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1. Introduction

Let D = {(x, y) : a < x < b, c < y < dd} be a rectangle in a complex plane with

boundary Γ = ∂D. In this paper we consider the elliptic equation

(1.1)
∂3

∂z2∂z
u(x, y) :=

1

8

(
∂

∂x
+ i

∂

∂y

)2 (
∂

∂x
− i

∂

∂y

)
u(x, y) = 0, (x, y) ∈ D.

This equation is improperly elliptic because the characteristic equation has two roots

in the upper half-plane and one root in the lower half-plane. So, the classical boundary

value problems are not correct for this equation, and hence, the boundary conditions

are taken in the following form (see [1]):

u
∣∣
Γ
= f0(x, y), (x, y) ∈ Γ,(1.2)

ℜ
(

∂u

∂N

)∣∣∣∣
Γ

= f1(x, y), (x, y) ∈ Γ,(1.3)

where f0 ∈ C(1,α)(Γ) and f1 ∈ C(α)(Γ). Here C(α)(Γ) (respectively, C(1,α)(Γ)) stands

for the class of those functions defined on Γ, which satisfy Hölder condition with

exponent α (respectively, the first order derivatives satisfy Hölder condition with

exponent α).

We are looking for a solution of the problem (1.1) – (1.3) in the class of functions

C(3)(D) ∩ C(1,α)(D ∪ Γ).
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The general form of the problem (1.1) – (1.3), known as Riemann-Dirichlet type

problem for improperly elliptic equations, was considered by Tovmasyan in [1]. More

precisely, in [1] it was considered the following equation:

(1.4)
∂n

∂zp∂zq
u(x, y) ≡ 1

2n

(
∂

∂x
+ i

∂

∂y

)p (
∂

∂x
− i

∂

∂y

)q

u(x, y) = 0, (x, y) ∈ D1,

(p ≥ q) with boundary conditions

∂ku

∂Nk

∣∣∣∣
Γ

= fk, k = 0, 1, ..., q − 1,(1.5)

ℜ
(

∂ku

∂Nk

)∣∣∣∣
Γ

= fk, k = q, ..., p− 1,(1.6)

where D1 = {(x, y) : x2 + y2 < 1} is the unit disk in a complex plane with boundary

Γ = ∂D1. In [1] the solvability of non-homogeneous problem and the general solution

of the corresponding homogeneous problem was found, and it was shown that the

number of linearly independent solutions of the homogeneous problem is (p − q)2.

So the number of corresponding linearly independent solutions of the homogeneous

problem in our case is equal to one.

Observe that direct application of the finite differences method is effective for

solving boundary value problems for elliptic equations with real coefficients (see,

for example, [2], [3]), which is not the case for complex coefficients. In [4] it was

shown that direct application of the finite differences method can be considered as

an effective method of solution for first order improperly and second order properly

elliptic equations. However, this is not the case for the problem (1.1) – (1.3), due to

complex plane and non uniqueness of the solution of (1.1) – (1.3).

The purpose of this paper is to develop an effective numerical method of solution of

the problem (1.1) – (1.3): we reduce this problem into six uniquely solvable problems,

and then apply the finite differences method to solve the resulting problems.

2. Description of the algorithm

The general solution of the equation (1.1) can be represented in the form

(2.1) u(x, y) = zΦ1(z) + Φ0(z) + Ω1(z), z = x+ iy, (x, y) ∈ D,

where Φ0, Φ1 are arbitrary analytic functions in D, and Ω1 is analytic in D = {z :

z ∈ D}. We can write (2.1) in terms of three analytic functions Φ, Ψ and Ω as follows:

u(x, y) = zΦ1(z) + Φ0(z) + Ω1(z) +
(
Ω1(z)− Ω1(z)

)
= zΦ(z) + Ψ(z)− iℑ(Ω(z)),(2.2)
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where Ω(z) = 1
2Ω1(z). So we have to determine the analytic in D functions Φ, Ψ and

Ω by the conditions (1.2), (1.3).

From (1.1) we have
∂3

∂z2∂z
u = 0.

Assuming U = ℜ(u) = 1
2 (u + u) and using (1.1) – (1.3), it is easy to see that U

satisfies the problem

∆2U = 0,

U
∣∣
Γ
= ℜ(f0),(2.3) (

∂U

∂N

)∣∣∣∣
Γ

= f1.

This is a Dirichlet problem for biharmonic equation which is uniquely solvable (see

[5]).

It follows from (2.2) that

U = ℜ(u) = ℜ (zΦ(z) + Ψ(z) + iℑ(Ω(z)))

= ℜ (zΦ(z) + Ψ(z)) = zΦ(z) + Ψ(z) + zΦ(z) + Ψ(z).(2.4)

So, applying Laplace operator we get

∆U = ℜ(Φ′(z)).

