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1. Introduction

Mean field games is a recent area of research started by Minyi Huang, Peter E.

Caines, and Roland P. Malhamé [9], [10] and Pierre Louis Lions and Jean Michel

Lasry [11] – [14] which attempts to understand the limiting behavior of systems

involving very large numbers of rational agents which play dynamic games under

partial information and symmetry assumptions. Inspired by ideas in statistical physics,

these authors introduced a class of models in which the individual player contribution

is encoded in a mean field that contains only statistical properties about the ensemble.

The literature on mean field games and its applications is growing fast, for a recent

survey see [16] and reference therein. Applications of mean field games arise in the

study of growth theory in economics [15] or environmental policy [2], for instance,

and it is likely that in the future they will play an important rôle in economics and

population models. There is also a growing interest in numerical methods for these

problems [1] – [3]. Also, the discrete state problem is considered both in discrete time

[5] and the continuous time [6]. Several problems have been worked out in detail in

[7], [8].
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This paper is structured as follows: we start in section 2 to discuss the original

formulation by Lions and Lasry of mean field games as a coupled system of transport

equations with a Hamilton-Jacobi equation. Then we present a reformulation of this

problem (similar to one used in [10]) as a coupled system of an ordinary differential

equation in an L2 space, together with a Hamilton-Jacobi equation. Section 3 concerns

an extensions of the original mean-field problem where a player and the mean-field

also takes into account the collective behaviour of the players not only its state.

Finally in the section 4 we prove the existence of solutions to the extended mean field

system for quadratic Hamiltonian of special form.

2. Two formulations of deterministic mean field games

In this section we review the original formulation for deterministic mean-field

games from Lions-Lasry which is inspired by some of the material in the lectures

by Lions at College de France. Then we discuss a reformulation in terms of random

variables. This set up is essentially the one considered by Minyi Huang, Peter E.

Caines, and Roland P. Malhamé, in [10] and is particularly suited to the extensions

we consider in this paper.

In the standard mean field game setting one considers a population of players

where each individual has a state given by his position x ∈ Rd. We denote by P(Rd)

the set of probability measures in Rd. This set is a metric space endowed with the

Wasserstein metric W2, see for instance [17]. Population of players is described at

each time t by a probability measure θ(t) ∈ P(Rd). Given an individual player who,

for some reason knows the θ(t) for all time, his or her objective is to minimize a

certain performance criterion. For this let L : Rd × Rd × P(Rd) → R be a running

cost, ψ : Rd × P(Rd) → R be a terminal cost. We suppose that both L and ψ satisfy

standard hypothesis for optimal control problems, that is:

• L and ψ are continuous functions and bounded below, without loss of generality

we can assume L,ψ ≥ 0.

• ψ is Lipschitz in the first coordinate.

• L is coercive:

L(v, x, θ)

|v|
|v|→∞−−−−→ ∞, uniformly in x.

• L is uniformly convex in v.
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A typical example is

(2.1) L(v, x, θ) =
|v|2

2
−
∫
Rd

V (x, y)dθ(y),

for some function V : Rd × Rd → R.
The value function from the point of view of a player at the point x at time t is

defined through the optimal control problem:

u(x, t) = inf
x

∫ T

t

L(ẋ(s),x(s), θ(s))ds+ ψ(x(T ), θ(T )).

For (p, x, θ) ∈ Rd × Rd × P(Rd) we define the Hamiltonian

H(p, x, θ) = sup
v∈Rd

−v · p− L(v, x, θ).

Then it is well known that u is the unique viscosity solution of the Hamilton-Jacobi

equation

(2.2) −ut +H(Dxu, x, θ) = 0

satisfying the terminal condition u(x, T ) = ψ(x, θ(T )). It is also known that if u is

trajectory for this ps a classical solution to (2.2) the optimal trajectory is given by

(2.3) ẋ(s) = −DpH(Dxu(x(s), s),x(s), θ(s)).

The mean-field game hypothesis consists in assuming that all players have access to

the same information and act in a rational way. Therefore each one of them follows

the optimal trajectories (2.3). This then implies that the probability distribution of

players is transported by the vector field −DpH(Dxu(x, t), x, θ(t)). Therefore θ is a

(weak) solution of the equation

θt − div(DpH(Dxu, x, θ)θ) = 0,

together with an initial condition for θ, θ(0) = θ0 ∈ P(Rd), which encodes the initial

distribution of players. This leads to the system

(2.4)

{
−ut +H(Dxu, x, θ) = 0

θt − div(DpH(Dxu, x, θ)θ) = 0.

subjected to the initial-terminal conditions

(2.5)

{
u(x, T ) = ψ(x, θ(T ))

θ(x, 0) = θ0.

