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1. INTRODUCTION
We consider the system of Laguerre functions defined by
2@) =cravie FL(y),y € Ry = (0,00), k€N,

where L{® () = (y>+*e~v)®)/ (E!y“e"“) is the usual Laguerre polynomial of degree
k. For a > —1 this system forms an orthonormal basis in L?(R,) when we choose

the normalizing constants

cka =/I'(k+1)/T(@a+k+1), keN.

This produces a formal expansion f = Y22 < f,L§ > Lg, which is convergent in
norm at least for f € L3(R,.).

The main object in the theory of Laguerre function expansions is the set of
transplantation operators, defined for &, # > —1 and f € L*(R,.) by

(==
Tgf=Y < f,L§> L.
k=0
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The LP boundedness of such operators was first established by Kanjin [7]. Recently,
G. Garrigds et al. [5] extended the Kanjin's result to the power weighted spaces (see
also [16]).

The purpose of this paper is to establish a generalized weighted transplantation
theorem for Laguerre function expansions, which extends the corresponding result by
G. Garrigés et al. [5]. The main result of the paper is the following theorem.

Theorem 1.1. Let -1 < a < f and 1 < p < 0. Then the operators TS and Tg
admit bounded extensions to the weighted space LP(w) whenever w(z) = (1 + z)P1zP®
with—§-1<§<1-;+§ andy€R.

We remark that in the special case v = 0, Theorem 1.1 has been proved by G.
Garrigés et al. (see [5], Theorem 1.4). So, our result extends essentially the main
result of [5]. Also, the proof of Theorem 1.1 is curried out by using arguments similar
to one used in [5]-

To prove Theorem 1.1, we need to establish new weighted multiplier theorems
for Hermite function expansions in R? and Laguerre function expansions in Ry,
respectively. Recall that the Hermite functions in R? are defined by

d
e(z) = dicae™ /2 ] Hi, (1), k = (ks,-++ 1 kn), ki €N,
i=1

where Hy(t) = (—1)et D®)(e~*") is the usual Hermite polynomial in R and N =
{0,1,2,---}. Normalizing by di,4 = 12, (2%k;ly/m)~2/3, the system {mc}hx becomes
an orthonormal basis in L?(R?) and a complete system of eigenvectors for the Hermite
operator —A + |z|2.

Theorem 1.2. Let 1 < p < 0o and m € I°(N%) be such that
(1.1) |A%m(k)| < Ca(l + [k|)7'°!, ke N¢, V a € N4,

where A is a difference operator. Consider the operator Trnf = 3, m(k) < f,mc >
Nk, defined at least for f € L*(R?). Then Ty, admits a bounded eztension to the
weighted space LP(w) whenever w(z) = (1 + |z])7u(z) with p € Ap(R?) and v € R,
where pu € Ap(R%) stands for the Muckenhoupt class.
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We remark that in the special case 4y = 0, Theorem 1.2 has been proved in [5]
under weaker conditions (see [5], Theorem 1.6 ). But, our Theorem 1.2 cannot be
deduced from the conditions imposed in [5].

Theorem 1.3. Leta > —1, 1 < p < oo and m € C*[0,00) be such that
(12) ID'm(E)| < Ci(1+€)~!, £20,1€N.

Consider the operator Tmf = 3 i5om(k) < f,L§ > Lg, defined at least for f €
L*(Ry). Then Ty, admits a bounded extension to the weighted space LP(w) whenever
w(z) = (1 + z)P'z? M&—%—%(J(l—%+% and v € R.

We remark that in the special case y = 0, Theorem 1.3 has been proved in [5],
Theorem 1.8.

The paper is organized as follows. In Section 2 we prove Theorem 1.2 by using a
new class of weights A, (). In Section 3 we establish Theorem 1.3. The main result
of the paper - Theorem 1.1 is proved in Section 4. Finally, Section 5 is devoted to the
applications of Theorems 1.1-1.3 to the boundedness property of the Littlewood-Paley
g-functions associated with the Laguerre expansions.

2. MULTIPLIERS FOR HERMITE EXPANSIONS

In this section we prove Theorem 1.2. First we introduce some notation and
properties of the new weight function class A,(¢).

Throughout the paper, Q(z,{) denotes a cube centered at = and of the side length
t. Given a cube @ = Q(z,t) and a number A > 0, we will write AQ for the A-dilate
cube, which is the cube with the same center z and with side length Af. Given a
Lebesgue measurable set E and a weight w, |E| will denote the Lebesgue measure
of E and w(E) = [gwds. The symbol |f]|za(u) denotes (fpu | ()Peo(u)d)/o for
0 < p < 0, and ||| z1.e0(«) denotes m,\-iu({z € R?: |f(z)| > A}). The letter C
denotes constants that are independent of the main parameters involved, but whose
value may vary from line to line. For a measurable set E, by xz we denote the
characteristic function of E. By A ~ B we mean that there exists a constant C' > 1
such that 1/C < A/B < C.

