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Abstract. In 1961, at A.M.S. Symposium on Convexity, P.C. Hammer proposed

the following problem: how many X-ray pictures of a convex planar domain D must

be taken to permit its exact reconstruction? Richard Gardner writes in his funda-

mental 2006 book [4] that X-rays in four di�erent directions would do the job. The

present paper points at the possibility that in certain asymptotical sense X-rays in

only three di�erent directions can be enough for approximate reconstruction of

centrally symmetric convex domains. The accuracy of reconstruction would tend

to become perfect in the limit, as the directions of the three X-rays change, all three

converging to some given direction. The analysis leading to that conclusion is based

on two lemmas of Section 1 and Pleijel type identity for parallel X-rays derived in

Sections 2 and 3. These tools together supply a system of two di�erential equations

with respect to two unknown functions that describe the two branches of the domain

boundary D. The system is easily resolved. The solution intended to provide a complete

tomography reconstruction of D, happens however to depend on a two dimensional

parameter, whose "real value"remains unknown. So tomography reconstruction of D

becomes possible if a satisfactory approximation to that unknown �real value� can be

found. In the last section a test procedure for the individual candidates for �appro-

ximate real value� of the parameter is described. A uniqueness theorem concerning

tomography of circular discs is proved.

MSC2010 numbers: 52A22; 53C65; 60D05;
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1. Two lemmas

In the present paper, D denotes the class of bounded convex domains D with

continuously di�erentiable boundary ∂D that possesses no linear segments. The space

C of planar directions we identify with (0, 2π) converted to a circle, and let α ∈ C

be a reference direction. In C we consider the usual angular coordinate ε ∈ (0, 2π)

assuming that ε is measured clockwise from direction α (ε = 0 coincides with direction

α).
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Let Xε be the axis of direction ε that contains the origin O in the plane. For each

direction ε ∈ C we consider the right system of Cartesian coordinates (xε, yε) with

x-axis coinciding with Xε. We will use both notation: Xα = X0.

By [D]α we denote the space of chords of D ∈ D that are perpendicular to the

direction α. The point u ∈ Xα where the linear continuation of the chord χ ∈ [D]α

hits Xα we call the base of χ ∈ [D]α. We denote

χu = the chord from [Dα] whose base is u ∈ Xα, |χu| = the length of χu,

pα = (open) perpendicular projection of D on Xα (the range of u).

χM = the longest chord in [Dα],

uM = the base of χM , uM ∈ Xα,

L = the left part of pα separated by uM ,

R = the right part of pα separated by uM .

Lemma 1.1. For any D ∈ D and any choice of α, the longest chord χM is unique in

[D]α, while the length function |χu| is strictly monotone increasing on L and strictly

monotone decreasing on R.

A satisfactory proof of Lemma 1.1 can be obtained easily by considering the graphs

of the continuous functions t1(u) and t2(u) each de�ned in the interior of pα:

ti(u) = tan of the angle between α and the lines tangent to the boundary ∂D at

the upper (i = 2) or lower (i = 1) endpoints of χ(u). The two graphs can have only

one intersection point, whose projection on Xa happens to be uM .

Without loss of generality, we assume that the convex domain D lies totally in the

half-plane yα > 0, i.e. in the left half-plane bounded by Xα. Thus we can speak about

upper and lower endpoint of χu for every u ∈ pα. Elevation of a chord χ ∈ [D]α is

de�ned to be the yα-value of the lower endpoint of χ.

By Lemma 1.1, the following two "elevation functions"are well de�ned on the interval

(0,M):

UL(l) = elevation of the chord χu that satis�es |χu| = l and u ∈ L,

UR(l) = the same for u ∈ R.

Lemma 1.2. For every D ∈ D the identity

UL(l) − UR(l) =
d

dα

∫ l

0

ρα(τ) dτ

is valid for every l ∈ (0,M), where ρα(τ) is the distance between two chords from

[Dα] of common length τ .
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The remaining part of the section contains a proof of Lemma 1.2.