The system (2.4) and its second order analogue was first introduced and studied by

Pierre Louis Lions and Jean Michel Lasry in [12]. More detailed proofs of existence
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and uniqueness to those systems for quadratic Hamiltonians can be found in notes

by Pierre Cardaliaguet from P.-L. Lions lectures at College de France.

2.1. Random variables point of view. Let (Ω,F, P ) be a probability space, where

Ω is an arbitrary nonempty set, F is a σ-algebra on Ω and P is a probability measure.

We recall that a Rd valued random variable X is a function X : Ω → Rd. We denote

by Lq(Ω,Rd) the set of Rd valued random variable whose norm is in Lq(Ω). The law

L(X) of a Rd valued random variable is the probability measure in Rd defined by∫
Rd

φ(x)dL(X)(x) = Eφ(X).

Note that since all relevant random variables are Rd valued, we write Lq(Ω) instead of

Lq(Ω,Rd), to simplify the notation. We can reformulate the mean field game problem

by replacing the probability θ(t) encoding the distribution of players by a random

variable X(t) ∈ Lq(Ω) such that L(X(t)) = θ(t). Of course for each measure θ there

are many possible random variables with law θ, however this will not create any

problem. Each outcome of the random variable X represents the position of random

player chosen according to the probability θ.

We say that a function f : Lq(Ω) → R depends only on the law if for any X, X̃ ∈
Lq(Ω) with the same law, i.e., L(X) = L(X̃), we have f(X) = f(X̃). Let η : P(Rd) →
R, η(θ), we can define a function, η̃ : Lq(Ω;Rd) → R, η̃(X), which depends only on

the law of X, by

η̃(X) = η(L(X)).

This allows us to identify functions in P(Ω) with functions in Lq(Ω) which depend

only on the law. To make the presentation more intuitive, we use the same notation

for functions whether they are written in terms of the probability measure θ or in

terms of a random variable X with L(X) = θ, i.e. we omit the tilde and write simply

η(X) or η(θ), according to the previous identification.

In this new setting, the Lagrangian is a function L : Rd × Rd × Lq(Ω) → R that

we denote by L(v, x,X), which in the last coordinate depends only on the law. For

example the Lagrangian (2.1) can be now written as

L(v, x,X) =
|v|2

2
− EV (x,X).

As before, suppose an individual player knows the distribution of players which

is now encoded on a trajectory X(t) ∈ Lq(Ω) for all times. His or her objective is

to minimize a certain performance criterion, determined as before by a running cost
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L : Rd × Rd × Lq(Ω;Rd) → R, and a terminal cost ψ : Rd × Lq(Ω;Rd) → R. We

assume that both L(v, x,X) and ψ(x,X) depend only on the law of X.

Then the value function from the point of view of a reference player which is at a

point x at time t is

u(x, t) = inf
x

∫ T

t

L(ẋ,x,X(s))ds+ ψ(x(T ),X(T )).

As before, for (p, x,X) ∈ Rd × Rd × L2(Ω), the Hamiltonian is given by

H(p, x,X) = sup
v∈Rd

−v · p− L(v, x,X).

The Hamiltonian H which is a function H : Rd × Rd × L2(Ω) → R, that we

denote by H(p, x,X), depends only on the last coordinate through its law, i.e., if

X, X̃ ∈ L2(Ω) have the same law, i.e., L(X) = L(X̃) then

H(p, x,X) = H(p, x, X̃).

Then u is the unique viscosity solution of the Hamilton-Jacobi equation

−ut(x, t) +H(Dxu(x, t), x,X(t)) = 0

with the terminal condition u(x, T ) = ψ(x,X(T )).

Because of the rationality hypothesis, the dynamics of a typical player at position

X(s)(ω), ω ∈ Ω, is then given by

Ẋ(s)(ω) = −DpH(Dxu(X(s)(ω), s),X(s)(ω),X(s)).

This yields the following alternative formulation of the mean field game (2.4){
−ut(x, t) +H(Dxu(x, t), x,X(t)) = 0

Ẋ(t) = −DpH(Dxu(X, t),X(t),X(t)).

where the initial-terminal condition (2.5) is replaced by{
u(x, T ) = ψ(x,X(T ))

X(0) = X0,

where L(X0) = θ0.

