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Abstract. For a compact and convex window, Mecke described a process of tessellations
which arise from cell divisions in discrete time. At each time step, one of the existing cells
is selected according to an equally-likely law. Independently, a line is thrown onto the win-
dow. If the line hits the selected cell the cell is divided. If the line does not hit the selected
cell nothing happens in that time step. With a geometric distribution whose parameter de-

pends on the time, Mecke transformed his construction into a continuous-time model. He

put forward two conjectures in which he assumed this continuous-time model to have cer-
tain properties with respect to their iteration. These conjectures lead to a third conjecture
which states the equivalence of the construction of STIT tessellations and Mecke's construc-
tion under some homogeneity conditions. In the present paper, all three conjectures are pro-

ven. A key tool to do that is a property of a continuous-time version of the equally-likely
model classified by Cowan.
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1. INTRODUCTION

The topic of this article are random tessellation processes in the plane. In general,
random tessellations are constructed by lines or line segments that are thrown onto
the plane under a certain probability law. In our context, line segments are always
intersections of lines and a so called cell within a compact and convex window. Both
the throwing of the lines and the selection of the cell to be divided are governed by
specific probability laws. The timing of the cell division may depend on the selection
rule for the cell to be divided.

In [4], Mecke developed a new process in discrete time in a convex and compact
window W: At the first time step, a line is thrown onto the window according to a

law @ dividing the window in two cells almost surely. At the second time step, one
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of the cells is selected for division according to an equally-likely law. Independently,
sl.ineisthrownontothewindow.chalineintersectstheselectedcell.thatoellis
divided into another two cells. If, however, the line does not intersect the selected
cell, although no new cell is created, another so-called quasi-cell arises. In any case,
the number of quasi-cells (real cells plus empty quasi-cells) is always the number of
time steps passed plus one.

At each time step one of the quasi-cells (which if they are empty cannot actually
be divided) is selected with a probability equal to any other cell. If the line thrown
indapendenﬂyhitsarmlmll,thatcellisdividedintotwomalcaﬂs.ﬂamlmﬂis
selected but the line does not hit it, the real cell remains; one new empty quasi-cell
is added. If an empty quasi-cell is selected, there automatically arise two new empty
quasi-cells.

Mecke proposed & way to transfer this process from discrete to continuous time
by assigning to an arbitrary time ¢ a geometrically-distributed random number of
steps (dependent on ¢) in the discrete process. After formulating two conjectures, he
examined the special case of a homogeneous line measure to be used for the (potential)
cell division for which he stated another conjecture that his model in continuous time
has the same distribution as the STIT tessellation process introduced and examined
by Mecke, Nagel and Weif in e.g. [5]—[7]. '
While his last conjecture, Conjecture 3 regarding the homogeneous case, was proven
in [2] in rather lenghty terms, a by-product of that paper was a way to actually
understand Mecke's construction as a process in continuous time. By this new access
however, which is related to the egually-likely model Cowan examined in [3], the °
proofs of Mecke’s remaining conjectures could be undertaken.

In this paper, after a short introduction into Mecke's construction (section 2), the
distribution of the lifetime beyond an arbitrary point in time of a convex set within
a cell of a fixed tessellation in Mecke's continuous-time model is calculated (section
3). This allows the proofs in section 4.
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2. THE MECKE PROCESS

Throughout this paper, we will consider, in the Euclidian plane, a compact and
convex polygon W C R? with non-empty interior. Let [3, 5] be the measurable space
of all lines in R? where the o-algebra is induced by the Borel o-algebra on a parameter
space of H{. For a set A C R? we define

[A={geH:gn A#0}.

Let Q be a non-zero locally finite measure on [J{, ] which is not concentrated on one
direction but which is bundle-free, i.e. there is no point z € R? such that Q([{z}]) =
Q({g € H : gn {z} # B}) > 0. Let additionally Q([W]) > 0 hold.

2.1. Mecke’s process in discrete time. Let there be lines v;,7 = 1,2, ..., that are
ii.d. according to the law Q([W])~1Q(- N [W]). Further let us use, independently of
7, independent a;, j = 1,2, ... where a; is uniformly distributed on the set {1, sisd
If a line -; does not contain the origin o then +} shall be the open halfplane bounded
by v; which contains the origin. Correspondingly, 7; is the open halfplane bounded
by 7; which does not contain the origin. As the distribution of +; is bundle-free, we
can neglect the possibility of «; going through the origin as the probability of this is
Zero.