Let f(T ) be a su�ciently smooth function de�ned for T > 0 which vanishes identically

in some neighborhood of T = 0. We consider the integral

(1.1) J(ε) =

∫
[D]ε

f(|χ|) dxε =

∫
pε

f(T (xε)) dxε,

where

pε = the perpendicular projection of D on Xε,

dxε = the Lebesgue measure on Xε (equivalently, on [D]ε)),

T (xε) := |χ| = the length of the chord χ ∈ [D]ε whose base is xε ∈ Xε.

The purpose is to calculate the �rst derivative of J(ε) at ε = 0.

For given ε let us consider the map that sends Xε into X0:

xε → u, u ∈ X0, with Jacobian
dxε
dx0

= cos ε,

where u denotes the point where the line perpendicular to ε and containing xε hits

X0. To change the integration variable in (1.1) from xε to u we write

Tε(u) = the length of the chord χ ∈ [D]ε whose base xε ∈ Xε maps into u ∈ X0,

in particular

T0(u) = the length of the chord [D]0 whose base is u ∈ X0, [D]0 = [D]α.

For every ε from su�ciently small neighborhood of direction 0 the assumption as

regards f(u) allows to replace pε in (1.1) by p0 ⊂ X0, therefore for ε→ 0

(1.2) J(ε) = cos ε

∫
p0

f(Tε(u)) du =

∫
p0

f(Tε(u)) du + o(ε2)

(for simplicity we write du instead of dx0). In (1.2) the integration domain does not

depend on ε, so the derivative of J(ε) at ε = 0 happens to be

(1.3)
d

dε
J(0) =

∫
p0

df(T0(u))

dε
du.

Let gε(u) be the axis perpendicular to direction ε that contains u ∈ p0. In the

Cartesian system that correspond to ε = 0, the coordinates of the two (i = 1, 2)

points where gε(u) meets ∂D let be

x0i = x0i(ε, u), y0i = y0i(ε, u), and

ri = ri(u, ε) = the distance from u to (x0i, y0i), r2 ≥ r1 ≥ 0.

By Tε(u) = r2(u, ε) − r1(u, ε) we have

dTε(u)

dε
=

d(r2 − r1)

dε
=

∂r2
dx02

dx02
dε

− ∂r1
dx01

dx1
dε

.
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We note that for ε = 0 and i = 1, 2

∂ri(u, 0)

dxi0
=

∂Yi(u)

du
,

dx0i(0, u)

dε
= Yi(u),

where by de�nition

Y1(u) = r1(u, 0) and Y2(u) = r2(u, 0).

It is important, that the graphs of the functions Y1(u) and Y2(u), both de�ned on p0

and satisfying Y1(u) ≤ Y2(u), represent the two branches of ∂D that project on p0.

Now (1.3) takes the form

(1.4)
d

dε
J(0) =

∫
p0

f ′(T0(u))W (u) du,

where

W (u) = Y2(u)
dY2(u)

du
− Y1(u)

dY1(u)

du
.

A standard δ - formalism permits to calculate the integral in (1.4) if for some τ > 0

we choose

(1.5) f(z) = hτ (z) where hτ (z) = 0 for z < τ, and hτ (z) = 0 otherwise,

in which case h′τ (z) = δτ (z). For that choice

J(ε) = ρα(τ) = the distance between χ1 and χ2,

where χ1 and χ2 are the two parallel chords of D, both of length τ and perpendicular

to direction ε. We have

(1.6)
∂

∂ε
ρα(τ) =

∫
p0

δτ (T0(u))W (u) du.

Therefore∫
p0

δτ (T0(u))W (u) du =

∫
L

δτ (T0(u))W (u) du +

∫
R

δτ (T0(u))W (u) du =

∫ M

0

δτ (T )W (x)
duL(T )

dT
dT +

∫ 0

M

δτ (T )W (x)
duR(T )

dT
dT,

where for T > 0

uL(T ) = the point from L for which T0(uL(T )) = T ,

uR(T ) = the point from R for which T0(uR(T )) = T .

Thus

(1.7)

∫
p0

δτ (T0(u))W (u) du = W (uL(τ))
duL(τ)

dτ
− W (uR(τ))

duR(τ)

dτ
.

