the following fractional differential equation
with multi-point boundary conditions
°Dgru(t) = £(t,u(t), (Ku)(2), (Hu)(t)), te(0,1),
au(0) — bu'(0) = dyu(&1),
cu(1) + du'(1) = dau(&s),
where Dg, is the Caputo’s fractional derivative of order 1 < o < 2. By using
the contraction mapping principle and the Krasnoselskii’s fixed point theorem, the
existence of solutions was established.
In this paper, motivated by the above-mentioned works, and using Krasnoselskii’s
fixed point theorems in a cone, we show that the problem (1.1) has positive solutions.
The remainder of the paper is organized as follows. In Section 2 we state some
preliminary facts needed in the proofs of the main results. We also state a version of
the Krasnoselakii’s fixed point theorem. In Section 3, we state the main results of the
paper, that establish existence of at least one or multiple positive solutions for the
problem (1.1). Finally, in Section 4 we discuss an example that l.l.luatrates the main
results of the paper.

2. PRELIMINARIES

In this section, we present some notations and preliminary lemmas that will be
used in the proofs of the main results.

We work in the space C([0, 1]) with the norm |[u|| = maxg<i<i [u(t)|. We make the
following assumptions:

(H1) f e C([0, +00); [0, +00));

(H1*) f is a nonnegative, lower semi-continuous function defined on [0, +00), i.e.,
there exist I C [0,+oc0) such that for all z,, € I, z, — Zp as n — oo, one has
f(z0) < lim,,—,00f(zn). Moreover, f has only a finite number of discontinuity points
in each compact subinterval of [0, +00).

(H2) g € C((0,1);[0,+00)) and 0 < _ﬁ,l g(r)dr < +co. Mo;-eaver, g(t) does not
vanish identically on any subinterval of [0, 1];

(H3) a,b,c,d > 0, p = ac+ be + ad > 0, & € (0,1), ai,b; € (0,40) (i =
L,2,...,m—2), p— T2 ai0(6) > 0, p— T2 bish(&;) > 0 and A < 0, where

~Taw(6) o= Try aw(E)
P bw(&) - TR biel) |’
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and for t € [0,1]
(2.1) Y(t) =b+at and pt)=c+d—ct

are linearly independent solutions of the equation z”(£) = 0, t € [0,1]. Observe that
4 is non-decreasing on [0, 1] while ¢ is non-increasing on [0,1].

Definition 2.1. Let X be a real Banach space. A non-empty closed set P C X is
called a cone of X if it satisfies the following conditions:

(1) € P, 2 0 implies pz € ‘e

(8) ze P,L—z€P implies = = 0.

Definition 2.2. The Riemann-Liouville fractional integral operator of order a > 0
of a function f € L*(R*) is defined as

t
O
where T'(*) is the Euler gamma function.

Definition 2.8. The Riemann-Liouville fractional derivative of oder @ (n—1 <
a < n, n €N) is defined as

D8 10) = oy (3) [} == (o,
where the function f(£) has absolutely continuous derivatives up to order (n — 1).
Lemma 2.1. ([7]). The equality D], I], f(t) = f(£), ¥ > 0 holds for f € L*(0,1).
Lemma 2.2. ([7]). Let > 0. Then the differential equation
D& u=0

has a unique solution u(t) = c1t®  +ept* 2+ +cat® ™™, s €R,i=1,...,n, and
n—-1<a<n.

Lemma 2.3. ([7]). Let a > 0. Then the following equality holds for u € L*(0,1),
Dg,u € L'(0,1);

I D& ult) = u(t) + c1t®  + eat® 2 + - + cat™ ™,

wherec; €R,i=1,...,n,andn—-1<a<n.
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Now we present the Green function for a boundary value problem involving fract.lonal
differential equation.
Observe first that for y(t) = u”(¢) the problem

Dg,u"(t) — g(t)f(u(t)) =0, te (0,1),
un(o) L ”(1) = 0'

becomes into the problem

Dg+y(t} = g(t).f(u'(t)) =0, t€(0,1),
(& {y(ﬂ) =y(1) =

Lemma 2.4. If (H1) and (H2) are satisfied, then the boundary value problem (2.2)
has a unigue solution given by

1
(2.3) y(t) = - fu H{(t,5)g(s) (u(s))ds,
where

po=1 (1_.}--—1_“_')1—1

0<sg<t<1
2.4 H(t,8)={ .._ Ia) N T
( ) (i) {!_19(31,-]_1, OStSBSI.