The connection between the two formulations is an easy consequence of the following

well known result:

Proposition 2.1. Let b : Rd× [0, T ] → Rd be a smooth, globally Lipschitz vector field

over Rd and let X(t) : [0, T ]× Ω → Rd be a solution to

(2.6) Ẋ = b(X, t).
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With the law θ = L(X) which is absolutely continuous with a smooth density θ(x, t).

Then θ(x, t) is a solution to

θt(x, t) + div(b(x, t)θ(x, t)) = 0.

with initial condition θ(0) = L(X(0)).

Proof. We have∫
Rd

ϕ(x)θt(x, t)dx =
d

dt

∫
Rd

ϕ(x)θ(x, t)dx =
d

dt
Eϕ(X(t)) = EDϕ(X(t))Ẋ(t) =

= EDϕ(X)b(X, t) =

∫
Rd

Dϕ(x)b(x, t)θdx = −
∫
Rd

ϕ(x) div(b(x, t)θ)dx

for every ϕ ∈ C1
c (Rd). Thus θt + div(b(x, t)θ) = 0. �

3. Extended mean-field games

In many applications one must consider mean field games where the pay-off of

each player depends not only on the statistical information or state of the remaining

players but also on the actions the other players take. In the random variables

point of view this corresponds to the running costs that depend on Ẋ. As before

we assume that the distribution of players is represented by a random variable

X(t) ∈ Lq(Ω), which we suppose to be differentiable with derivative Ẋ(t) ∈ Lq(Ω).

Many other alternative spaces could be used here and this is not essential for this

part of discussion, for instance we could consider Ẋ ∈ Lq([0, t], Lq(Ω)). As before, the

objective of an individual player is to minimize a certain performance criterion. For

this let L : Rd ×Rd ×Lq(Ω)×Lq(Ω) → R be a Lagrangian, ψ : Rd ×Lq(Ω) → R be a

terminal cost. We assume that L(v, x,X,Z) depends only on the joint law of (X,Z)

i.e., if X,Z, X̃, Z̃ ∈ Lq(Ω) satisfy L(X,Z) = L(X̃, Z̃) then

L(v, x,X,Z) = L(v, x, X̃, Z̃),

and that ψ(x,X) depend only on the law of X.

We suppose that both L and ψ satisfy standard hypothesis for optimal control

problems, that is:

• L and ψ are continuous functions and bounded below.

• ψ is Lipschitz in the first coordinate.

• L is coercive:
L(v, x,X,Z)

|v|
|v|→∞−−−−→ ∞, uniformly in x.
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• L is convex in v.

The value function from the point of view of a player at the point x at time t is

(3.1) u(x, t) = inf
x

∫ T

t

L(ẋ,x,X(s), Ẋ(s))ds+ ψ(x(T ),X(T )),

where the infimum is taken over absolutely continuous trajectories. As before the

Hamiltonian is given by

H(p, x,X,Z) = sup
v∈Rd

−v · p− L(v, x,X,Z).

The Hamiltonian H is a function H : Rd × Rd × Lq(Ω) × Lq(Ω) → R, denoted by

H(p, x,X,Z), that in the last two coordinates depends only on its joint law. Given

that the trajectory X(t) is known for every player we get that the value function u

satisfies the Hamilton-Jacobi equation:

−ut +H(Dxu, x,X, Ẋ) = 0,

then by mean field hypothesis the player should follow the optimal trajectories

ẋ = −DpH(Dxu(x, t),x,X, Ẋ).

This leads to the extended mean field system

(3.2)

{
−ut +H(Dxu, x,X, Ẋ) = 0

Ẋ = −DpH(Dxu(X, t),X,X, Ẋ),

with {
u(x, T ) = ψ(x,X(T ))

X(0) = X0.

An important example of a Lagrangian with velocity dependence is

(3.3) L(v, x,X,Z) =
|v + βEZ|2

2
− V (x,X),

to which corresponds the Hamiltonian

(3.4) H(p, x,X,Z) =
|p|2

2
+ βp · EZ + V (x,X).

Mean field games under running costs of type (3.3) are quite interesting to study

from the applications point of view since they represent simple models of traffic jams.