Let be o1 =W, C11 =W N and G123 = WNi. For n=2,3,... we define

Co1g G €{l,in}j#an

Cnj={ Cn-ta.N ifi=0n
Caiv, Nyt ifj=n+1

These entities C,, .j are called quasi-cells. Some of these quasi-cells are empty. Those
quasi-cells that are not empty will be called ::e]]s

From this, we can deduce a random process: After each decision time n, n =
1,2,..., we consider the tessellation T, consisting of the quasi-cells Cp1,..., Cnns1-
This decision time is called the n-th decision time accordingly. If, at that decision
time, the number of cells (i.e. non-empty quasi-cells) actually changes, that decision
time is called a jump time. Obviously, the k-th jump time is that decision time at

which the number of cells reaches k + 1. Let us denote the random closed set of the
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closure of the union of cell boundaries that are not part of the window’s boundary at
a step n for the tessellation T, as

n+l
YM(n, W) = | J 8Cn.; \ OW. :

j=1

Then (Y;(n,W) : n € N) is called the Mecke process in discrete time. Here, N =
{0,1,2,...} is the set of the natural numbers.

2.2. The Mecke model in continuous time. In [4, Section 4], Mecke introduces a
mixed line-generated tessellation model such that the tessellation J* at the continuous
time ¢ € [0, 00) corresponds to the tessellation T,(z) at the discrete random time ()
where for the distribution of v(£)

Pu@) =k =et(1-e?)*, k=0,1,..

holds. Mecke used Q([W]) = 1 for his considerations. For general Q, i.e. where
Q([W]) = 1 is not necessarily true any more, the distribution is

@2.1) P(u(t) = k) = e=Q¥Dt (1 = e-‘?(l"’ﬂ*)” k=0,1,..

This is the geometric distribution with parameter e—Q(WDt. the model (which yields a
random tessellation for any fixed time.t but cannot yet be described as a process) thus
has the characteristics @ and tQ([W]). (In Mecke's paper, these characteristics were
Q and t due to Q([W]) = 1. Here, to have a connection between the characteristic and
the exponential function’s exponent, the characteristic is called tQ([W]).) A possible
interpretation is that the decision times are no longer at equidistant discrete times
n = 1,2, ... Instead, the law describes how many decisions take place until the time
t. The v(t) are assumed independent of all other random variables that are used in
the construction of the Mecke process.

2.3. The sum of exponentially-distributed random variables. WhJ.le there
are more general results for the distribution of a sum of exponentially-distributed
random variables with unequal parameters (e.g. see [1]), for the special case needed
» here the following calculations allow a quick understanding. If a random variable X
is exponentially distributed with parameter ), we will write X ~ E()).
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Lemma 2.1. Let n € N\ {0} be fized. Let further Sp = Y7 ; T; be the sum of
independent ezponentially distributed random variables T, ..., T,, with Tj ~ E(jR) for
j=1,2,...,n and a fized R > 0. Then

t
P(Sp, <t)= f nRe "*R(eR — 1)"1dg = e MR (R _ 1)" = (1 — e~tR)",
0
Proof. The proof is by induction. For n = 1, obviously
t t
P(S; <t)=P(Ty1 <t) = / Re *Rdg = f 1R-e7 2R . (¢*R _1)0dg =1 — 'R
0 0
holds which is true according to the condition Tj ~ E(R).
Let the lemma be true for n. Then, because of Sp41 = Sp + Ty with Thyy ~

€ ((n+1)R) and the independence of Sy, and Ty, 41, for the density of S,

J8nsa (3) = fsn+Tﬂ+l. (3)
f(_f fSn (“)fT..H (z T "’)d“

fux nRe—"uR(guR _ 1) 1(n+ I)Re—(ﬂ-i-l)(:—")ndu

= (n+1)Re~(r+1)zR f; nRe“R(euR — 1)n=1gy

]

(n -t 1) Re—(n+1)=R[(euR . 1)"]::5

(ﬂ + 1)Re—{n+1)xR(e=R = 1)"

holds. Integration yields the second equation, straightforward calculation the third

equation in the lemma. : a

Lemma 2.2. Let Ny = max{n : }7_; T; < t} denote the number of T; ~ E(jR),
j=1,2,..., which have consecutively expired until the time t. Then for k=0,1,2,...

(2.2) P(N; = k) = e R (1 - e~B),
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Proof. From the distribution of the Sk, k =1,2,-.., one gets
P(N:=k)

P(Sk <t < Sk+1)

P(Sk <t) —P(Sk+1 <)

(1- .‘:"m)IE -(1- e"‘R)Hl

1

(1-eR)*(1-(1-eR)

= e t¥(1- e—tR)*

" For N; =0, the result follows from Lemma 2.1 immediately. O

2.4. The Mecke process in continuous time. Comparing the equations (2.1)
and (2.2), we see that with N; = »(t) and R = Q([W]) both yield the same result.
Therefore, the T; from Lemma 2.2 with Tj ~ £(jQ([W])) can be interpreted as the
(continuous-time) waiting times for the quasi-state of the tessellation to change from
a quasi-state with j quasi-cells to a quasi-state with j + 1 quasi-cells.