Proof. According to Lemma 2.3 we can write

y(t) = I (9()f @) — exto~" — cato2
ey Jo (¢ = 9)729(s) f(u(s))ds — ext°~1 — 22,
Since ¢ —2 < 0, in view of the boundary condition y(0) = 0, we must set c3 = 0
if o = 2, and if o < 2 then in order to have c3t°~? well defined we must choose

= 0. Also, using the boundary condition y(1) = 0 we must set ¢; = T'I_I fn (1-

)"19(8)f (u(s))ds.
Thus, the unique solution of problem (2.2) is given by

t o— 1 ;
y(t) = ﬁlcr—) ]D ( — 5)7~g(8) f (u(8))ds — % fn (1 — 8)7~1g(s)  (u(s))ds

t t""""(l - s}o--l 5L (t A 8)""'1 s)c-l ‘ -
- [ o s tuds- [ T o) rugeias

= [D H{(t, 8)9(s)f (u(s))ds.

This completes the proof.
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Lemma 2.5. If (H3) holds, then for y € C|0,1] the boundary value problem

au(D) bu"(O) 2212‘““(&):
cu(1) +du/(1) = Simr? bau(&s),

Kas s unigue solution given by
@o)  wt)=—[ [ G+ AGEIE + Bo)ed)]

u" () = y(t) t€(0,1),
(2.5)

where

(2.7) Glt,8) = { e(t)P(s), 0<s<t<l1,

(8)o(t), 0<t<s<1,

Y20 Jo Gé,8)y(s)ds p— 2"";««:(&)
"‘"’fufn G(&,s)y(s)ds  — 377" bp(&:)

~ S aw(6) Tk’ aiJy Gl sy(e)ds |
p—Trl b)) iy b Jy G(&i, 8)y(s)ds

Proof. T'heproofmamh:tothatoflamma551 in [14], anditmom.ltted. O
We assume that 8 € (0, %), and for convenience, we set

(2.8) Aly(s)) = 3

(2.9) B(y(s) = %

p(1—6) ¥(6) L Az
mn{Eoarn g} T e 32
Az = m{ﬁ<t<1 G’P( )Is<t51 a'ﬁ’(‘)‘ 1}! As = m{li ”90”! ”'nb”}'
Lemma 2.6. Let p, A #0 and 0 € (0, ), then the following inegualities hold:
(2.10) 0 S G(t, 8) < G(s, ), for t,5 € [0,1],

and
(2.11) G(t,8) > A1G(s,8), for te [9,1 - 9] and s € [0,1].

Proof. The inequality (2.10) is obvious. So, we have to verify only the inequality
(2.11). To this end, observe that for ¢ € 6,1 — 6] and s € [0,1] we have

Gt,s) _ [83, 0<s<t<1-§,

G(s,8) B 0<t<s<l,

{ o, 0<8<t<1-6,
>

>
e e

1s
1)?

This completes the proof.
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Proposition 2.1. Fort,s € [0,1] we have
1 1yo-1
0< H(t8) < H(s,8) < — (=
(6 < His0) < 115(3)
Proposition 2.2. Let § € (0, 3), then there ezists a positive Junction g € C(0,1)
such that
‘S!Psﬂl_sH(t: 8) > e(s)H(s,8), se (0,1).
Proof. For 6 € (0, 1) we define

qt,8) = t"N1-8)" 1~ (t-8)"), 0<s<t<l,

92(t8) = t°71(1-4)7-1 0<t<s<l1.
Then we have
208 = (@-1)(#21— gt — (¢ 5°2)

(0 =12 (1 =07t - (1= $)-7)
(=12 (1= 8)7 - (1 - 5)2),

implying that g;(-,s) is non-increasing for all s € (0,1]. Also, taking into account
that g2(-, 5) is non-decreasing for all s € (0, 1), we can write

L s € (0,4],
y bk 1—-8,a d,8
o Jin  Hit,s) mm{m-i.nd B} se(g,1-6,
‘{-{(-l)-l s€(1-46,1).
r;s' y € (0,#},
f,' ,  S8E€([ul).