Indeed, an individual player that plays mean field game with the running cost (3.3)

tends to move with a velocity close to −βEZ, that is to move away from the average

of the whole population of the players.
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4. Existence of solutions to extended mean field games

In this section we prove the existence of the solutions to the extended mean field

games system (3.2) for Hamiltonian of the form

H(p, x,X,Z) =
|p|2

2
+ βpEZ − V (x,X),

where β > 0 and V : Rd×L2(Ω) → R depends only in the law ofX. The corresponding

Lagrangian is

L(v, x,X,Z) =
|βEZ + v|2

2
+ V (x,X).

To have the existence of the solutions to (3.2) we suppose further assumptions on

X0, ψ and V :

a) X0 ∈ L2(Ω) and has an absolutely continuous law.

b) ψ is bounded, smooth in x and Lipschitz in both variables.

c) V is twice differentiable in x with ∥V (·, X)∥C2 ≤ C,

d) V (x, ·) and DxV (x, ·) are uniformly Lipschitz: there exist a constant C > 0

such that

|V (x,X)− V (x, Y )| ≤ C∥X − Y ∥L2(Ω),

and

|DxV (x,X)−DxV (x, Y )| ≤ C∥X − Y ∥L2(Ω).

We intend to prove the existence of the solution to (3.2) by a fixed point argument,

for this we take any function Φ ∈ C(Rd) which is bounded, Lipschitz and consider

the following system of ODEs in L2(Ω)

(4.1)


Ẋ = −DpH(P,X,X, Ẋ) = −P− βEẊ

Ṗ = DxH(P,X,X, Ẋ) = DxV (X,X)

X(0) = X0, P(0) = DxΦ(X0).

which if we solve the first equation in Ẋ, can be written as

(4.2)


Ẋ = −P+ β

1+βEP

Ṗ = DxV (X,X)

X(0) = X0, P(0) = DxΦ(X0).

Since Φ is Lipschitz DxΦ exists almost everywhere and since X0 has an absolutely

continuous law P(0) is well defined on a set of full measure. Furthermore the Lipschitz

conditions on DxV guarantee that the right hand sides of the equations in (4.2) are

Lipschitz in X,P, hence there exists a unique solution (X,P) to (4.1). It is easy to see
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from the equation that P ∈ C1([0, T ];L2(Ω)) and X ∈ C2([0, T ];L2(Ω)). We define

the function ũ(x, t) as the solution to the optimal control problem

(4.3) ũ(x, t) = inf
x

T∫
t

L(ẋ,x,X, Ẋ) + ψ(x(T ),X(T ))

where the infimum is taken over all Lipschitz trajectories x(s) starting at x(t) = x.

Lemma 4.1. Let Φ ∈ C(Rd) any bounded, Lipschitz function then ũ(x, t) defined

by (4.3) is uniformly bounded and Lipschitz in x. Furthermore for any t, t < T , ũ is

semi-concave in x. More specifically we have

(1) |ũ| ≤ ∥V ∥∞ · (T − t) + ∥ψ∥∞ for all x ∈ Rd, 0 ≤ t ≤ T.

(2) |ũ(x+ y, t)− ũ(x, t)| ≤ (C + (T − t)C)|y| for all x, y ∈ Rd, 0 ≤ t ≤ T.

(3) ũ(x+y, t)+ũ(x−y, t)−2ũ(x, t) ≤
(
C(T − t) + C

T−t

)
|y|2 for all x, y ∈ Rd, 0 ≤

t < T.

Where the constants C depend only on L,ψ.

Proof.

• ũ is bounded

From assumptions on V we have

ũ(x, t) ≥ −∥V ∥∞(T − t)− ∥ψ∥∞.

On the other hand if we take x(s) = x− β
s∫
t

EẊ(τ)dτ from (4.3) yields

ũ(x, t) ≤
T∫
t

V (X(τ),X(τ))dτ + ψ(x(T ),X(T )) ≤ (T − t)∥V ∥∞ + ∥ψ∥∞.

• ũ is Lipschitz

To prove the point 2 of the Lemma we take x, y ∈ Rd, and any ε > 0. Let xε

be an ε-suboptimal trajectory at a point (x, t), i.e.

(4.4) ũ(x, t) ≥
T∫
t

L(ẋε(s),xε(s),X(s), Ẋ(s))ds+ ψ(xε(T ),X(T ))− ε.