Definition 2.1. Let us have a window W C R2. Let (YM(n,W) : n € N) be the
Mecke process in discrete time as described in section 2.1. Let (Ng : t > 0) be the
process of the number of ezpired random variables Tj ~ E(jQ([W])) as in Lemma
2.9. Then for every t € [0,00) we define

YM(t, W) = YM(N, W)

and the Mecke process in continuous time as (YM(t, W) : t > 0).

3. THE WAITING TIME UNTIL A CONVEX SET IS HIT IN THE MECKE PROCESS IN
CONTINUOUS TIME

We now give a formula for the waiting time of a convex set within a cell in the
Mecke process in continuous time to be hit by a line. .
Let us have a fixed time a. We work on the condition that, at this time, the tessellation
has n quasi-cells, thus 7% = J,,—;. For the waiting time T'M in this state, TM ~
32
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€(nQ([W])) holds. In this fixed tessellation with n quasi-cells, let us have x ('real’)
cells.
Let these cells be called C},...,Ck. Let S; C C; C W,j = 1,...,x, be a convex set
within a cell Cj, created Let these cells be called C4, ..., Cx. For each j = 1,..., k, we
define -
S;=C;nK
with K being a fixed convex set. Thus, S; is a convex set within the cell Ci, created
deterministically from Cj. It is possible for some (or all) of the S; to be equal to Cj.
We will only examine non-empty S;.
Let us denote by Xg, the waiting time for such a set S; to be hit by a line for the
first time after the time s. It may be possible that the cell Cj is hit by a line but the
set S is not. In this case, the waiting time for S to be hit shall not begin anew but
rather be extended until it is actually hit. The waiting time until the set S; is hit is
the waiting time T,/ if and only if the cell C; that contains S; is selected for division
in this step (i.e. an = j in Mecke's construction) and the set S; C Cj is hit by the
line. The probability for this to happen is
19(5))
nQ(W])’
If the set is not hit (which happens with probability 1 — 2 3{I%R) the waiting time
for the set to be hit is the sum of the waiting times T + TM, if and only if the
waiting times 72 and T4, have passed and the set is hit in the (n + 1)-th division
step the probability of which is

P(j = ay, SiNyn # ﬂlSJ CCj €Tp1) =

P(j = ant1, SjN 41 #0185 C C5 € Ty) = ;:% gg[[sw]])

and so on. The waiting times are independent of each other.

—

In general, one gets
P (Xs, <t|S; C C; € Tp—y =T°)

oo k k=1
sy o[ gs) 190505 () 190sDY
i z (§ _ ‘) vamp 1 (- 1500)
Let us first calculate what one gets for P(E"MZ}“ St) or the density of this

respectively:
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Lemma 3.1. The following equation holds:

k
P (z T < t) =
i=n
hative Q([W]}s _1) " kWD gy,
Proof. We use the abbreviation S,‘f = y°¥ TM. 1t is sufficient to show that for

the density fgx(z) of the probability distribution

(33 faale) = o s 1),0([W]) (gauwm_l) " o-kQUWD)e

holds.
The proof is by induction over k.
For the base case k = n, because of TM ~ E(nQ([W])) the equation fsp(z) =
nQ([W])e"‘Q(M)’ ahuuld hold. Indeed,
fon(z) = (_n__ﬂ}_'(n 1)rQ([WD (ea([wna _ 1)" " e=nQ(WDe — nQ([W])e~ QW=
Let now equation (3.3) be true for any k. Then for k + 1, due to the convolution
formula (the waiting times are independent of each other)

far1(2)

= b waw

xQ([W]) (9D — 1)*"‘ e~ FWDu (k4 1)Q((W])e—(+DUWD(=—u) gy
= iy R QW2 JE (9Ds — 1)+
x e~ *QUWDu g~ (k+1)QUW]a-+5QUWDu+Q(W])u gy,

= wyfeiie*+NDIeQW]))? [ (9D - 1) AWy

-1

= w0 oy @)
x [5 (k+1—n)Q([W]) (eRWDx — 1) k=n QUWDugy

= oy e *HeWD=g((w)) [(eaumau_l)m«]“’
u=0

= ey e+ 1QWMDeQ(W]) (AW 1)+
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holds what is exactly what equation (3.3) yields for k + 1. O

Theorem 3.1. Let a time s be fized. At this time s, let us have a tessellation T*
with an arbitrary number of cells. Let a convez set S; be contained in the cell Cj
(S; € Cj C W). For the waiting time Xg, for this conver set S;j to be hit from the
time s on,

(3.4) P(Xs, <tS; CCj € T*) =1— ¢S]

holds.