From (1.4) we �nd
dYi(uL(τ))

du

duL(τ)

dτ
=

dUiL(τ)

dτ
,
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dYi(uR(τ))

du

duR(τ)

dτ
=

dUiR(τ)

dτ
,

where i = 1, 2 while

(1.8) UiL(τ) = Yi(uL(τ)) and UiR(τ) = Yi(uR(τ)).

Taken together with (1.6) this implies

d

dε
ρα(τ) =

[
U2L(τ)

dU2L(τ)

dτ
− U1L(τ)

dU1L(τ)

dτ

]
−

(1.9) −
[
U2R(τ)

dU2R(τ)

dτ
− U1R(τ)

dU1R(τ)

dτ

]
,

We integrate (1.9) in dτ from 0 to some T > 0. Using formulae like∫ T

0

U2L(τ)
dU2L(τ)

dτ
dτ =

∫ U2L(T )

0

y dy =
1

2
U2
2L(T ),

we get

2

∫ T

0

d

dε
ρα(τ) dτ = U2

2L(T ) − U2
1L(T ) − U2

2R(T ) + U2
1R(T ).

On the other hand

U2L(T ) = U1L(T ) + T, U2R(T ) = U1R(T ) + T,

yielding

2

∫ T

0

d

dε
ρα(τ) dτ = [U1L(T ) + T )]2 − U2

1L(T ) − [U1R(T ) + T ]2 + U2
1R(T ) =

2U1L(T )T − 2U1R(T )T = 2T [U1L(T ) − U1R(T )],

or �nally

(1.10) U1L(T ) − U1R(T ) =
1

T

∫ T

0

d

dε
ρα(τ) dτ.

which coincides with the assertion of the Lemma 1.2.

2. Totally disintegrated Pleijel identity

We will be considering subsets of the space

|G = the space of lines in the plane, the lines g ∈ |G carry no orientation. We prefer

to use the "translational"(ϕ, t) parametrization of lines g ∈ |G:

ϕ = direction of g, ϕ ∈ (0, π) converted to a circle and

t = signed distance of the line g from the origin ( t ∈ (−∞,∞) can be identi�ed

with a translation of g in the direction perpendicular to ϕ ). In |G there exists unique
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(up to a constant factor) measure dg invariant with respect to the Euclidean motions.

In the (ϕ, t) parametrization

(2.1) dg = dϕ dt,

where dϕ is the uniform measure in the space of planar directions (identi�ed as usual

with the Lebesgue measure on the interval (0, π)), dt is the Lebesgue measure on

(−∞,∞).

Let D be a strictly convex bounded domain in the plane IR2 with piecewise-smooth

boundary ∂D. From now on

[D] = the space of linear chords of D, [D] ⊂ |G,

g ∈ [D] = a linear chord of D,

dg = restriction of the measure (2.1) to [D].

χ = length of the chord g: χ = χ(g) = |g|) (notation preferred in [1] and [2]).

Clearly the linear chords g ∈ [D] inherit the (ϕ, t) parametrization from lines in |G.

We also denote

[D]∗ = the space of oriented linear chords of D,

ν = an element of [D]∗, we can speak about the start endpoint of ν on ∂D,

[ν], [g] = the set of chords that hit ν or g (so [ν], [g] ⊂ [D]),

[ν]∗, [g]∗ = the set of oriented chords that hit ν or g (i.e. [ν]∗, [g]∗ ⊂ [D]∗).
The identity (2.2) below essentially presents the combinatorial solution of the Bu�on�

Sylvester problem for n needles (see [1] and [2], pages 107-109).

We set

ν1, ..., νn = a sequence of elements of [D]∗, we assume that n > 1,

Im(ν) = 1 if ν is hit bym chords from the collection ν1, ..., νn, otherwise Im(ν) = 0

(we say that ν hits a chord g if ν contains exactly one point from the interior of g).

A =

n∩
1

[νi] ⊂ [D]

and choose some chord g0 ∈ [D]. In the space [D] we consider the delta�measure δ0

concentrated on g0. Assuming that no three endpoints of the chords ν1, ..., νn lie on

a line and that g0 avoids all these endpoints, the �four indicator formula� yields

(2.2) 2δ0(A) = 2

n∑
i=1

In−1(νi) δ0([νi]) +
∑

In−2(di) δ0([di]) −
∑

In−2(si) δ0([si]).

