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1. INTRODUCTION

Let Rs (s ≥ 1) be the s-dimensional Euclidean space and let Ns be the set of lattice

points in Rs. By x = (x1, . . . , xs), y = (y1, . . . , ys) we denote the points of the space

Rs and by m = (m1, . . . ,ms), n = (n1, . . . , ns) the points of the set Ns. For any

i = 1, . . . , s we set i = {1, . . . , i}. If B is an arbitrary subset of the set s, then by

xB we denote the point (x′1, . . . , x
′
s), where x′i = xi when i ∈ B and x′i = 0 when

i ∈ s\B = B′. By |B| denote the number of elements of the setB. IfB = {i1, . . . , i|B|},

then

mB∑
νB=nB

cν =

m1∑
νi1=n1

· · ·
m|B|∑

νi|B|=n|B|

cνi1
, . . . , νi|B| .

We will also use the following notation: by Πs we denote the set of all nonempty

subsets of the set s; e = (1, . . . , 1); m±n = (m1±n1, . . . ,ms±ns); m ≥ n denotes

mi ≥ ni, i ∈ s; m→ ∞ denotes mi → ∞, i ∈ s; dtB =
∏
i∈B

dti and dt =
s∏

i=1

dti.

Let Xs be either the Lebesgue space Lp(T
s), T ∈ [−π, π], 1 ≤ p <∞, or the space

of continuous functions C(T s). If f ∈ Xs, by ∥f∥Xs we denote the norm of f in the
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space Xs. Besides, for any B ∈ Πs we set

∥f∥X|B| =


(
(2π)−|B|

∫
T |B|

|f(t)|pdtB
) 1

p

, X |B| = Lp(T
|B|), 1 ≤ p <∞,

max
tj∈T
j∈B

|f(t)|, X |B| = C(T |B|).

It is clear that

(1.1)
∥∥∥f∥X|B|

∥∥
X|B′| = ∥f∥Xs .

For f ∈ Xs we set

∆h{j}f(x) = f(x+ h{j})− f(x),

and define ∆hB
f(x) to be the repeated applications of the operation hj when j runs

over the set B ⊂ s. By the expression

(1.2) sup
|hj |<δj
j∈B

∥∆hB
f(x)∥Xs = ωB(f, δB)Xs , δB ≥ 0,

we define the modulus of continuity of a function f ∈ Xs with respect to those

variables whose indices belong to the set B ⊂ s.

Let T (j)
mj (x) ∈ Xs be a trigonometric polynomial of degree mj (mj ≥ 0) with

respect to the variable xj and coefficients depending on the remaining variables xi,

i ∈ {j}′. For mj < 0 we assume that T (j)
mj (x) = 0. The following sum

(1.3) Tm(x) =
∑
j∈s

T (j)
mj

(x)

is called the trigonometric quasi-polynomial of degree m (see [1]). Denote by Pn the

set of trigonometric quasi-polynomials of degree ≤ n, that is,

Pn = {Tm(x) : m ≤ n}.

The quantity

(1.4) Hn(f)Xs = inf
Tm∈Pn

∥f − Tm∥Xs ,

introduced by M. K. Potapov [2], is called the best “angular” approximation of a

function f (see [2]), or the best approximation of f by the quasi-polynomials of

degree ≤ n (see [1]). In what follows we will use the last term. M. K. Potapov [2] and

Yu. A. Brudnyi [1] have found relationships between the best approximation Hn(f)Xs
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and the modulus of continuity ω(f, n−1). Specifically, they proved direct and inverse

theorems for the approximation of a function f ∈ Xs by trigonometric polynomials.