In this section, we let ¢(t) = (1 +t)% for By > 0 and ¢ > 0.
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Aweightalwnysmmsapositiwﬁmcﬁonwhichislocalbrintegrable. We say that
a.weightwbe]msstothaclmAp(:p)farl<p<00.ifthereisaconatmt0mch
that for all cubes Q = Q(z,7) with center z and side length r

-1
(o [ o608) (e o o0) s

Also, we say that a nonnegative function w belongs to the class Ai(yp) (or satisfies
the A;(p) condition), if there exists a constant C such that for all cubes @

M, (w)(z) < Cw(z), a.e.z € R%

where :
M, f(z) = sup ] ‘/Q |f ()| dy.

z€EQ
Since ¢(|Q|) = 1, we have A,(R%) C Ay(p) for 1 < p < o0, where A,(R?) denotes
the class of classical Muckenhoupt weights (see [4]). It is well known that if w €
Axo(R?) = U,>; 4p(R?), then w(z)dz is a doubling measure, that is, there exist a
constant C > 0 such that for any cube Q

w(2Q) < Cw(Q).

Now we list some properties of weights w € Aoo(¢) = U,>1 Ap(), similar to that of
classical Muckenhoupt weights.

Lemma 2.1. For any cube Q C R? the following assertions hold:

() If1 < p1 < pa < oo, then Ap, (p) C Ap, ().

(i) w € 4p(p) i and only if w™FT € Ay(p), where 1/p+1/p =1.
(iii) Ifwi, wa € A1(p), p> 1, then wiwy ® € Ap(p).

(iv) Ifw € Ap for 1 < p < oo, then

4 R 1 /p
iaa J, e < (s [ irrtia)
In particular, if f = xg for any measurable set E C Q, then

2| w(E) /7
wtania = ¢ (w(m) ' _
" Remark 2.1. [t follows from the definition of Ay(p) and Lemma 2.1 (iii), that if

w € Ap(p), then w(z)dz generally is not o doubling measure. Indeed, let 0 < v < Bo/d,
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it is easy to check that w(z) = (1+|z()~9+7) & A (RY) and w(z)dz is not a doubling
measure, but w(z) = (1+ |z{)~(4+7) € 4;(yp).
It is easy to see that the set of all Schwartz functions, denoted by 8, is dense in

I.P(w)forweAm(:p)a.ndl5p<oo.Hence,wea.lwayacanaasumethatfeSif
f € LP(w)for 1l <p<oo.

Lemma 2.2. Let 1 < p; < oo and w € Ap, (). Then for p1 < p < 0o the inequality
holds:
S Mot @Put)iz <, [ 11@Puta)ae
Further, let 1 < p < oo, then w € Ap(y) if and only if
alfe €R: Mof@)>N) < 32 [ |f@)Putelia, A>0.

The dyadic sharp maximal operator M}2 f(z) is defined by

1,4 i 1
My S EE%I.NCI |Q| Q(zo,r) e =flda s 268&1%1 e(lQDIQl /t; Zo,T) s
~ inf d
=EBQLI:£€.1 c IQI Q(zo,7) If(y) CI gt 153;1,3>1 p(IQI)fQ' Q(zo,r) 'fldz',

where Q denotes a dyadic cube and fg = I?ﬂ fq f(z)dz. Similarly, we define the sharp
maximal operator Mi f(z) for an arbitrary cube with sides parallel to the coordinate

axes.
Lemma 2.3. Let 1 < p < 00, w € Ax(p) and f € LP(w), then
M2 fll oy < CIIME £l o (w)-

Here M2 f(z) denotes the dyadic maximal operator. Lemmas 2.2 and 2.3 follow
from [19].

Note that |f(z)] < M f(z) a.e. ¢ € R? and MY2 f(z) < M} f(z) for z € R%. By
Lemma 2'.3, we have
Proposition 2.1. Let 1 < p < 00, w € Ax(p) and f € LP(w), then -

Iy < 1MZ fll 2wy < CIMES |l zogu)-
In order to prove Theorem 1.1, we need to introduce some vector-valued spaces. Let

X be a Hilbert space with norm |-|x, and let 171l 2, (w) denote (fza |f (W) 5w (y)dy)/?

for 0 < p < co.
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Consider the Bochner integral operator T, defined by
Tf@) = [ K 6,
where the X-valued kernel K satisfies the following conditions (for N > n8p + 1):
@) |K(,2)lx < Cnlz —2[~(1+|z - z|)~,

(i) |K(z, z)—K(z0,2)|x < Cn 1+ —Zl;;li e e

The next result can be deduced from Lemmas 2.2 and 2.3, and Proposition 2.1.

if 2lz—mo| < |z—2|.