Here each di or si is a segment joining a pair of endpoints of two di�erent chords, say

νr and νl from the collection ν1, ..., νn. By de�nition

di if νr and νl lie in di�erent half-planes with respect to continuation of di,
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si if νr and νl lie in one half-plane with respect to continuation of si.

On the space ([D]∗)n of sequences ν1, ..., νn, we consider the product measure

dν1...dνn,

where each measure dνi (a measure on [D]∗) locally coincides with dg (a measure on

[D]).

We integrate (2.2) over ([D]∗)n with respect to that product measure. First

(2.3) 2

∫
...

∫
δ0(A) dν1...dνn = 2

n∏
1

∫
[g0]∗

dνi = 2 (4χ0)
n,

where χ0 = |g0| is the length of the chord g0. Using symmetry we �nd

2

∫
...

∫ n∑
i=1

In−1(νi) δ0([νi]) dν1...dνn = 2n

∫
[g0]∗

dν1

∫
...

∫
In−1(ν1) dν2...dνn =

(2.4) = 4n

∫
[g0]

(4χ)n−1 dg.

In the next integral calculation we use the expression of dν in the coordinates

l = the start endpoint of ν, l ∈ ∂D,

ψ = the angle between ν and the line tangent to ∂D at l, that is

dg = sinψ dψ dl,

where dl is the length measure on ∂D. We �nd (a similar calculation is contained in

[1] as well as in [2], page 155)∫ [∑
In−2(di) δ0([di]) −

∑
In−2(si) δ0([si])

]
dν1...dνn =

= − 8n(n− 1)

[∫
L1

∫
L2

+

∫
L2

∫
L1

]
(4χ)n−2 cosβ1 cosβ2 dl1 dl2 =

(2.5) = − 4n(n− 1)

∫
[g0]

(4χ)n−1 cotβ1 cotβ2 dg,

where in the second line

χ = the length of linear chord between l1 and l2 (the chord l1, l2),

L1, L2 = the parts of ∂D separated by the endpoints of g0,

dli = length measures on Li, i = 1, 2,

β1, β2 = the angles between the chord l1, l2 and ∂D at its endpoints l1 and l2, both

taken to lie within ∂D, in the same half-plane with respect to (continuation of) l1, l2.

In the third line of (2.5) we used the Jacobian relation (see [2], page 50)

dg =
sinβ1 sinβ2

χ
dl1dl2.
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Putting together (2.3), (2.4) and (2.5), after deleting the common factor 4n we obtain

what we now call the totally disintegrated Pleijel identity

(2.6) χn
0 =

n

2

∫
[g0]

χn−1 dg − 1

2
n (n− 1)

∫
[g0]

χn−1 cotβ1 cotβ2 dg.

This identity was used for derivation of �disintegrated iso-perimetric inequality� in

[3], in the context of point X-ray theory; as for parallel X-rays, they require one more

integration.

3. Integration over a bundle of parallel chords

Given a planar direction α ∈ (0, π), we consider the following subset of [D]:

[D]α = the family of parallel chords of D that have direction perpendicular to α.

The chords from [D]α are parameterized solely by the translational parameter t

already mentioned above. For simplicity we suppress the explicit mentioning of α

in the notation:

dt = one dimensional Lebesgue measure on [D]α,

gt = the chord from [D]α that corresponds to t,

χt = the length of gt.

We put down (2.6) for a chord gt ∈ [D]α:

(3.1) (χt)
n =

n

2

∫
[gt]

χn−1 dg − 1

2
n (n− 1)

∫
[gt]

χn−1 cotβ1 cotβ2 dg.

This being an identity valid for every t, we integrate it by the measure dt. First we

mention that for any g ∈ [D] integration of the indicator function I[gt](g) yields∫
[D]α

I[gt](g) dt = χ sin α̂ϕ,

where α̂ϕ is the angle between the direction α and the direction ϕ of the chord g,

while χ = |g|. Hence by an interchange of integration order, for any function f(g)

de�ned on [D] we get∫
[D]α

dt

∫
[gt]

f(g) dg =

∫
[D]

f(g) dg

∫
[D]α

I[gt](g) dt =

∫
[D]

f(g)χ sin α̂ϕ dg.