Let the multiplicative matrix Λ =
( s∏

j=1

λ
(j)
nj ,kj

)
= (λn,k) be given. The matrices

Λj = (λ
(j)
nj ,kj

), j = 1, . . . , s, are called constituent matrices of the matrix Λ. Let the

elements of Λ be such that for any φ ∈ X1 and f ∈ Xs we have the following relations:

Lnj (φ, xj) =

∞∑
mj=−∞

φ̂mj exp(imjxj)λ
(j)
nj ,|mj |

=
1

2π

∫
T

φ(xj + tj)
∞∑

mj=−∞
exp(imjtj)λ

(j)
nj ,|mj |dtj , j ∈ {1, . . . , N},(1.5)

Ln(f, x) =
∞∑

m=−∞
f̂m

s∏
j=1

exp(imjxj)λ
(j)
nj ,|mj |

=
1

(2π)s

∫
TN

f(x+ t)
s∏

j=1

( ∞∑
mj=−∞

exp(imjtj)λ
(j)
nj ,|mj |

)
dt,(1.6)

1

2π

∫
T

∞∑
mj=−∞

exp(imjtj)λ
(j)
njm|mj |dtj = 1, j ∈ {1, . . . , N}.(1.7)

2. THE MAIN RESULT

Theorem 2.1. Let for any j ∈ s and φ ∈ X1 the inequalities

(2.1) ∥φ− Lnj (φ)∥X1 ≤ κΛj

∞∑
kj=0

Ekj (φ)X1 · a(j)nj ,kj

hold, where (anj ,kj ), j ∈ s, are nonnegative matrices. Then for any f ∈ Xs

(2.2) ∥f − Ln(f)∥Xs ≤ κΛ

∑
B∈Πs

∞∑
kB=0

HkB−eB′ (f)
∏
j∈B

a
(j)
nj ,kj

.

Proof. First, using the method of induction, we show that for any natural s

(2.3) f(x+ t)− f(x) =
∑

B∈Πs

∆tBf(x).

Indeed, for s = 1 the equality (2.3) is trivial. Assuming that (2.3) is valid for any

s = d, it is easy to check that for any x, t ∈ Rd+1

(2.4)
∑

B∈Πd+1

∆tBf(x) = ∆t{d+1}

( ∑
B∈Πd

∆tBf(x)

)
+
∑

B∈Πd

∆tBf(x) + ∆t{d+1}f(x).
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In view of the assumption we have∑
B∈Πd

∆tBf(x) = f(x+ td)− f(x).

From this and (2.4) we get∑
B∈Πd+1

∆tBf(x) = f(x+ t)− f(x+ td)− f(x+ t{d+1}) + f(x)

+ f(x+ td)− f(x) + f(x+ t{d+1})− f(x) = f(x+ t)− f(x),

yielding (2.3) for any natural s.

Further, it follows from (1.6), (1.7) and (2.3) that

Ln(f, x)− f(x) = (2π)−s

∫
T

(f(x+ t)− f(x))
s∏

j=1

( ∞∑
mj=−∞

exp(imjtj)λ
(j)
nj ,|mj |

)
dt

=
∑

B∈Πs

(2π)−s

∫
T s

∆tBf(x)
s∏

j=1

( ∞∑
mj=−∞

exp(imjtj)λ
(j)
nj ,|mj |

)
dt =

∑
B∈Πs

I(B, f,Λ, x).

Therefore we have

(2.5) ∥f − Ln(f)∥Xs ≤
∑

B∈Πs

∥I(B, f,Λ, x)∥Xs .

We now proceed to estimate the norm ∥I(B, f,Λ, x)∥Xs . Note first that ∆tBf(x)

does not depend on tB′ . Consequently, in view of (1.7), we get

(2.6) I(B, f,ΛB , x) = (2π)−s

∫
T s

∆tBf(x)
s∏

j=1

( ∞∑
mj=−∞

exp(imjtj)λ
(j)
nj ,|mj |

)
dt

= (2π)−|B|
∫
T |B|

∆tBf(x)
∏
j∈B

( ∞∑
mj=−∞

exp(imjtj)λ
(j)
nj ,|mj |

)
dtB.