Since Φ(z) is an analytic function, we can use the Cauchy-Riemann condition

(2.5) ∆U =
∂

∂x
(ℜ(Φ(z))) = ∂

∂y
(ℑ(Φ(z))).

We represent the analytic function Φ(z) as

(2.6) Φ(z) = u1 + iv1,

where

u1 = ℜ(Φ(z)), v1 = ℑ(Φ(z)).

From the first part of equation (2.5) and the solution of problem (2.3) we can set a

Poincare problem for u1:

∆u1 = 0,(
∂u1

∂x

)∣∣∣∣
Γ

= ∆U
∣∣
Γ
= F1,(2.7)

where F1 is assumed to be known on the boundary.

In order to find some fixed (unique) solution u0
1 for (2.7), we add two conditions:

(2.8) u1(x0, y0) = u10, u1(x1, y1) = u11,
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where u10, u11 are arbitrary constants and (x0, y0) ∈ D, (x1, y1) ∈ D.

Similarly, we can set a Poincare problem for v1:

∆v1 = 0,(
∂v1
∂y

)∣∣∣∣
Γ

= ∆U
∣∣
Γ
= F2,(2.9)

with two additional conditions v1(x0, y0) = v10, v1(x1, y1) = v11, where v10, v11 are

arbitrary constants and F2 is assumed to be known on the boundary. So we can find

some fixed (unique) solution v01 for (2.9).

Then the general solution of (2.7), (2.9) can be written in the form

(2.10) u1 = u0
1 + c1 + c2y, v1 = v01 + c3 + c4x,

where ci, i = 1, ..., 4 are arbitrary real constants.

From Cauchy-Riemann conditions for u1, v1:

(u1)y = −(v1)x

we get c2 = −c4. Substituting (2.10) into (2.6), we obtain

(2.11) Φ(z) = u0
1 + iv01 + (c1 + ic3)− ic2(x+ iy) = Φ0 +A− ic2z,

where A and c2 are arbitrary complex and real constants, respectively, and Φ0 =

u0
1 + iv01 , which is determined uniquely.

From (2.4) and (2.11) we have

U = ℜ(u) = ℜ
(
zΦ0(z) +Az − ic2zz +Ψ(z)

)
.

So

(2.12) ℜ
(
Ψ(z) +Az

)
= U −ℜ

(
zΦ0(z)

)
.

It follows from the solution of (2.3), (2.7) and (2.9) that the right-hand side of (2.12)

is known on the boundary points Γ, while Ψ(z) + Az is an analytic function. Hence

we have Ψ(z) +Az = Ψ0(z) + ic5, or equivalently,

(2.13) Ψ(z) = Ψ0(z)−Az + ic5,
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where c5 is an arbitrary real constant, and Ψ0(z) is determined uniquely. From (2.2),

(2.11) and (2.13) we obtain

u = z
(
Φ0(z) +A− ic2z

)
+
(
Ψ0(z)−Az + ic5

)
+ iℑ(Ω(z))

= zΦ0(z) + Ψ0(z)− ic2zz +Az −Az + ic5 + iℑ(Ω(z))

= zΦ0(z) + Ψ0(z)− ic2zz + 2i(c3x− c1y) + ic5 + iℑ(Ω(z))

= w0(z) + i
(
ℑ(Ω(z)) + (c3x− c1y + c5)− c2zz

)
.

Therefore

(2.14) u = w0(z) + i
(
H(x, y)− c2zz

)
,

where the function w0(z) = zΦ0(z) + Ψ0(z) is determined uniquely, and

H(x, y) = ℑ(Ω(z)) + (c3x− c1y + c5)

is a harmonic function.

Next, we determine the harmonic function H. From (1.2) we have

ℑ(u)
∣∣
Γ
= ℑ(f0)

∣∣
Γ
=

(
ℑ(w0(z)) +H(x, y)− c2zz

)∣∣
Γ
.

Therefore,

(2.15) (H(x, y))
∣∣
Γ
= ℑ(f0 − w0(z)) + c2 (zz)

∣∣
Γ
.

So, first we find the unique solution of a Dirichlet problem for Laplace equation:

∆S(x, y) = 0, (x, y) ∈ D,

S
∣∣
Γ
= zz

∣∣
Γ
.(2.16)

Next, from (2.15) we get

H
∣∣
Γ
= (H0 + c2S)

∣∣
Γ
,

where H0 is the unique solution of

∆H0 = 0,

H0

∣∣
Γ
= ℑ(f0 − w0)

∣∣
Γ
.(2.17)

From (2.15) – (2.17) we have

H = H0 + c2S (because H,S are harmonic).