Therefore integrating (3.1) yields

(3.2)∫
[D]α

(χt)
n dt =

n

2

∫
[D]

χn sin α̂ϕ dg − n(n− 1)

2

∫
[D]

χn cotβ1 cotβ2 sin α̂ϕ dg.

By (1.1) the identity (3.2) can be written as

(3.3)

∫
[D]α

(χt)
n dt =

n

2

∫ π

0

sin α̂ϕ dϕ

∫
[D]ϕ

(χt)
n dt−
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− n(n− 1)

2

∫ π

0

sin α̂ϕ dϕ

∫
[D]ϕ

(χt)
n cotβ1 cotβ2 dt.

Clearly the relation (3.3) has a speci�c form

Z(α) =

∫ π

0

z(ϕ) sin α̂ϕ dϕ,

where Z(α) and z(ϕ) are some functions de�ned on (0, π). From the last equation

z(ϕ) can be found in terms of Z(α) (see [2], pages 30-31): in operator notation,

z(ϕ) = A{Z(α)},

the operator A being

A{Z(α)} =
1

2

[
Z(ϕ) +

d2

dϕ2
Z(ϕ)

]
,

with the second derivative of Z(α) de�ned on the basis of the (0, π) model of the

space of planar directions. In the case (3.3) we have

Z(α) =

∫
[D]α

(χt)
n dt

and

z(ϕ) =
n

2

∫
[D]ϕ

(χt)
n dt − n(n− 1)

2

∫
[D]ϕ

(χt)
n.

If the boundary ∂D is su�ciently smooth, then the operator A is well de�ned: a

su�cient condition is that the tangent direction should change continuously along

∂D, and this property we will assume below. So we get∫
[D]ϕ

(χt)
n dt +

d2

dϕ2

∫
[D]ϕ

(χt)
n dt =

n

∫
[D]ϕ

(χt)
n dt − n(n− 1)

∫
[D]ϕ

(χt)
n cotβ1 cotβ2 dt.

Thus for every integer n > 1 and every direction α (to replace ϕ) we come to what

we call the Pleijel type identity for parallel X-rays∫
[D]α

(χt)
n dt − 1

n− 1

d2

dα2

∫
[D]α

(χt)
n dt = n

∫
[D]α

(χt)
n cotβ1 cotβ2 dt.

For su�ciently broad class of functions f(x) it implies

(3.4)

∫
[D]α

f(χt) dt −
d2

dα2

∫
[D]α

F (χt) dt =

∫
[D]α

f ′(χt)χt cotβ1 cotβ2 dt,

where

F (x) = x

∫ x

0

f(u)

u2
du.
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The identity (3.4) remains valid for certain "generalized functions"as well. First we

choose the function f(u) in (3.4) to be

(3.5) f(u) = hT (u),

where for some T > 0

hT (u) = 0 if u < T, and hT (u) = 1 if u > T.

Then by standard formalism

f ′(u) = δT (u) = the usual delta-function concentrated on T

and

F (x) = x

∫ x

0

hT (u) du

u2
= xhT (x)

∫ x

T

du

u2
,

i.e.

F (x) =
x − T

T
hT (x).

Hence in case of (3.5) the identity (3.4) takes the form

(3.6)∫
[D]α

hT (χt) dt −
1

T

d2

dα2

∫
[D]α

(χt − T )hT (χt) dt =

∫
[D]α

δT (χt)χt cotβ1 cotβ2 dt.

We consider the functions

ρα(T ) = the distance between the two parallel chords from [D]α both of length T ,

Hα(T ) = the area of the part of D between the two parallel chords of length T as

above minus the rectangular area T ρα(T ). We call Hα(T ) the �area function�. Clearly∫
[D]α

hT (χt) dt = ρα(T ) and

∫
[D]α

(χt − T )hT (χt) dt = Hα(T ),

so (3.6) rewrites as

(3.7) ρα(T ) − 1

T

d2

dα2
Hα(T ) =

∫
[D]α

δT (χt)χt cotβ1 cotβ2 dt.