Assuming that for any B ∈ Πs the inequality

(2.7) ∥I(B, f,ΛB , x)∥X|B| ≤ κΛB

∞∑
kB=0

∥f − TkB−eB′∥X|B|

∏
j∈B

a
(j)
nj ,kj

is proved, where TkB−eB′ is any trigonometric quasi-polynomial of degree kB − eB′

and ΛB =
( ∏

j∈B

λ
(j)
nj ,kj

)
, in view of (1.1), we obtain

∥I(B, f,ΛB , x)∥Xs ≤ κΛB

∞∑
kB=0

∥f − TkB−eB′∥Xs

∏
j∈B

a
(j)
nj ,kj

.

From the latter inequality and (2.5), by virtue of arbitrariness of TkB−eB′ (x) the

assertion of the theorem follows.
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To complete the proof, it remains to prove the inequality (2.7) for any B ∈ Πs.

We apply induction on the number of elements in the set B. Consider first the case

where |B| = 1, that is, B consists of one element.

By (2.1), for any trigonometric polynomial T (j)
kj

(x) of degree kj with respect to

the variable xj with coefficients depending on the remaining variables xi, i ∈ {j}′,

we have

∥f − Lnj (f)∥X|{j}| ≤ κΛj

∞∑
kj=0

∥f − T
(j)
kj

∥X|{j}|anj ,kj .

Let B = {j}. It follows from (1.5), (1.7) and (2.6) that

Lnj (f, x)− f(x) = I({j}, f,Λ{j}, x).

The last two relations imply (2.7) in the case where B ∈ Πs consists of one element.

Assume now that (2.7) is true for those B ∈ Πs for which |B| = d, and prove it

when |B| = d+ 1.

Let B1 = {j1, . . . , jd} and B2 = {j1, . . . , jd+1}. Using (2.6) it is easy to show that

I(B2, f,Λ, x) = I({jd+1}, I(B1, f,ΛB1),Λ{d+1}, x),(2.8)

I(B1, f1 + f2,ΛB1 , x) = I(B1, f1,Λ, x) + I(B1, f2,Λ, x).(2.9)

Besides, if T (jd+1)
kjd+1

is any trigonometric polynomial of degree kjd+1
with respect

to the variable xjd+1
with coefficients depending on the remaining variables, then

I(B, T
(jd+1)
kjd+1

,Λ, x) will be a trigonometric polynomial of degree kjd+1
with respect to

the variable xjd+1
.

Therefore, by the validity of inequality (2.7) when B consists of one element,for

B = {jd+1} we have

(2.10) ∥I(B2, f,ΛB2 , x)∥X|{jd+1}

≤ κΛjd+1

∞∑
kjd+1

=0

∥∥∥I(B1, f,ΛB1 , x)− I(B1, T
(jd+1)
kjd+1

,ΛB1 , x)
∥∥∥
X|{jd+1}|

a
(jd+1)
njd+1

,kjd+1
.
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Assuming (2.7) when B1 = {j1, . . . , jd}, in view of (2.9), we have

(2.11)
∥∥∥I(B1, f,ΛB1 , x)− I(B1, T

(jd+1)
kjd+1

,ΛB1 , x)
∥∥∥
X|B1|

≤ κΛB1

∞∑
kB1

=0

∥∥∥f − T
(jd+1)
kjd+1

− TkB1
−eB′

1

∥∥∥
X|B1|

∏
j∈B1

a
(j)
nj ,kj

,

where TkB1−eB′
1

is any trigonometric quasi-polynomial of degree kB1 − eB′
1
. Observe

that (see (1.3)) for any preassigned TkB2−eB′
2

(trigonometric quasi-polynomial of

degree kB2
− eB′

2
) one can choose T (jd+1)

kjd+1
and TkB1−eB′

1
to satisfy

TkB2
−eB′

2
(x) = T

(jd+1)
kjd+1

(x) + TkB1
−eB′

1
(x).