Proposition 2.2. If the Bochner operator T' is bounded from LP(R?) into L% (R9),

then for anyr > 1,
ML(ITf1x)(z) < CMy,rf(2),

where My, f(z) = [My(lf I")(@)]*/7, and, as a consequence, the inequality
75|22 () < CllFllzew)
holds for 1 < p1 <p < oo and w € Ap, (¥).

For the proofs of the above stated results we refer to [19].
Now we proceed to prove Theorem 1.2. We define the Hermite g-function and

g*-function, respectively, by the following formulas:

00 1/2
an@ = [ Woni@PE] " =12,

1/2
A1) = [ i |s‘u—:-j,7ny‘;a:T.f(=)F$] X,

where T, = e~*(-4+l=[") denotes the Hermite heat semigroup.
Denoting by T (¥, z) the kernel of T, we can write
' o, 1 [0 Ts(y,2)] .

8T 10) = [ o [Z | s
For convenience, we change the variable s = t2 in the definition of g and g*, and
denote by Q4(y, 2) the new(normalized) kernels ¢ [BI—T&.[F‘!)'“,#S for [ > 1. It is easy
to check that these kernels are symmetric and satisfy the inequalities (see [20], pp.
98-99): 3
(a) 1@y, 2)| < Ct—de~&l=v" g<t<1,

(b) |Qe(y, 2)| < C2—dte~bla—ul’ ¢ >1,
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() [Qe(y +hy2) = Qe(y, 2)| +Qe(w, 2 +h) — Qe(v, 2)| < Cht=d-2e #==VI for
0<t<l1, V| Lt
(d) |1Qe(y+h, 2) — Qe(, 2)| +|Q:(y, 2+ h) — Qu(v, 2)| < Ch2~%e~bl=—vl", for ¢ >
1,V|h| < t, where C, a and b are positive constants, independent of z, y, t.
To prove Theorem 1.2 it is convenient to look at the functions g and g* as vector-
valued singular integrals. Let A denote the Hilbert space L?(R.., d¢/t), and B denote
the Hilbert space L?(Ry. x R%, dtdy/t"?).
Consider the operator G : L2(R%) — L% (R%) defined by

Gif(@) = [ Kim (e
where Kj(z,z) is the A-valued kernel: K;(z,z) := {Qi(z,2)}:, and the operator
Ga : L*(R%) — L}(RY) defined by

Gaf(e) = [ Kl )f ()i,
where K3(z, z) is the B-valued kernel:

lz—yl\ ™%
Ka(z,z) = { 14 —= Q:(y‘z)}
( b ) It-v}

Observe that |Gy f(z)|4 = gi(z) and |Gaf(z)|s = g5(z). Therefore, the boundedness
of g and g3 in LP(w) are equivalent to the boundedness of G; from LP(w) into L% (w)
and G from LP(w) into L% (w), respectively. Moreover, boundedness holds for the
Muckenhoupt weights for 1 < p < co (see [5]). Hence, in order to apply Proposition
2.2, we need to establish the following lemmas.

Lemma 2.4. There ezist positive constants c; and c; such that
(1) |Ki(z,v)|a < e1|z — y|~de—cale—vl",

i T —T L | o
(ii) |K1(z,y) — Ki(zo,9)la Smﬁe al==il, i 20z — 0| < [z—yl.

Proof. We use the above stated inequalities (a)-(d), and fist prove the assertion
(i). Note that
2 = 2 dt
|K1($IUJIA i g |Q¢(z,y)| %

: A dt
- [e@nr+ [ e P
=1 + I.
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Using the inequality (a), for I we have
B <cf $~2dg '“"—"*"dt
_-cf t—” -““_!Le 'I%!Ldt

— __....-—1 dt
< CeeH b EHlE— U=

<C

Iz—yl"e

Now using the inequality (b), for Iz we obtain

e di 2 I 1 o=
< ~to—alz—y|? Z <ce bt < ¢ bl
nso| e t ERTe

To prove the assertion (ii), first note that

IK]_(I,U) -'Kl(ﬂn.la')h
S./O IQi(zty) Qi(zﬂsy)' R

= [ 12 - Qt(ﬁo.v)li? + [ 10ue) - Qe )P S
= I3+ I4.

If |z — y| > 1, then by the inequality (c), for I3 we have

L <C ]o 1 (FTW)’g—ug—a%#%

1
te—af [ eetmttadt

<C

If |z — y| < 1, an application of the inequality (c) yields

l=—yl
I <Cf (l:c t:col) g _41_.,}]_6:
1
v (Es gt
=yl \ O t
ﬁ .
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‘o |z — zo|? lz—v| e_n|,’_‘!‘|= t’ﬁ

o — g Jy

+C IE 30I2 / J'—_!L t_zdt
Ia-vl

|z — y[? LA

|z — 0|2 e z—y
SOy ¥ [

C’x zo[ nl!—_,’-E 4 t_adt

l !2& le—y|

< C- 'I zul? —alasul?
|x y|2(d+1)

To estimate Iy, we apply the inequality (d) to obtain
|z — zo|? el

oo SR NE
I‘ S C.[]_ I-‘E o :cu|2e ‘B blz—yl dt S C"——,nml—
This completes the proof of Lemma 2.4.