-8y —l(1—gs)"=-1_ —f—g)7-1
e
Efmar 8 € [u,1),

where 6 < 1 < 1 -6 is a solution of the equation
(1= 0)°7(1 = )™= — (1 = 6 - )"~ = 6731 — )1,

It follows from the monotonicity of g; and g that
--1(1 et s)a'—l

IA

ax max H(t,s) = H(s,s) = ——T(o-_)—-—, s€(0,1).
Therefore, setting
¥ —8Y=lp1_gyoe—1_ ——g)""1
o< [T e,
&) s € [u,1),

we complete the proof.
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Remark 2.1. It follows from Lemmas 2.4 and 2.5 that u(t) is o solution of the
problem (1.1) if and only if
@) u)= ! (e, o)W (s)ds + AV ($)(t) + BV (5))(®),

0

where W(s) = [3 H(s,7)g(r)f(u(r))dr.
Lemma 2.7. Let (H1), (H2) and (HS3) be fulfilled. Then the solution u of the problem
(1.1) satisfies the following conditions:

(i) u(t) 2 0 for t € [0,1],

(ii) ming<e<1-6 u(t) = Tllull-

Proof. (i) By Lemma 2.6, Proposition 2.1, formulas (2.3) and (2.6)-(2.9), we have
G(t,s) 20, W(s) 20, A(W(s)) 20, B(W(s)) 20,

mplymgtha.tu(t)>ﬂﬁorte[0 1].
(n)ByLemmaZSaudformula(212) for t € [0, Je 6] we have

u(t) = fo G(t, 8)W(s)ds + AW (s))(t) + B(W(s))p(t)

M ! (o, o)W (s)ds + AW (s)¥() + BOW(s))p(®)

v

Vv

& [ G(s, s)W(a)m 2. \s[A(W(s)) + B(W(s))]

> 1 f G(s, a)Wta)JS+As[A(W(8))+B(W(8))]]
> Tl

This implies ming<i<1-6 t(t) = I'||ul|. Lemma 2.7 is proved.
Next, for 6 € (0, ) we choose a cone K = K in C*([0, 1]) by setting

K =Ko={ucCl0,1] |u(®) 20, gmin u(t) 2 Tlful};
and define an operator T' by

19 @)= [ " Gt )W (s)ds + AW (8))¥(2) + BOV())p(d),

where W (s) = [ H(s, 7)g(r)f (u(r))dr.
It is clear that the existence of a positive solution for the system (1.1) is equivalent
to the existence of nontrivial fixed point of T' in K.

Lemma 2.8. Suppose that the conditions (H1) and (A1) hold, then T(K) C K and
T : K — K is completely continuous. '
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Proof. By (2.13), for any u € K we have (Tu)(t) > 0, and for ¢ € [0,1] we can
write

(Tu)(t)

I

1
fu G(t, &)W (s)ds + AW (8)(2) + B(W (s))e(t)

IA

1
[B G(s, )W (s)ds + As[A(W(s)) + B(W(s))].
Thus,
1
ITul| < fn G(s, 8)W (s)ds + As[A(W(s)) + B(W(s)))-

On the other hand for ¢ € [#,1 — 6] we have

(Tu)(2)

1
fa G(t, $)W (s)ds + AW (s))(t) + B(W (s))(t)

v

1
Ay ./; G(s,8)W (s)ds + A(W (s))¥(t) + B(W (s))e(t)

v

b [ Glo oy W(a)ds + 22 sfaw (o) + BF(9)
(1] 3

v

1
r| fn Gs, )W (s)ds + As[ A(W () + B(W (s))]
> T||Tu|.