Now, taking X |B1|- norm of both sides of (2.10) and using (1.1) and (2.11), we get

∥I(B2, f,ΛB1 , x)∥X|B2| ≤ κΛB2

∞∑
kB2

=0

∥f − TkB2
−eB′

2
∥X|B2|

∏
j∈B2

a
(j)
nj ,kj

,

where TkB2−eB′
2

is any trigonometric quasi-polynomial of degree kB2 − eB′
2
.

This proves (2.7) when |B| = d + 1, and hence for any B ∈ Πs. The proof of

Theorem 1.1 is completed. �

Corollary 2.1. Let the conditions of Theorem 2.1 and

(2.12)
∞∑

kj=0

anj ,kj < κΛj , j ∈ s,

be fulfilled. Then

(2.13) ∥f − Ln(f)∥Xs ≤ κΛ

∑
j∈s

∞∑
kj=0

E
{j}
kj

(f)Xsa
(j)
nj ,kj

.

Proof. According to the definitions of the best approximation by quasi-polynomials

(1.4) and partial best approximation by trigonometric polynomials we have

(2.14) Hn{i}−e{i}′ (f)Xs = E{j}
ni

(f)Xs , i ∈ s.

Let us take any B ∈ Πs and let i ∈ B. Using the monotonicity of Hn(f)Xs , and

(2.12), (2.14), we obtain

(2.15)
∞∑

kB=0

HkB−eB′ (f)
∏
j∈B

a
(j)
nj ,kj

≤
∞∑

kB=0

E
{i}
ki

(f)Xs

∏
j∈B

a(j)nj ,xj

≤ κΛ

∞∑
ki=0

E
{i}
ki

(f)Xsa
(i)
ni,ki

.
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This and (2.2) imply the assertion of Corollary 2.1. �

Assume that we have a sequence {εk}k≥−e decreasing with respect to each index

kj , j ∈ s and satisfying the condition

lim
kj→∞

εk = 0, j ∈ s.

Consider the following classes of functions

X1(ε(j)) =
{
φ : φ ∈ X1, E

{j}
kj

(φ)X1 ≤ εk{j}−e{j}′

}
, j ∈ s,

Xs(ε) = {f : f ∈ Xs, Hk(f)Xs ≤ εk} .

Now we are going to show that under the condition (2.12) the result of Theorem

2.1 is final in the following sense.

Assume that for any j ∈ s

(2.16) sup
φ∈X1(ε(j))

∥φ− Lnj (φ)∥X1 ≥ κΛj

∞∑
kj=0

εk{j}−e{j}′a
(j)
nj ,kj

.

Then

(2.17) sup
f∈Xs(ε)

∥f − Ln(f)∥Xs ≥ κΛ

∑
B∈Π

∞∑
kB=0

εkB−eB′ (f)
∏
j∈B

a
(j)
nj ,kj

.

In fact, there exists i ∈ s such that

(2.18) κΛi

∞∑
ki=0

εk{i}−e{i}′a
(i)
ni,ki

≥ 1

s+ 1

∑
j∈s

κΛj

∞∑
kj=0

εk{j}−e{i}′a
(j)
nj ,kj

.

It follows from (2.16) that there exists a function ψ ∈ X1(ε(i)) such that

(2.19) ∥ψ − Lni(ψ)∥X1 ≥ κΛi

∞∑
ki=0

εk{i}−e{i}′a
(i)
ni,ki

.

Let us take any B ∈ Πs and let j ∈ B. Then using the monotonicity of εk and

(2.12), we obtain
∞∑

kB=0

εkB−eB′

∏
d∈B

and,xd
≤ κΛ

∞∑
kj=0

εk{j}−e{j}′a
(j)
nj ,kj

.

This inequality yields

(2.20)
∑

B∈Πs

∞∑
kB=0

εkB−eB′

∏
d∈B

and,xd
≤ κΛ

∑
j∈s

∞∑
kj=0

εk{j}−e{j}′a
(j)
nj ,kj

.