{

Proof. Let us first keep the number n of quasi-cells fixed. For equation (3.1) we
get (at some point we will abbreviate 4 = 1 — e~Q(W)z)
l’(.?fs_f < tIS_-; CC;eTp1 = T')

= TE.P(ThTM <o) iSRRI (1- 155

= Yo I Em QW) fy (e9MWDz _ 1) e—ra(W)z gy
FEOTEHEE)

= T QUSH) g oy i (90D — 1)*" —kQUWDa g,

o 1 - 3

ads; )
= Q([S;]) fn Yo & (e 1) e—(n+k)Q{[W]):£(%+_k"5{'tr‘¢gl
o .
= I‘(n—:nﬁ“ J:e‘ﬂQ([“’llz E::_.o ﬁ (1 . e—Q([W})x)k r (ﬂ L 8[[3 ]i) e

aqs;h
= Jo e WDz 3200 L gk [0 ) k=g 1 g-u gy g

r-( -
;T__.i';%][_;ﬂ_ / —nQ(W))= / (= A}un—"‘" D‘ldudx
@ __ QS _ / —nQUWD)z /0 Mz (_i_)“"

I‘(n—gﬂ%) 0 =4

aus;n
dvdz

1-4
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Q([Sj]) f e—nQWD=(1 — A)m_“ f e ™

( 3 QS
Qusy
o -
= Q(IS;) /“e—sﬁﬂsﬂ)dx =1—e—tRUSD,
0

Equation (a) follows from the substitution v = u(l - A).
Let us now have a time &. The probability that there are exactly n quasi-cells in the
tessellation 7® (or that 7° = Tn—1) is just
n—1
P(T° = Tpy) = e AWDE (1 < e—a([Wl)t)

0 R
U

Thus, we get
P(Xs, <15 CCj€T") = Lo, P(T* =Tn-) (1 —e70D)

Yo, e QWD (1 — e-a([wm)n-l (1 — e~ta((s:D)

(1= HQUAPY 2, o= GWDH (1 — a~a0WDY™5

= 1—e—tQ(SH),
Thus the theorem is proven. O
It-is worth to mention that (as shown by the last equation) the result does not depend
on the number of quasi-cells n at the time s. For translation-invariant Q, this result
is the same result one has for the STIT process. Obviously, the lifetime of a cell Cj
(which is a convex set contained within a fixed cell, namely C;) can be described in
this manner as well.

4, ProOFS oF MECKE'S CONJECTURES

4.1. Conjecture 1. Lemma 2.2 makes clear the relation between those properties
Mecke calls *characteristics’ and the waiting time in a state with n quasi-cells. Let us
have a tessellation in a window W with characteristics Q and f; then we get

P =k)=e(1- e-*)".

Theorem 4.1. (Mecke’s Conjecture 1) Let Ty be a mized line-generated tessellation

in W with characteristics Q and tQ([W]), and let W be a window with W ¢ W and
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Q([W)) > 0. Then the cutout of Tw in W can be interpreted as a mized line-generated
tessellation in W with characteristics
1 -
e ()] ndt=1t .
Q= G @ NIV and é = 1Q(W)

Proof. We will first examine the tessellation Ty in W with characteristics Q and
tQ([W]). For the probability that until a time ¢ the convex subset W c W was hit,
according to equation (3.4)

P(Xy <t)=1-~ WD,

If we condition on W being hit the hitting line has distribution N = Q.
Let us now examine the tessellation Ty in W with characteristics Q= mq(. n
[W]) and £ = tQ([W]). The distribution of the number of decisions 2(t) until time ¢
is
P(o(t) =k) =e~f (1 - e'f)k ) (1 - e—tQ([W]))k.
From this, we can deduce the lifetime of the first cell W to be
P(Xy <t)=1- Q¥

Thus, the distribution of the lifetimes of W is the same in Ty and T; additionally,
the distribution of the segment dividing W is identical as well.

Let us now have Tw N W = Ty, at an arbitrary time. Then, in Ty there exist
the cells Cells(Tw) = {C}¥,...,C}¥} and accordingly in Ty, the cells Cells(Ty) =
{C¥ nW,..,C¥ NnW} \ {0}. Note that some of the intersections C¥ NW can be
empty; therefore the empty set is taken out of the set in order to have only ’real’ cells
with non-empty interior in Cells(Ty,).