This implies TK C K. Using standard arguments and Arzela-Ascoli theorem it
can be easily verified that T : K — K is completely continuous, so we omit the
details. Thus, Lemma 2.8 is proved.

As it was mentioned above, our approach to the existence of positive solutions
for boundary value problems for fractional differential equations is based on the
Krasnoselskii’s fixed point theorems in a cone. For completeness of the presentation
here we state the following Guo-Krasnoselskii fixed point theorem in a cone (see [10]).

Theorem 2.1. Let E be a Banach space and K C E be a cone in E. Assume that Q;
and Qp are open subsets of E such that 0 € © and Q) C Q. Let T : K N(\y) —
K be a completely continuous operator. Then under each of the Jfollowing conditions
the operator T has a fized point in K N (Q2\01):

(4) |1 Tl < |lull, Yu € K N0y and |Tul| > ul, Yu € K N6%y;

(B) | Tul| > |lull, Vu € K N 09y and | Tu < |[u], Yu € K N 69,
71



NEMAT NYAMORADI
3. MAIN RESULTS

We define O = {u € K : |jull < I} and 8 = {u € K : |lul| = I}, where
I'> 0. Observe that if u € 8 for t € [6,1 — 6], then we have I'l < u < l. Also, for
convenience, we introduce the following notation:

i = wt{{uem.a}, f=sup {8 e o1},
fo = imprl® pootmepl®; (@i=0t or +oo)

n =  JZin e(s)

L Lye-n[( / G(s, 9)dh) / a(r)dr) + Asd + AsB),
1

7 o= r(ﬂa) _N_g2e-1) [Al (11— g),p(g)( jl g(f)dr) + AzA A AzB].

In the theorems that follow, we always assume that the assumption (H1) is fulfilled.

Theorem 8.1. Suppose that there ezist constants r,R > 0 withr <T'R for r < R,
such that the following two conditions are satisfied:

(H4) fr S w,

(H5) fr2 M.
Then the problem (1.1) has at least one positive solution u € K, such that

0<r<|lul| <R
Proof. Case 1. We prove the result assuming that (H1) is satisfied. Also, without

loss of generality, we can assume that r <I'R for r < R.
By (H4), Proposition 2.1, and formulas (2.8) and (2.9), for u € 2, we have

AW) < w pagl qG(&:a)(I g(r)dr)ds p— _5 ? aip(&)
b(fu G(&l 3)(.’;; g(‘r)dr)d& zi_ bﬂa(& S

(3.1) = %(4)@“1%?.4 '

and

53 Vr | _gm- -3,
B(W) < AN GO PAY Yl 25_1_2@%9(&) T qG(Ec.s)(f g(r)dr)ds
8 i () 24_1 b [y G(&i, 8)(fy 9(r)dr)ds

62 =(5) (%)("Uwﬁ.

72



POSITIVE SOLUTIONS FOR MULTI:POINT BOUNDARY VALUE PROBLEMS ...

Therefore, by (H4), Lemma 2.6, and formulas (2.13) - (3.2), for ¢ € [0,1] and u € Q,
we can write

1
(Tu)(t) f G(t, 8)W (s)ds + AW (s))(t) + B(W(s))o(t)

< 11—(15(1)"“" f i G, s)ds) ( f lg('r)d'r

I‘(a)( )(”_1} A‘f’(ﬁ‘l‘m( )(u_u wrBop(t)

< I‘(cr) (P Vo f 6o, s)as) ( / g(r)dr) +AsA + AsB]
= r=|lu|.
This implies that ||Tu|| < [|u|| for u € Q,.
On the other hand, by (H5), Proposition 2.2 and formulas (2.8), (2.9) and (2.13),
for u € 0 we have
(rep) MR | 5 0 fo=* Gles, ) 3~ a(r)ar)ds - S aupls)
AW) > -2 e meg s
a i=1 Oi fe G(fi 3)(.’; Q(T)d'-")d’ _ZL-I bip(&:)
(3.3) = (%)f-lgnta—n(q—n MRA,
o

and

2(o—1)
L

- T’ () a o) Gl 8)(fql“ay(f)df)dal
p— i bi(&s) :';:’Ma (&, 8)(Jy ~° g(r)dr)ds
(Bl = (%)a’ff-”m{ﬁ. :

Therefore, by (H5), Lemms 2.6 and formulas (2.13), (3.3) and (3.4), for ¢ € [0,1] and
u € g we have

1
T = [ Glt9W(e)ds + AW E)() + BV (et

Il

v

( )eﬂ‘-nmz[ o1 - 0)p(0)( f 9(r)dr) + AR+ A B]
= R=|u|.