Lemma 2.5. Let A > 4, Ny = d(3 — 1) and N; = d(§-1)—1 then there exist
positive constants Cy,,Cp, such that

(i) 1K32(z,2)|5 < Cw, |z — 2|41 + |z — 2|)~M,

@) 1Ka(2,2) ~ Kalo, )l < Oy ‘:D'folo — o ¥ 2o nl <

|z — 2.

The proof is similar to that of Lemma 2.4, and hence, is omitted.

Theorem 2.1. Let 1 < p; < p < o0 and w € Ap, (9). Then, for | > 1 there is a
constant C > 0 so that
lg: ()l 2oy < Cllfllze(w)-

Obviously, Theorem 2.1 is a consequence of Lemma 2.4 and Proposition 2.2.
As an immediate consequence of Theorem 2.1 we can state the following result.

Corollary 2.1.. Let 1 < py < p < o0 and w € Ap, (). Then for I > 1 there is a
constant C > 0 so that

C7Hfllzew) < la(Hllzew) < CIIF | z2 w)-
Theorem 2.2. Let 1 <p; <p< o0 and w € Ay, (p). Then for each A > 2(f, + 4)

there is a constant C > 0 so that

g3 (H)llzz @y < Cllfllzow)-
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Proof. Adapting the arguments used in [13], pp. 43-44, and using a duality argument
and Lemma 2.5 and Proposition 2.1, we obtain the desired result.
As a consequence of Theorem 2.2, we have the following result.

Corollary 2.2. Let 1 <p < oo and w(z) = (x+|z|)7 with |y| < Bo. Then there exists
a constant C > 0 such that for each A > 2(Bo +4)
lg3fllzoqw) < CllFllze)-

Proof. Note that w(z) = (1 + |z])7 € A1(p) if —fo <7 < Bo. Applying Theorem

2.2, we get -

lgxfllze@) < CllfllLow)-
This implies

g3 fllzew) < CllSllze(w)-
Thus, Corollary 2.2 is proved.
Theorem 2.8. Let w(z) = (1+ |z])"p(z) with p € A,.(R‘) (Muckenhoupt class) and
v € R. Then there ezists a positive constant Mo depending on vy and p such that for
each A > Ao

lgtll 2wy + g3 llzow) < Cllfllzow)-

Proof, Using the results from [5], we obtain

llgill oy + l9All 2oy < Cllfllzogus
where p € Ap(RY). By the properties of the Muckenhoupt class Ap(R?) (see [4]),
there exists € > 0 such that i :
(2.1) lgell Loqur+eyy + g3l Lo gui+ey) < Cll Sl Logua+ey)-
On the other hand, for wi(z) = (1 + |z|)70+9/¢ and Ay = 2(|y| + 4)(1 + €)/¢, by
Corollaries 2.1 and 2.2, we have
(2.2) - lgell zoguny + ANl zo sy < CllFllzoun)-

Putting together (2.1) and (2.2), we obtain the desired result.

To prove Theorem 1.2, we also need the following result proved in [5].
50



A WEIGHTED TRANSPLANTATION THEOREM FOR ...

Proposition 2.3. Let A > 2 and T;, be as in Theorem 1.2. Then for alll > d)\/2+1
we have

a(Tmf)(z) < Cgi(f)(z), ae. z € RY.

Proof of Theorem 1.2. Combining Corollary 2.1, Theorem 2.3 and Proposition 2.3
we have, for f € C,(R%)

1T fll o) < Cllgi(Tm Loy < Cllgrfllzew) < Cllfllzrw)

provided that w, I and A satisfy the conditions of Theorem 2.3 and Proposition 2.3.
The proof is complete.

Using the same transference principle as in Corollary 3.4 from [6], we obtain a
counterpart of Theorem 1.2 for Laguerre expansions when o = =1 -

The next two lemmas were stated in [5].

Lemma 2.6. Let o = 252 where n € Ny. Then for some constants ox € R, k =
1,2..-, the following equalities hold:
LYz = Y onma(2)|2|*, Vze R, k=1,2..-.
[e|=F
We shall also need the following elementary fact.

Lemma 2.7. For e'uery f € L*(0, 00) we have
S HaP A Ps = e [~ e
R

Corollary 2.3. The assertion of Theorem 1.3 remains valid when o = 252 and n is
a positive integer.

Proof. Let m(¢) be as in Theorem 1.3. The function M () = m((€1 + - - + £3)/2)
restricted to the lattice N defines a multiplier {M(k)} which satisfies the conditions
(1.2).