Therefore, we can write (2.14) as

u = w0 + i
(
H0 + c2S − c2zz

)
= w0 + iH0 + ic2 (S − zz) ,

where c2 is an arbitrary real constant.
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Thus, our problem is solvable and the corresponding homogeneous problem has

one linearly independent solution u0 = i (S − zz) , where S is a harmonic function

satisfying the boundary condition S
∣∣
Γ
= zz|Γ.

3. Numerical solution

In this section we develop an effective numerical method of solution of the problem

(1.1) – (1.3).

Notice that numerical methods of solution of various boundary value problems

(Dirichlet, Neumann, etc.) for biharmonic and biharmonic type equations were considered

in the literature (see, e.g., [6], [7] – [14], and references therein).

First, we consider the problem (2.3). Let us divide the rectangle D by m+ n− 2

straight lines, parallel to coordinate axes and, for simplicity consider equidistant

nodes, denoted by

xk = a+ kh, h =
b− a

m
, yj = c+ jh,

h =
d− c

n
, k = 0,m, j = 0, n.

By the finite differences method, we find the approximate values of the function U at

the mesh points:

U j
i ≈ U(xi, yj), i = 1,m, j = 1, n,

where U(x, y) = ℜ(u(x, y)), and {U j
i } = Uh.

Then we use the discrete analogue of the Laplace operator:

∆hUh =
1

h2
(U j

i+1 + U j
i−1 + U j+1

i + U j−1
i − 4U j

i )

to discretize the biharmonic equation in (2.3) as follows:

∆h∆hUh =
20

h4
U j
i − 8

h4
(U j

i+1 + U j
i−1 + U j−1

i + U j+1
i )

+
2

h4
(U j+1

i+1 + U j+1
i−1 + U j−1

i+1 + U j−1
i−1 )

+
1

h4
(U j

i+2 + U j
i−2 + U j−2

i + U j+2
i ),(3.1)

U
∣∣
Γ
= (ℜ(f0))h, (δhUh)

∣∣
Γ
= (f1)h,

where δh, ℜ(f0)h and (f1)h stand for the difference analogue of the operator ∂
∂N and

the values of functions ℜ(f0), f1 at the boundary points of mesh, respectively.

The discrete problem (3.1) approximates problem (2.3) (see, e.g., [15]). Therefore,

from the stability of (3.1), we can deduce the convergence of the grid function to

{U(xi, yj)} (see [3], Theorem 2.5).
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From the last two equations in (3.1) we can find the values of function Uh at

the points (xi, yj) for i = 0, 1,m − 1,m; j = 0, n and i = 0,m; j = 0, 1, n − 1, n. If

the values U j
i are on the interior nodes, we find them from the linear system with

symmetric pentadiagonal matrix. Since this matrix is positive definite, we can prove

the stability of (3.1). An algorithm of solution of this system can be found in [17].

For numerical solution of Poincare problem (2.7) with additional condition (2.8),

it is enough to solve it in the domain with boundary Γ∗, where

Γ∗ = {(xi, yj) : i = 1,m− 1, j = 1, n− 1 or i = 1,m− 1, j = 1, n− 1}.

Without loss of generality, we can assume that the points (x0, y0) and (x1, y1) from

(2.8) are located on the top left and down right corner of the boundary Γ∗, that is,

(x0, y0) = (a+ h, d− h) and (x1, y1) = (b− h, c+ h). Therefore

u1(x0, y0) = u10 = 0, u1(x1, y1) = u11 = 0.

Next, from the grid boundary conditions
1

h
[(u1)

j
i+1 − (u1)

j
i ] =

1

4
(∆hUh)

j
i , i = 1,m− 1, y = 1, n− 1

we can find the values of the grid points on the sides of Γ∗ parallel to x-axis.

Finally, the values of (u1)
j
i inside Γ∗ and on the sides of Γ∗ parallel to y-axis can

be found from a system of linear equations whose main matrix can be reduced to the

tridiagonal form:

T =


A B 0 0 · · · 0
B A B 0 · · · 0
0 B A B · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · A

 ,

where

A =



−1
h

1
h 0 · · · 0 0

1
h2

−4
h2

1
h2 · · · 0 0

0 1
h2

−4
h2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −4
h2

1
h2

0 0 0 · · · −1
h

1
h


,

B =



0 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 0


.
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The matrix T is diagonally dominant, hence the corresponding linear system is

uniquely solvable. This implies unique solvability of the considered modified Poincare

problem. Applying the maximum principle (see [16]), we get the unique solvability of

our system.

Similarly, the Dirichlet problem for Laplace equation (2.16), (2.17) has a unique

solution (see [2]).
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