This implies that ||T'u|| > ||u|| for u € Q.

Therefore, by Theorem 2.1, it follows that T" has a fixed point % in K N (0 \ 2,).
This means that the problem (1.1) has at least one positive solution u € K satisfying
0<r<|lul| <R

Case 2. When (H1*) holds, by applying the linear approaching method on the
domain of discontinuous points of f we can construct a sequence { f3}§2, satisfying
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the following two conditions

(1) fJ' € C[O,DO) and 0 < fj < .fj-l-l on [D!w)i
() imjosco f = f» 3 =1,2,..., is pointwisely convergent on [0, 00).
According to the Case 1, for f = f; the problem (1.1) has a positive solution u;(t)

given by

u;(t) = ./n ; G(t, ) ( ./u 3 H(s,7)9(7)fi(uj ('r))d'r) ds

w(t) | Tia? os Jy Gl 9) (g e, m)a(r)fs(us(r))dr)ds p— Ty aplé)
A | Sr20 [y Gl&ins)(Jy HisiT)g(r) fi(us(r))dr)ds  — 32" bup(6)
ot)| ~TrPaw(&) Timaaify G s)(fy Hs:m)a(r)fs(ui(r))dr)ds
A | o= bip(6) T b fy Gl s)(fy Hs,7)g(r)fi(us(r))dr)ds

1 1
= [ cta)( [ Bamoitutrar)ds+ )45+ )5,

-+

+

for all ¢ € [0,1] and r < ||u;|| < R, where r and R are independent of j.

By uniform continuity of G(t, s) on [0,1] x [0, 1], and (%), %(¢) on [0,1], for any
small enough € > 0 there exists § > 0 such that for #;,t; € [0,1] and [t; — 23| < 4,
one has |G(t1,8) — G(t2, 8)| < ¢, |p(t1) — p(ta)| < e and [¢(¢1) — (t2)| < €. Thus, for
t1,%2 € [0,1] and |¢; — t2| < & we can write

1 1
) —ustel < [ 16,0~ Glena)- ([ Bl mlotr)fytus(rdar)ds
+A31b(tr) — 9(t2)] + Bylo(tr) — ot

1 L@ ¥
_@(Z) y '“ffﬁ?_gnfj(w)'(jn g(f)dr)-e+A,--e+B,-e.

IA

Thus, {u;}32; are equicontinuous on [0,1], and hence by Arzela-Ascoli theorem

there exists a convergent subsequence of {u;}32,. For convenience, we denote this

convergent subsequence by {u;}32,, and without loss of generality, we assume that

limj—y00 u;(t) = u(t), Vt € [0,1], and r < |[u|| < R. By Fatou’s Lemma and Lebesgue
T4
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dominated convergence theorem we have

! 1
Jim us(t) > fo a(t,s)( ]; H(s,7)g(r) Jim f;(u;(r))dr)ds

YO | T2 a1y Gl6ss9) (g Hom)o(r) limjosen fy(us(r))dr)ds  p— 72 auo(6s)
A | T b Jo G&ss8)(fy Hs,m)g(r) limgoson fi(uj(r))dr)ds  — T2 bio(6s)

+20

(i —Yrlaw(s) Trle )

: g Cl6i:5)(fg H(5,7)0(r) limjsco f3(us())dr)ds 1
p= L b6 TiL"biJy Gt o)y Hlem)g(r) imjoveo fy(us(r))dr)ds |

implying
1
©5)  u®)> [ GltaW(s)ds + AW + BW )l
where W (s) = [ H(s,7)g(r) f(u(r))dr. _
On the other hand, by the conditions (i) and (ii) we have