By Lemma 2.6 we have

Eun)s) =Y 3 mll) < 1,18 > exnac()|zI", z € R,
k=0 |k|=k
Let w(|2]) = (1+ [2])7]2[" for y € R and —§ — 2 < § < 1— 1 + &. Observing that
|z]@-2(E-1)|2|P% & A (R%), we can use Lemmas 2.4 and 2.5 to apply Theorem 1.1
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to obtain
Tnfloy = [ I@nDOPuIet

ce [ |5 X MR < 1,18 > cxmax(z)
R =0 [ic|=k

P
|21°P~ " Dy(|2[*)dz

P
|2/ @ DE V(|2 dz

= [ |2 <fiLi> oum(2)
R |j=0 |k|=k
< ClIfllze(w)

Thus, Corollary 2.3 is proved.

3. MULTIPLIERS FOR LAGUERRE EXPANSIONS

In this section we prove Theorem 1.3. The strategy is to deduce the result from
the special case discussed in Corollary 2.3, by using interpolation of the following:
analytic family of operators

Tif =Y mx < f,L§ > Lf, where z € C and Rez > —1.

We first recall the definition of Kanjin's operators T2** and prove their boundedness
for the range of L% ., (R+)-

In this section we will use the following notation from [5, 7. We denote M(6) :=
(1 + |6])Nec®! for suitably large constants N and c. The constants appearing in the
section such as C, ¢ or N may depend on &, p, 6 and 4, but are independent of § € R.
Finally, it is also convenient to denote the admissible range of indices by
(3.)

A= {(; o 67) €(0,1) x (-1,00) x RxR: —--i-;<6<1—--+ 2}

We first state the boundedness of T2+ in L (Ry) for special values of o.
Observe that (see [7], p. 539), the Laguerre polynomials can be extended to complex
parameters z € C with Rez > —1bytheformu.la
1@y = DO E T(k+z41) (o)
klyze—v = T(k—j+1)lG+2+1) jl
and likewise for the mrrespondmgLaguerreﬁmcnonswe have

k
1) = (D) praeraranfig), o>

52
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Moreover, the following lemma is true, which was proved in [7]-
Lemma 3.1. Let a > —1 and f € CX(0,00). Then for each N > 1 there exist a
constant C > 0 aﬂdanumberbueNauchthatforaszkq and e R
(3.2) | < £LLgH? > | < C(1 + |6])*N+=e§161(1 4 k)-N,

Using this lemma one can define the complex transplantation operators
o0
Taf =) < f,L}> L}, Rez> -1, a> -1,
k=0

at least for functions f € C§°(Ry.).
For every a > —1 and @ € R we define a multiplier by

50\ /2
63) NO=haald) = (ST 5,

Observe that A is an analytic function of ¢ when Re§ > —1 — a. The following result
has been proved in [5].
Lemma 3.2. Let a > —1. Then the function A(€) defined by (3.9) belongs to
C*(0, c0) and satisfies
sup (1+))ID'AE) < Ci(1+6])', VOER, 1=0,1,2,- -,
€[0,00)
where the constants C; are independent of 8.
We prove Theorem 1.2 under the following assumption on the indices (3,@,4,7).
Assumption (A). The point (%,a, 6,7) is so that the multiplier operator T} f =
o0 .
D Ak) < f,Lg > Lg, with A = Ay 85 in (3.3), is bounded on L} _(R.) and satisfies
k=0

175 fllzz,, < CL+18)Vel|flz; , VO ER,
for some constants C, ¢, N > 0, where
1/p
Ifllzg, = ( [ (r@ia+ a:)"z‘)’dx) -
' R,

Remark 8.1. It follows from Corollary 2.8 and Lemma 3.2 that the Assumption
(4) is fulfilled for parameters from the set A (see (3.1)) of the form (3,252,5,7),

whenever n € Z.. Moreover, the Assumption (A) also holds for (%,a,o, 0) and for
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alla> -1, and, by the duality, it holds for ﬂﬁ:l?Ed (%|ﬂ,6,"}’) if and Ofdy ‘f‘t is true
for (#: o, =0, _7)'

In order to prove Theorem 1.3, we also need the following complex interpolation
result. :
Lemma 3.3. Let ‘HJ ! (1,1'—,1%;50,")'0) and Pl = l'};talaalr'rl) be two ﬁ-‘lﬂd Pﬂiﬂh
from A for which the assertion of Theorem 1.2 holds. Then the assertion of the
theorem must also hold at‘the points P= (%,a, d,7) of the form

(3.4) P=(1-t)R+th, t€(0,1).

Proof. As in Lemma 3.20 from [5], we define
a(z) = (1 - 2)ao + 201, 6(2) = (1 —2)8 + 201, and v(2) = (1 = 2)10 + 27,

for complex z = 8+ 16 and 0 < 8 < 1. Recall that M(6) = (1+6])Vecl! for suitably
large constants N and c. By Lemma 3.1, the operator

o0
T:‘+‘T‘f = Zm(k) < L:-'i'r > L:q'“' = (I‘:"’“T)‘I':.I*:—irf
k=0

is well defined and bounded at least when f € L*(R.). We define an analytic family
of operators by letting :
S,F(y) = ¥ (1 +9)OTSO (F(2)s~*® (1 +2) @) (y)

at least for F' € L2(0, 00).