We now examine a cell C € Cells(Tw) with C N W # 0. This cell has, as calculated
above, the lifetime X¢ ~ €(Q([C])). If we take a look at this cell’s intersection with
the subwindow W we have a waiting time Xonw ~ E(Q([CNWY))) for this convex set
to be hit. For the distribution of the dividing line we have, due to the conditioning
on the division of the set, 5e-Q([C N W]) Quc;wqa- nenw)) =Q(-n[c).
In the tessellation Ty, we have a cell ¢ = CN'W with a lifetime X ~ £(Q([C])) =
€(Q([CNW))). For the distribution of the line dividing ¢ we have (- N (€.

So, the. waiting time for the set C'N W in Ty to be hit and the lifetime of the

cell CNW in Ty respectively are identically distributed. Because of Q-n[o) =
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0.0 [CW]) = QN[CI) the distributions of the dividing lines are identical as well.
the condition of the equality Tw N W = Ty, the distributions of the time of
considered windows as are the

Under
thenex&segmentfallinsinﬁfareidenticalinboth
distributions of that next segment. As we always start in the same configuration of

an émpty subset W C W and window W respectively, the theorem is proven. u]

4.2. Conjecture 2. Let us first define the iteration and its symbol .

Definition 4.1. (4, Subsection 4.3, Remark]) Let Tt be a mized line-generated
tessellation with distribution law P* and T° such a tessellation with law P*. Let
further Y1, Ya, ... be a sequence of i.i.d. copies of T® which are independent of Tt. Let
{21, .., Zx} be the set of cells of Tt and Pn be the set of cells of Yn for n =1,2,....
Then the set of cells 2
U ®@nnZn)
n=1

is a new tessellation and its distribution law is denoted by P* B P*.

With this definition and Theorem 4.1, Mecke’s Conjecture 2 can be proven in quite

a straightforward manner:

Theorem 4.2. (Mecke’s Conjecture 2) The class of all mized line-generated tessellations
_ (related to Q) as a whole is stable under iteration in the following sense: Every
operation of iteration maps the mentioned class into itself, i.e. an iterated mized
line-generated tessellation is again a mized line-generated tessellation. If the mized
line-generated tessellation T* i iterated according to the law P* of T°, then the law
Pt P? of the outcome fulfils
' ' P*E P° = P,

Proof. Let 7% be a tessellation with the cells Cells(T*) = {Z;, ..., Zx}. Then each
of those cells Z; has a lifetime X7, ~ &(Q([Z;])) which is (under the condition of
the existence of these cells) independent of the other lifetimes which because of the
memorylessness of the exponential distribution does non depend on the time the cell
was created before the time ¢. After the lifetime has expired (provided it is smaller
than s), & segment of & line with distribution Zyh-y@(- N [Z;]) fells into the cell.
Afterwards, the process goes on with its cells and their exponentially-distributed

38



PROOFS OF THE CONJECTURES BY MECKE ...

lifetimes until time s. Thus, one gets the resulting tessellation T*+*.

According to Theorem 4.1, one can interpret the cutout TwnNZ; of Ty with characteristics
Q and sQ([W]) as & process Tz, with characteristics @ = Zz7;Q(- N [Z;]) and

8 = sQ([Z;)). If one considers a cell Z; now, its lifetime is £(Q([Z;]))-distributed as
verified in the proof of Theorem 4.1; after this lifetime’s expiry, a segment falls with
the corresponding line having a distribution @ = auzp @ NZ5).

This cutout process runs independently in all cells Zj,j5 = 1,..., &, with the same
lifetime and segment distribution as in the process 7**%. Thus, because the processes
are identically distributed,

P: B P = Pt-l-a

holds as claimed in Mecke’s Conjecture 2. O

5. CONCLUSION

From Theorem 4.1 and Theorem 4.2 we can deduce

Theorem 5.1. (Mecke’s Conjecture 8) Let A be a non-zero locally-finite translation-
invariant measure not concentrated on one direction and W o window with 0 <
A([W]) < oo. Then, the STIT construction and the Mecke construction with Q = A
are equivalent in the sense that they yield identically-distributed tessellations within
the window W.

Proof. The equivalence of the STIT and the Mecke construction follows from
Theorem 4.2 for the given translation-invariant measure A as the property P*H P® =
P**2 ig the defining property of the STIT tessellation, namely to be stable with
respect to iteration, and from the fact that the STIT tessellation is unique in this
property, as per [6, Corollary 2]. O
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