1 1
u;(t) < : G(t.s)( _/; H(s,f)g(f)f(ﬂs(f))df)dﬂ

20| T an fy (6 o)y s, o(r)(us(r)dr)ds p = T aup(s)
A | b fy Glen o)y Hisyg()f(us(r)drdds  — I bue(e)

e(t)

-y a(&) ﬁ"ftuf.ll G, 8)(fy H(s,7)g(r) f;(u(r))dr)ds
A

p— T b(&) LT b [y G(&,9)(fy H(s, m)g(r)f (u(r))dr)ds
By the lower semi-continuity of f, we can pass to the limit in the above inequality as
. j — oo to obtain

uy <[ 66,9 / s, m)a(n)f(ulr)ir) d

Y(t)
A

+

+

Tizr, 0 Jy G(6ss )y Hls,m)g(r) (u(r))dr)ds p— St auplts) 1
Ti" b o Gl o)y Hlssm)or)fu(r))dr)ds = i3 bu(6)

~Ytaw(&)  Tiate fy Gl )y H(s,ma(r)f(u(r))dr)ds [ :

oft)
TR p- STt b)) T b fo Gl 8)([3 H(s, 7)g(r)f (u(r))dr)ds

A
Therefore

1
(36)  u()< / G(t, s)W (s)ds + AW (8))%(2) + BOW(s))e(?),

where W (s) = [ H(s,7)g(r)f(u(r))dr.
Finally, by (3.5) and (3.6) we obtain

1
u(t) = /0 G(t, )W (s)ds + AW (s))b(2) + BOW (s))o(t),
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where W(s) = Jo H(s,7)g(r)f(u(r))dr.
Therefore u(t) is & positive solution of the problem (1.1). This completes the proof

of Theorem 3.1.
Similarly, we can prove the following theorem.

Theorem 3.2. Assume that there ezist constants r,R > 0 withr <T'R forr < R,
such that the following two conditions are satisfied:

(H4%) T <w,

(H5%) fr > M.
Then the problem (1.1) has at least one positive solution u € K such that

.0<r<]|uH<R.

Theorem 3.3. Assume that one of the following two conditions is satisfied:
(H6) fnsw: fw2¥,
(H7) fo 2 ¥, fPLw

Then the problem (1.1) has at least one positive solution.

Proof. It is enough to prove the assertion of the theorem for nonnegative and continuous
on [0,00) functions. Then using the arguments of the proof of Theorem 3.1 we can
extend the result to the case of nonnegative and lower semi-continuous on [0, 00)
functions.

We show that (H6) implies (H4) and (H5). Suppose that (H6) holds, then there
exist r and R with 0 < r < ¥R, such that

f(tt) f(u)

<w, O0<u<r and ——u—z

M
— >
T u2TR.

flu)<wu<wr, 0<u<r

and

(u)>£u>£I‘R MR, u>TIR,

implying (H4) and (H5). Therefore, by Theorem 3.1 the problem (1. 1) has at least
one positive solution.

Now suppose that (H7) holds, then there exist 0 < r < R with Mr < wR such
that

f) , M
(3.7) (Y4
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and
(3.8) . f—s:-‘—)- <w, u>R
By (3.7), it follows that

f(u)?,%uz —}ll_,{l"r=Mr, I'r<u<r.

So, the condition (H5) holds for r > 0. As for (H4), we consider two cases.

(i) If f(u) is bounded, then there exists a constant D > 0 such that f(u) < D for
0<u<oo. By(3.8)theree:dstaaoonstantA2RwithMr<wR$Msatiafying
A2 max{R, 2}, such that f(u) <D < M for 0 < u < ), implying (H4).

(i) If £ (u) is unbounded, then there exist A; > R with Mr < wR < Ayw such that
f(u) < f(A1) for 0 < u < ). This yields f(u) < f(M) £ \w for 0 < u < ). Thus,
condition (H4) holds for ).