Now we are going to show that {5} satisfies the conditions of Stein’s interpolation
theorem (see [2]). To this end, observe first that, given any two subsets Ej, By
compactly contained in (0, c0), the function

2+ 8(2) =< Sx(xB,), XB2 >

is well defined whenever 0 < Rez < 1, and satisfies

(3.5)
18(z)] < |1To® (@51 + =}“"”xm)ll=ll(y“"’(1 +9)""xg,)a
< Cg, |(T2{8) H(e1~20)fys rallnal)—e1~eo)d (5—5() (1 + )" xg, ) |2
< Ce, M(8)[|(z~ 5@ (1 + 2) "W x, ) [la
by the L? boundedness of T2+, ¥V ¢ > —1.
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Next, we show that the function @ is holorhorphic in a neighborhood of the strip
5 := {0 < Rez < 1}. Indeed, since [|T5|| 12, 12 is uniformly bounded in the compact
sets of S, similar to (3.4), it is enough to show the holomorphy of z =< S,F,G >
for all F,G € C°(0,00). Denoting f(z) = z~%#) (1 + z)Y*) F(z), g(y) = y~® (1 +
y)7®)G(y) and a(z) = o + ir, we can write
<SFG> =<Ta®(f),g >=< TTTZ¥ (1), To+(g) >
=Y mk<fL{TT > < g, LTFT >

k
= Em;, < z75=)(1 4 2)1)F, L:'{’) ><y~i®(1 4973 F, L:w =5

k
Since the series converges uniformly when z belongs to a compact set of 5, it is easy
to show the holomorphy of the map

00
z€ 5 <P (1 4 2) @) F, L:w S / z*()(1 4 )G p (:c)L:m (z)dz,
. .

for all F € C(0, 00).

Combining this with (3.4) we conclude that ® is holomorphic in the strip {0 <
Re z < 1}, continuous in the closure and has admissible growth for complex interpolation.
To verify the conditions of Stein’s interpolation theorem (see [2]), we only need to
show the boundedness of the operator S, at the limiting bands

Sig : LP°(R4) — L™ (Ry) and Syyip : L7 (Ry) = LP* (R4).

When Rez = 0 we use the assumption that Theorem 1.2 (and hence Assumption (A))

holds for the point pg. Then, both T2° and TS0~ *®1=20) gre bounded in Ly, and
in L __ | which implies
ISi6Fllpy, = ||(Tag*H e~y Toopeioneo) (4 -660)(1 4 Zy @O )| L20
< M()||z—%—i6~ 5«38(1 - z)”““(‘““"")aF(:r.) (77
= M(6)|| Fl|po-
When Re z = 1, we have & similar result. Thus, by Stein’s theorem S, must be
bounded in LP+(R.) for X o = 1"‘ + 5 and all 5 € (0,1). Letting s = ¢ and using

(3.4), we have p: =p, (t) o a.nd J(t) = 4.
Moreover, such bou.ndedn;ess translates into

I8 flzz, = IO + 1) OTRO @O +2)O f(2)e~O 1 +2)10) 15

= [S:@*O (1 + 2O (@)1
< M||fO(1 + 2O f@)llz» = M fllzz .,
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showing that the assertion of Theorem 1.2 holds for the point P = (%,0,5,7), This
completes the proof of Lemma 3.3.

Proof of Theorem 1.3. We need to show that the operator Ty is bounded in L,
for every fixed P = (},0,6,7) € A. When e > 0, a = an = 222 and n is
an integer so that on—1 <a<a,.,thenwe'easilyﬁndtwnpointsﬁ-om.ﬂ.ofthe
form P = (3,@n-1,%0,70), P = (4, @n,81,m) and some ¢ € (0,1) to satisfy P =
(1—t)Po+tP. When -1< a <0, onecanchooseanumberaodoeaenoughto =13
and interpolate between the points Fp = (,,aa,ﬂ 0), A —( 0,61,71). By Corollary
2.3, the assertion of Theorem 1.3 holds for points Py and P, and therefore, by Lemma
3.3, it must also hold for the point P. Theorem 1.3 is proved.

4, PROOF OF THEOREM 1.1
In order to prove Theorem 1.1, we need the following result.

Theorem 4.1. Let & > —1, v € R and § € R. Then the operator TS+ can be
boundedly eztended to L} (Ry) foralll <p<ocoand —§ -1 <é<1-1+3%.
Moreover, there exist constants C,c > 0 and a number N € N(depending only on
a,p,d,7) such that

(4.1) [Ty < C@+10)¥e ]z, VO ER.