With this Pleijel-type identity we work in the next section.

4. The differential equations

After writing the right-hand side of (3.7) as∫
L

δT (|χ|) |χ| cotβ1 cotβ2 dt +

∫
R

δT (|χ|) |χ| cotβ1 cotβ2 dt,
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where L and R are as in Lemma 1 above, in each of the two integrals we make an

integration variable change, choosing the chord length |χ| to replace t. So by the usual
δ -formalism (compare with (1.7))∫

[D]α

δT (|χ|) |χ| cotβ1 cotβ2 du =

(4.1) T cotβ
(L)
1 cotβ

(L)
2

d uL(T )

dT
− T cotβ

(R)
1 cotβ

(R)
2

d uR(T )

dT
,

where uL(T ) and uR(T ) are as in Section 1, while the angles β
(L)
i , β

(R)
i , i = 1, 2,

correspond to the (unique) chord of length T based in L or R correspondingly.

Preparing the de�nition below, we make a convention that the vertices of the angles

β
(L)
i and β

(R)
i , i = 1, 2, lie on the graph of the corresponding function Yi(u). While

Y1(u) and Y2(u) are the two branches of D de�ned in Section 1, we use the standard

writing

d Yi(uL(T ))

du
= the value of

d Yi(u))

du
at the point u = uL(T )

Another additional convention is that both β
(L)
1 and β

(R)
2 lie to the left of the

corresponding chord of length T .

De�nition 4.1. For i = 1, 2 we de�ne the functions si(u) by the relations

cotβ
(L)
i = si(uL(T ))

d Yi(uL(T ))

du
and cotβ

(R)
i = si(uR(T ))

d Yi(uR(T ))

du

and put

σ(u) = s1(u) s2(u).

The standard geometrical interpretation of a derivative implies

σ(u) attains only values +1 or −1.

From the de�nition of the class D we conclude that for values of u su�ciently close

to the ends of the corresponding pα necessarily

σ(u) = −1.

The jumps of σ(u) occur exactly at two points u1 and u2 uniquely determined by the

equations
d Yi(ui)

du
= 0, i = 1, 2

(this corresponds to the idea of exactly two lines of direction α tangent to D ∈ D).

So the following lemma is valid.
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Lemma 4.1. For any D ∈ D and any direction α, the function σ(u) attains the

value +1 within the interval (u1, u2) ⊂ pα and the value −1 in the interior of the

remaining part of pα.

Writing as appropriate

uL = uL(T ) and uR = uR(T ),

as well as for every T ∈ (0,M)

ΨL =
d Y1(uL)

du
and ΨR =

d Y1(uR)

du
,

we put (4.1) as

ρα(T ) − 1

T

d2

dα2
Hα(T ) =

σ(uL)T ΨL
d Y2(uL)

du

d uL(T )

dT
− σ(uR)T ΨR

d Y2(uR)

du

d uR(T )

dT
.

We also have additional equations valid for every T ∈ (0,M):

(4.2)
d Y2(uL)

du
= ΨL +

d T0(uL)

du
and

d Y2(uR)

du
= ΨR +

d T0(uR)

du
,

that follow from Y2(u) = Y1(u) + T0(u). This reduces the previous equation to

(4.3) ρα(T ) − 1

T

d2

dα2
Hα(T ) = σ(uL)T

duL(T )

dT

[
Ψ2

L + ΨL
d T0(uL)

du

]
−

−σ(uR)T
duR(T )

dT

[
Ψ2

R

d uR(T )

dT
+ ΨR

d T0(uR)

du

]
.

Our purpose is to �ndΨL andΨR. This will be possible if to (4.3) we add an additional

equation for ΨL and ΨR. We turn to the equation (1.10) and di�erentiate:

(4.4)
d

dT
U1L(T ) =

d

dT
U1R(T ) +Q(T ) with Q(T ) =

d

dT

[
1

T

∫ T

0

d

dε
ρα(τ) dτ

]
.