We have then

(4.5) ũ(x+ y, t) ≤
T∫
t

L(ẋε(s),xε(s) + y,X(s), Ẋ(s))ds+ ψ(xε(T ) + y,X(T )).
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Thus

ũ(x+ y, t)− ũ(x, t) ≤
T∫
t

[L(ẋε,xε + y,X, Ẋ)− L(ẋε,xε,X, Ẋ)]ds

+ ψ(xε(T ) + y,X(T ))− ψ(xε(T ),X(T )) + ε =

T∫
t

[V (xε + y,X)− V (xε,X)]ds

+ ψ(xε(T ) + y,X(T ))− ψ(xε(T ),X(T )) + ε.

This gives

ũ(x+ y, t)− ũ(x, t) ≤ (C(T − t) + C)|y|+ ε,

where the constant C depends only on Lipschitz constants of ψ and V . Since

x, y and ε > 0 are arbitrary we conclude that

|ũ(x+ y, t)− ũ(x, t)| ≤ (C(T − t) + C)|y|.

• ũ is semi-concave

For the semi-concavity we take any x, y ∈ Rd, ε > 0 and xε as above. Let

y(s) = y
T − s

T − t
,

then inequalities

ũ(x± y, t) ≤
T∫
t

L(ẋε ± ẏ,xε ± y,X, Ẋ)ds+ ψ(xε(T ),X(T ))

together with (4.4) yield

ũ(x+ y, t) + ũ(x− y, t)− 2ũ(x, t) ≤
T∫
t

[L(ẋε + ẏ,xε + y(s),X, Ẋ)+

L(ẋε − ẏ,xε − y,X, Ẋ)− 2L(ẋε,xε,X, Ẋ)]ds+ 2ε =

T∫
t

[|ẏ|2 + V (xε + y,X)

+ V (xε − y,X)− 2V (xε,X)]ds+ 2ε ≤
(
C(T − t) +

C

T − t

)
|y|2 + 2ε,

where we used the bounds on D2
xxV and the fact that ẏ(s) = − y

T−t . Now

sending ε to zero we get the result. �

Let A be the set of functions Φ ∈ C(Rd) which satisfy following conditions

(1) |Φ(x)| ≤ T∥V ∥∞ + ∥ψ∥∞ for all x ∈ Rd,

(2) |Φ(x+ y)− Φ(x)| ≤ (C + TC)|y| for all x, y ∈ Rd,

(3) Φ(x+ y) + Φ(x− y)− 2Φ(x) ≤
(
CT + C

T

)
|y|2 for all x, y ∈ Rd,
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where the constants C are defined as in Lemma 4.1. The space C(Rd) endowed

with the topology of locally uniformly convergence is a topological vector space and

according to the Arzelà- Ascoli theorem the set A is its compact, convex subset.

Lemma 4.2. The mapping

(4.6) F : Φ(x) 7→ ũ(x, 0).

is a continuous and compact mapping from A into itself.

The Lemma4.1 shows that the mapping 4.6 maps the set A into itself. We prove

the continuity of the mapping F by assuming the contrary: there exist Φn → Φ

locally uniformly in Rd such that F (Φn) 9 F (Φ) locally uniformly in Rd. Then

since F (Φn) ∈ A and A is compact we can assume without loss of generality that

ũn = F (Φn) → ū ̸= F (Φ) locally uniformly. Since Φn are uniformly semi-concave we

can assume (passing to a further subsequence if necessary) that DΦn → DΦ a.e.. Let

(Xn,Pn) solve the equation
Ẋn = −Pn + β

1+βEPn

Ṗn = DxV (Xn,Xn)

Xn(0) = X0, Pn(0) = DxΦn(X0).

Then the assumptions c), d) imply that DxV is Lipschitz in both variables, hence

substracting the equations for (X,P) from the equations for (Xn,Pn) we get

E(|Ẋn(t)− Ẋ(t)|2 + |Ṗn(t)− Ṗ(t)|2) ≤ C(E|Xn(t)−X(t)|2 + |Pn(t)−P(t)|2).

Therefore the Gronwall’s inequality then yields:

E(|Xn(t)−X(t)|2 + |Pn(t)−P(t)|2) ≤ C(E|Xn(0)−X(0)|2 + |Pn(0)−P(0)|2)

= CE|DΦn(X0)−DΦ(X0)|2.
By the dominated convergence theorem the right hand side here goes to zero. Consequently

Xn → X and Pn → P in L∞([0, T ];L2(Ω)), the equation (4.2) then implies that

Ẋn → Ẋ. Thus using assumptions b), c) and d) we get

H(p, x,Xn, Ẋn) → H(p, x,X, Ẋ) locally uniformly in x, p,

and

ψ(x,Xn(T )) → ψ(x,X(T )) locally uniformly in x.