The proof of the theorem follows the scheme proposed by Garrigés et al. in [5] and
Kanjin in [7]. Obviously, under Assumption (A), it is enough to show (4.1) for the
operator

~ [ Tk+a+1) 72
a0 2 _ +0 | ra
Tttt Eo(F(k+a+1+i9)) <[ITHs L2

instead of T9+,
Following [5] and [7], we can define for € > 0 the operators

= (k+a+1) 33 2 £
Ge,e(f) _Eq(r(k+a+1+e+i9)) < f,Lgtete 5 po

so that T+ f(z) = lim Go,f(z) for all z > 0, at least f € C°(0,00) by Lemma,
3.1. Moreover, the following remarkable formula holds (see [7]):

Go,cf(z) = m/:nf(t)e“? (1 45 %)e—lm G)l Joren ?
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Adapting the arguments used in [5], pp. 260-263, we can obtain the following result.

Proposition 4.1. Let @ > —1, v € R and let p,é be such that 6 > —% — §. Then,
there exist constants C,c > 0 and a number N € N (depending only on o, p, §,7) such
that

[Ge.llzg, < O+ Ia)™e (£ (2)atlzz,, + f @) Hlzz, ).
forall@6eRandall0<e<l1.

Proof of Theorem 4.1. By Lemma 3.2 all the multipliers A = A, ¢ in (3.3) satisfy the
conditions of Theorem 1.3. Hence, Assumption (A) is satisfied for all ( 1,0,6,7) € 4,
and we can infer Theorem 4.1 immediately from Proposition 4.1 and Fatou’s lemma.
Indeed, using these facts, for f € Cg°(0, 00) and with some constant C' (independent
of €) we obtain '

ITStOfllpz, = ITNTatef llzz,
<CM (G)IIT“'“’J’IILP
< CM(68) lim [|Go,efllz
< CM(6) ;5% (uf(z)z*u;,g_, +1f @)z 42z )
<cMO)ifllz .
The proof is complete.
We also need the following lemma proved in [5].

Lemma 4.1. Let a > —1 and z = o + it with ¢ > —1. Then the operator TZ is
bounded in L?(R..).

Proof of Theorem 1.1. We fix > ao > ~1so that —$ —2<d<1-1+%.
Hence, we need only to show that T2, and Tg° are bounded operators in L2 . (R4).
We let P := (:—,,a,ﬁ,'y), which clearly belongs to A. It is easy to see that there exist
two other points in A of the form Py = (%,aq,ﬁn,'m) and P; = (},,0,0), and
some ¢ € (0,1) such that P = (1 — t)Py + tP;. This can be done explicitly if o is
chosen sufficiently large, by taking do = §/(1 —t) and t = £=%2., As in Section 3, we
use the notation a(2) = (1 — 2)ag + za1, §(2) = (1 — 2)8p and 7(z) = (1 — 2)yp for
zeC.

By Lemma 4.1, we can define the analytic family of operators

8 =11+ ITO Pz~ (1 +2) 1)), 0< Res <1,
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at least for F € L(0, 0). Then, arguing as in Section 3, we conclude that S. satisfies

the conditions of Stein’s theorem, where the boundedness of the operators

follows from Theorem 4.1 and Lemma 4.1, respectively. Thus, S; must be bounded
in LP* = LP, which translates into
1T Ay, = ISe(a0=%(1 + 2)-*m (@) |1s
T < Mgl (14 2) 0" f(z) s
= M| fllzz,-

This proves the required L}, boundedness for the operators T forany f > ag > —1.
The boundedness of Tg° follows by duality. Indeed, if (§,a0,6, v) € A, then an
elementary algebraic manipulation shows that (;lr,aa, —3,—v) € A as well, where
L =1 7. Then, forall f € C(0, 00) we have

[z 1@ +orateres

Te°fll;» = sup
175 Sz, lgllye=1

el : FW)TE F(=°(1 +2)"’9)dm|
Fllp'=
< ly* (1 + )" f W)l 52 174, (= (1 + 2)"9)llzz, _,
’Jl:
< |\fllzz M sup [|2°(1+2)"0)le2, _,
T lglly=1 -
= M|fllcz, _,-

Theorem 1.1 is proved.