Since U1L(T ) = Y1(uL) identically (compare with (1.8)), we �nd

dU1L(T )

dT
=

dY1(uL)

du

duL
dT

= ΨL
duL
dT

.

This relation remains valid if we replace L by R. Thus the additional equation happens

to be

(4.5) ΨL
duL
dT

= ΨR
duR
dT

+ Q(T ) or ΨL = ΨR
duR
duL

+ Q(T )
dT

duL
.

Substitution of (4.5) into (4.3) yields the following lemma.
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Lemma 4.2. Given D ∈ D, for T ∈ (0,M) the function

d Y1(uR)

du
= ΨR

satis�es the quadratic equation

(4.6) AΨ2
R + BΨR + C = 0,

with coe�cients

A = σ(uL)T

[
duR
duL

]2
d uL(T )

dT
− σ(uR)T

duR(T )

dT
,

B = σ(uL)T
duR
duL

[ 2 Q(T ) + 1]− σ(uR)T,

C = σ(uL)T Q
2(T )

dT

duL
−

[
ρα(T ) − 1

T

d2

dα2
Hα(T )

]
,

where

uL = uL(T ), uR = uR(T ),
duR
duL

have been de�ned as functions of T . After ΨR is found from (4.6), we can �nd

d Y1(uL)

du
= ΨR

duR
duL

+ Q(T )
dT

duL
,

where

Q(T ) =
d

dT

[
1

T

∫ T

0

d

dε
ρα(τ) dτ

]
.

5. The problem of tomographic reconstruction of D

In mathematical tomography [4] the function Tα(u) = T0(u) is called an X-ray of D

perpendicular to the direction α. The quantities that can be calculated on the basis

of a given X-ray Tα(u) for some single direction α can be called single ray. Thus the

functions

(5.1)

uL(T ), u(T ),
d uL(T )

dT
,

d uR(T )

dT
,

duR
duL

,
dT (uL)

du
,

dT (uR)

du
, ρα(T ), Hα(T )

that appear in the expressions for A,B,C in Lemma 4 are single ray. On the other

hand, the functions

(5.2) Q(T ) and
d2

dα2
Hα(T )

found in the same expressions are not single ray. From the presence of the directional

derivative in the expression for Q(T ), we conclude that two X-rays Tϕ(u) in directions

close to α would be enough for approximate evaluation of that quantity. That evaluation

would tend to become exact in the limit, as the directions of the two X-rays change,
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both converging to direction α. By the presence of the second directional derivative,

evaluation of the second quantity in (5.2) would require knowledge of Tϕ(u) for three

values ϕ close enough to α. This evaluation too is of the asymptotically exact nature,

similar to the mentioned property of the evaluation of Q(T ). These remarks suggest

an approach to tomographic reconstruction of D ∈ D postulating that the quantities

in (5.1) and (5.2) are "known". However, beyond (5.1)�(5.2) there are discontinuous

quantities

(5.3) νL(T ) = σ(uL) and νL(T ) = σ(uR)

on which A,B,C depend. There is another discontinuous function S(T ) that also

attain only values +1 and −1: it appears in the expression for ΨR found from (2.8)

as

(5.4) ΨR(A,B,C, S(T )) =
−B + S(T )

√
B2 − 4AC

2A
.

What about them?

By Lemma 4.1, both νL(T ) and νR(T ) can have exactly 1 jump in the interval (0,M)

(for smaller values of T both equal −1). As for S(T ), this function may have jumps

only at values of T , for which the square root in (5.4) vanishes. This essentially reduces

the problem to �nding the jump locations for νL(T ) and νR(T ).

The class of functions ν(T ) de�ned on the interval (0,M) that attain only values

−1 (for smaller values of T ) and 1 and possess exactly one points of discontinuity

we identify with the interval (0,M). The space of pairs [ν1(T ), ν2(T )] we identify

with the square (0,M) × (0,M). Lemma 4.2 o�ers an algorithm of search within

(0,M) × (0,M), that would permit to �nd, basing on the quantities (5.1)�(5.2) the

pair [νL(T ), νR(T )] that approximates

[µL(T ), µR(T )] = the element from (0,M) × (0,M) that really corresponds to

D ∈ D under study.