Therefore, by Theorem 3.1, the problem (1.1) has at least one positive solution.
Theorem 3.3 is proved.

Remark 3.1. It is easy to see that the assertion of Theorem 3.8 remains valid under
each of the following conditions: either f° = 0 and fo, = +co or Jo = +o0 and
fo=0.

Now we are going to give some conclusions about the existence of multiple positive
solutions. In the theorems that follow we assume that the assumptions (H1*), (H2)
and (H3) are fulfilled.

Theorem 3.4. Assume that one of the Jollowing conditions is satisfied:
(H8) T < w,
(H9) fo> ¥ and foo > X.

Then the problem (1.1) has at least two positive solutions satisfying

0 < Jlull <7 < [fual|-

Proof. By the proof of Theorem 3.3, we can take 0 < 1 < 7 < I'r; such that
f(u) 2 1M for Pry < u <y and f(u) 2 roM for I'ry < u < 4. Therefore, by
Theorems 3.2 and 3.3, it follows that problem (1.1) has at least two positive solutions

satisfying 0 < ||u1]| < £ < ||ug]|. O
b :
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Theorem 3.5. Assume that one of the following conditions is satisfied:

(H10) fr > M,
(H11) f° S w and f* S w.
Then the problem (1.1) has at least two positive solutions satisfying

0 < ||ual| < R < |fuzll-

Theorem 3.8. Assume thai (H6) (or (H7)) holds, and there ezist constants 1,72 > 0
with i M < raw (or vy < I'rg) such that (H8) holds forr =3 (orr =r11) and (H10)
holds for R = r1 (or R = r3). Then the problem (1.1) has at least three positive
solutions satisfying

0 < Jluall < 71 < |luall <72 < |lus]l-

Theorem 8.7. Let n =2k + 1, k € N. Assume (H6) (or (H7)) holds. If there ezist

constants 71,72, - -y Tno1 > 0 with T2; <Traipy, for 1 <i< k-1 and rg;—1 M < raw

for1<i<k (orwithrm..1<]?rz¢,for15i$k and rgsM < raipaw for 1 <i <

k—1) such that (H10) (or (H8)) holds for r2i-1, 1 S i < k and (H8) (or (H10)) holds

for r2i, 1 < i < k. Then the problem (1.1) has at least n pt.':d-itiue solutions uy,...,Un

satisfying :
0 < fuall <1 < [luall < 72 < -+ < [fun—all < Ta1 < [[tnll.

The proofs of Theorems 3.5 - 3.7 are similar to that of Theorem 3.4, and so are
omitted.

4. AN EXAMPLE.

In this section we discuss an example that illustrates the main results of the paper.
Example. Consider the following singular boundary value problem

D} (w'() -t~ fu() =0, te(0,1),
u"(0) = u"(1) =0,

u(0) - /(0) = Ju(d),

u(l) +¥/(1) = bud),

(4.1)

where
S 0<u<10,
fw={ (n+1)e™ n<u<n+l, n=10,11,...,20,
eve, u> 21
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We note that
1 3
ﬂ=b=c=d=1. p=3, m=3, nf1'=§, 0’=-2',

1
a=bh=3, fo=+00, fo=+40, A= —g: g(t) =t~%.

2 1
A1=§=1, Ay =1, A3 =2, P=§|
w_}_‘n_ e 7297

131’ 944(3 — 2v/2)np2’

where 1 = ming <, <3 H(s, 5).
Bycalculating,wecanletp=&§§l.30,fm> 4 and fo > 4. Choosing r = 10,
we get

fm=sup { "—‘f_“—)[u € [0,1]} = 0105409 < 0.2157519 = w,

showing that (H8) and (H9) are fulfilled. It is easy to see that (H1*), (H2) and (H3)
are satisfied as well. So, we can apply Theorem 3.4 to conclude that the problem (4.1)
has at least two positive solutions uy,u, € K satisfying 0 < ||uy|| < 4 < ||u2]|.
Acknowledgments. The author would like to thank the anonymous referees for
valuable suggestions and comments.
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