5. APPLICATIONS

In. this section, we study the Littlewood-Paley g-functions for the Laguerre semigroup.
Consider the heat diffusion semigroup e—*% associated with the Laguerre operator
L = L(®). Similar to the classical case, treated in [16], g-functions of order l = 1,2, - -~
ca be dafined by &2

yl{“J(f)= {j:n |t:%(e—u,(¢;f)|2%}1}3'

The main purpose of this section is to extend Theorem 5.4 from [5] to our case. More

precisely, we are going to prove the following result.
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Theorem 5.1. Leta > —1, Y €R, 1 < p < o0, and § be such that —1/p — a/2 <
0 <1—1/p+ a/2. Then for every l = 1,2,--- , there is a positive constant C such
that

1
Zfllzz, < 198 Flg,, < Cllfllzz,» f € C2(0,00).

Proof. The proof is similar to that of Theorem 5.4 from [5]. So, we only give a sketch
of the proof. Since the first inequality follows from the usual polarization argument,
we need only to prove the second inequality. We first consider the case | = 1. For
simplicity we write g(f) = gg"'}( f), and drop the superscript (o) when reference to
such index is clear. Recall that the kernel h¢(z,y) of e~*L is given explicitly by

B Nl e L 2(ry2)'/?
h,(y,z)—ée ("++)L,,(y)L,,(z)—1 "31’{_21_,-(”"'3)}1“( 1- )’

= T

where r = €%, I = i~%J,(is), and J, is the usual Bessel function of order a (see
[10]).

We first claim that the assertion of the theorem is true when a = 5—‘-;—"' Indeed,
denoting ®(z) = |z|?, it is easy to see that for z € RY (see [10]):

() (af!) = e aHeN (22,

Hence g(f)(|z|*) = 4g1(432)I=|*, where g, was defined in Section 2. Following the
same lines as in the proof of Corollary 2.1, the claim can be obtained from Proposition
2.1.

To prove the assertion for any index e > —1, we split the operator into two parts
as follows:

a*(f) = {/:: lt‘%(e-mﬂf)r $}1la X g, {/:o Itj%(e_mcunf)r%}l/a’

where ip is a sufficiently Ia.rge number to be chosen later. In the remaining part of
the proof, we will need the following result, proved in [5]: there exist a small number
1o € (0,70) and a constant C = C(a, ) > 0 such that

< Crﬁly“/‘z"ﬁe_(”""ya, Yy, z>0.

5.) o lhin3 @, 2)

sup
0<r<rg
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We begin with the operator g*(f), and choose to such that €% = ro. By (5.1) we

have ! 12
(W) s{ i [ [ |Gt 1f(z)|d=] tdt}
to
o 2 1/2
</ { [ |5t tdt} \F(a)ldz
R+ ion ; 7
= [ { I |5t o) rlnrdr} (2l
®, |Jo .
<o [yl o ()i
R,
Hence,

1/p
lg*(Hllzz, < C |:f.+ e Fy(E+9p(1 +y)‘ﬂ’dy]

/¢
x [ / e*zf'-‘”‘auw’dz} 171z,
R, "

and both integrals are finite since —1/p—a/2<d<1-1/p+a/2and v €R.

Now we turn to the operator g., which we need to write as a linear vector-
valued operator in order to use transplantation. Let H denote the Hilbert space
L3((0,00), 4). Consider the mapping G : L*(R4.) = L*(R4; H) defined by

6 =600 = {s2e"p) | serm)

Since g(f) = |G(f)|x, the L}, boundedness of g is equivalent to the boundedness of
G from L} into L, (Ry; H). Likewise we define

Ga(f) =GP = { t;f; (€ Pxco0) (t)}m

- Finally, we denote by T§ the vector-valued extension of the transplantation operator
to L*(R4; H), defined as follows

Tg({fe}es0) = {T5(f) ks, {fe}e>0 € L*(Ry; H).
By Krivine’s theorem (see, e.g., [8]), the vector-valued operator 7§ is bounded in
L%, (Ry; H) if and only if Tg is bounded in L (R,). Denote by M the vector-
valued extension of the multiplier operator M f = Lrsom(k) < f, Lf > Lf , Where
" m(s) = 3£ It is easy to see that this multiplier satisfies the conditions of Theorem
13.
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Given a > —1, we choose 8 = =1, for some positive integer n such that g > a.
It is known that (see [5], p. 272):

GS‘G) — Eoﬁﬂ-n oMo G(ﬂ) o Iplql
where

No-a({fitiso) = {00}, , {fikino € L*@y3 H).

t>
Applying Theorems 1.1 and 1.3, we can obtain the boundedness of these operators in

Lf,’.., or Lgn(L;H)'when -% —-§<d<1- %+§ and v € R. Thus, Theorem 5.1 is
proved for [ = 1.

Now we proceed to prove the L. -boundedness of g; when I > 2. Observe first
that by the previous result we know the boundedness of @ : L’;‘T - L}’I,T(R.,.;H),
which by Krivine’s theorem implies the boundedness of the vector-valued extension
G: Lj (H)— L3 (H x H) given by

{fe}s>0 = {Gfs}sz0 = {t%[&"“‘f,]}(1l ).

- Thus, we obtain the boundedness for the composition operator G o G : L; (H) =
L§.(H x H). Note that |G o Gf|%, i = 292(f)? (see [5], p. 273). Combining all the
above facts we obtain the desired estimate [|ga(f)|ls,y < C||f]lsy. Similar arguments
and induction yield the same conclusion for g; for all I > 1. This completes the proof
Theorem 5.1.
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