Given a pair [νL(T ), νR(T )], we choose an S(T ) according to the above remark and

calculate ΨR(A,B,C, S(T )) as in (5.4). By Lemma 4.2, and (4.2) we obtain both

functions
d Y1(u)

du
and

d Y2(u)

du
.

and with them the two functions Y1(u) and Y2(u) (each determined up to a shift

perpendicular to direction α). In this way we obtain a map

(5.5) [νL(T ), νR(T )] ⇒ [Y1(u), Y2(u) ].
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It is clear, that if [νL(T ), νR(T )] = [µL(T ), µR(T )], then Y1(u) would become the

lower and Y2(u) the upper branch of ∂D.

The map (5.5) can be used in a search for a satisfactory approximation for σ0(u), S0(T ).

Here some continuous functional F de�ned in the space of pairs [Y1(u), Y2(u) ] can

help:

F[Y1(u), Y2(u) ] should play the role of distance from the pair [Y1(u), Y2(u) ] to

the set D,

F[Y1(u), Y2(u) ] = 0 if Y1 and Y2 are the upper and lower branches of boundary

of some D ∈ D.

The search for [νL(T ), νR(T )] approximating [µL(T ), µR(T )] based on some concrete

F can be as follows. It is necessary to choose some (su�ciently small) ε > 0 and

have a source of test candidate pairs [νL(T ), νR(T )]. The candidates can be supplied

say, by Monte Carlo method as random points in (0,M) × (0,M), or come from

some lattice in that square. Given a candidate pair, Y1(u) and Y2(u) are calculated

on the basis of (3.1)-(3.2); if F[Y1(u), Y2(u) ] > ε, then [νL(T ), νR(T )] is rejected,

otherwise it is accepted as an approximation for [µL(T ), µR(T )]. The convex hull

of the �gure obtained by appropriately shifted graphs of Y1(u) and Y2(u) is then

accepted as an (approximate) reconstruction of D. This would yield asymptotically

exact reconstruction of D ∈ D by means of three parallel X-rays.

Now we give an example where complete tomographic reconstruction of a D ∈ D can

be done without described search procedure.

Let for some direction α, some r > 0 and every u ∈ (−r, r)

(5.6) Tα(u) = 2
√
r2 − u2,

and the directional derivatives at α let be identical zero, i.e. for every T ∈ (0, 2r)

(5.7) Q(T ) = 0 and
d2

dα2
Hα(T ) = 0

Of course, in case of D = a circular disc D of radius r with abscissa of the center at

u = 0 we have those values, but is the contrary assertion valid?

Without di�culty we get

U1L(T ) = U1R(T ), which is the same as Y1(uL) = Y1(uR),

duR
duL

= − 1,
d uL(T )

dT
= +

T

2 ρ(T )

d uR(T )

dT
= − T

2 ρ(T )
,

so the functions in Lemma 3 are found to be

A =
T 2

2 ρ(T )
[σ(uL) + σ(uR) ] , B = −T [σ(uL) + σ(uR) ], C = − ρ(T ),
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implying

B2 − 4AC = 2T 2 [ 1 + σ(uL)σ(uR) + σ(uL) + σ(uR)] = 2T 2 c,

where c can attain only values 0 or 4. To keep ΨR(A,B,C, S(T )) continuous and by

Lemma 3, we necessarily have to assume that c = 0. Hence

ΨR(A,B,C, S(T )) =
−B
2A

=
ρ(T )

T
=

u√
r2 − u2

.

Integrating this ΨR we get familiar expressions for Y1 and Y2 that correspond to a

circular disc of radius r. We conclude that the following uniqueness result holds:

Theorem 5.1. Let for some D ∈ D the X-ray for some direction α be given by (5.6).

If for the same α holds (5.7), then necessarily D is a circular disc of radius r.

To end the paper, we point at a corollary, probably of interest in convexity theory.

Corollary 5.1. For every D ∈ D the discriminant B2 − 4AC is continuous and

nonnegative; at the discontinuity points of S0(T ) necessarily B
2 − 4AC = 0.
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