From the definition of ũn = F (Φn) and standard results in optimal control we know

that ũn solves the Hamilton-Jacobi equation with Hamiltonian H(p, x,Xn, Ẋn) and

terminal value ψ(x,Xn(T )). Since ũn → ū locally uniformly the stability of viscosity
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solutions ([4]) implies that ū is a viscosity solution to the Hamilton-Jacobi equation

with the Hamiltonian H̃(p, x, t) = H(p, x,X(t), Ẋ(t)) and terminal value ψ(x,X(T )):

(4.7)

{
−ūt(x, t) + H̃(Dxū(x, t), x, t) = 0,

ū(x, T ) = ψ(x,X(T ))

on the other hand from the definition of ũ = F (Φ) and standard optimal control

theory results we have that ũ also is a viscosity solution to the (4.7). Since X and

Ẋ are Lipschitz continuous in t, Lipschitz bounds on V and some standard estimates

give

|H̃(p, x, t)− H̃(q, y, s)| ≤ R|p− q|+ |βEẊ(t)||p− q|+ βRE|Ẋ(t)− Ẋ(s)|

+ C|x− y|+ C∥X(t)−X(s)∥L2(Ω) ≤ C(T,R)(|p− q|+ |x− y|+ |t− s|)

for any R > 0 and t, s ∈ [0, T ] and all x, y, p, q ∈ Rd with |p|, |q| ≤ R. This condition

implies the uniqueness of the viscosity solutions to the equation (4.7)( [4]), thus ū = ũ

which is a contradiction. Hence the mapping F is continuous, the compactness of A

then implies that F is also compact.

Theorem 4.1. Under the above conditions on H,ψ and X0 there exist a continuous

Lipschitz semi-concave function u on Rd and a random variable X ∈ C2([0, T ];L2(Ω)),

such that the couple (u,X) solves the system of extended mean field equations (3.2)

in the sense that u ∈ C([0, T ] × Rd) is a viscosity solution to the Hamilton-Jacobi

equation: {
−ut +H(Dxu, x,X, Ẋ) = 0, in [0, T ]× Rd

u(x, T ) = ψ(x,X(T )),

u is differentiable at every point (X(t), t)t > 0, and X ∈ C1,1([0, T ];L2(Ω)) is a

classical solution to the ODE:{
Ẋ = −DpH(Dxu(X, s),X,X, Ẋ), in [0, T ]× Ω

X(0) = X0.

Proof. By Lemma (4.2) and Schauder’s fixed point theorem there exists u ∈ C(Rd)

such that

u(x) = F (u) = ũ(x, 0),

where ũ(x, t) is defined as in 4.3. Let us denote it by u(x, t) := ũ(x, t). Then u solves

the Hamilton-Jacobi equation

(4.8)

{
−ut(x, t) +H(Dxu(x, t), x,X(t), Ẋ(t)) = 0

u(x, T ) = ψ(x,X(T )).
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From optimal control theory (see [4]) we know that for almost every x we have the

existence of the optimal trajectories which are given by the Hamiltonian flow

(4.9)


ẋ(x, t) = −DpH(p,x,X, Ẋ)

ṗ(x, t) = DxH(p,x,X, Ẋ)

x(x, 0) = x, p(x, 0) = Dxu(x, 0).

We also know that p(x, t) = Du(x(x, t), t) and that Du exists for all points (x(x, t), t)

with t > 0. Now put Y(t) = x(X0, t) and Q(t) = p(X0, t), then from (4.9)

(4.10)


Ẏ = −DpH(Q,Y,X, Ẋ)

Q̇ = DxH(Q,Y,X, Ẋ)

Y(0) = X0, Q(0) = Dxu(X0).

Since DpH,DxH are Lipschitz in p, x the uniqueness of solutios to the system (4.10)

of ordinary differential equations in L2(Ω) yields X(t) = Y(t) and P(t) = Q(t) =

p(X0, t) = Du(Y(t), t) for all t ∈ [0, T ], thus{
Ẋ(t) = −DpH(Du(X(t), t),X(t),X(t), Ẋ(t))

X(0) = X0.

�
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