Assume now f(x) = ψ(xi). Then, in view of (1.7), we have

Ln(f, x) = Lni(ψ, xi).
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Therefore

∥f − Ln(f)∥Xs = ∥ψ − Lni(ψ)∥X1 .

This and (2.18)–(2.20) imply (2.17).

Consider now the approximative properties of rectangular Fourier sums. This

special case of Theorem 2.1 needs special attention, since in the one-dimensional

case the properties of partial sums of Fourier series are studied in more detail than

other linear means.

Let f ∈ L(T 2) and let Sn(f, x) be the partial sums of Fourier series of function

f . Below Y s stands for one of the spaces C(T s) or L(T s). Observe that for spaces

Lp(T
s), 1 < p <∞ the results considered below are less significant.

In the one-dimensional case K. I. Oskolkov in [3] and [4] proved that

∥f − Sn(f)∥Y 1 ≤ κ
n∑

ν=0

En+ν(f)Y 1

ν + 1
.

From this and Theorem 2.1 we obtain the following result.

Theorem 2.2. Let f ∈ Y s. Then

(2.21) ∥f − Sn(f)∥Y s ≤ κs

∑
B∈Πs

nB∑
νB=0

H(n+ν)B−eB′ (f)Y s

∏
j∈B

1

νj + 1
.

According to (2.14), in the special case of s = 2, Y 2 = C(T 2), the inequality (2.21)

becomes

(2.22) ∥f − Sn1n2(f)∥C(T 2) ≤ κ
( n1∑

ν1=0

n2∑
ν2=0

Hn1+ν1,n2+ν2(f)C(T 2)

(ν1 + 1)(ν2 + 1)

+

n1∑
ν1=0

E
{1}
n1+ν1

(f)C(T 2) ·
1

ν1 + 1
+

n2∑
ν2=0

E
{2}
n2+ν2

(f)C(T 2) ·
1

ν2 + 1
.

Next, in view of D. Jackson’s theorem (see (1.2)) we have

E
(i)
ni+νi

(f)C(T 2) < κω{i}

(
f,

1

ni + νi

)
C(T 2)

< κω{i}

(
f,

1

ni + 1

)
C(T 2)

, i = 1, 2.

Finally, according to Potapov - Brudnyi theorem (see [1], [2]), we have

Hn1+ν1,n2+ν2(f)C(T 2) ≤ κω{1,2}

(
f,

1

n1 + 1
,

1

n2 + 1

)
C(T 2)

.
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Putting together the last two inequalities and (2.22) we obtain

(2.23) ∥f − Sn1,n2(f)∥C(T 2)

≤ κ
[
ω{1}

(
f,

1

n1 + 1

)
C(T 2)

ln(n1 + 2) + ω{2}

(
f,

1

n2 + 1

)
C(T 2)

ln(n2 + 2)

+ ω{1,2}

(
f,

1

n1 + 1
,

1

n2 + 1

)
C(T 2)

ln(n1 + 2) ln(n2 + 2)

]
.

This unimprovable inequality was obtained by L. V. Zhizhiashvili [5, p. 178]. This

inequality, on account of

ω{1,2}

(
f,

1

n1 + 1
,

1

n2 + 1

)
C(T 2)

≤ 2min

(
ω{1}

(
f,

1

n1 + 1

)
C(T 2)

, ω{2}

(
f,

1

n2 + 1

)
C(T 2)

)
,

yields the following corollary of Theorem 2.2:

(2.24) ∥f − Sn1,n2(f)∥C(T 2)

≤ κ

[
ω{1}

(
f,

1

n1 + 1

)
C(T 2)

ln(n1 + 2) + ω{2}

(
f,

1

n2 + 1

)
C(T 2)

ln(n2 + 2)

+min

(
ω{1}

(
f,

1

n1 + 1

)
C(T 2)

, ω{2}

(
f,

1

n2 + 1

)
C(T 2)

)
ln(n1 + 2) ln(n2 + 2)

]
.

Let now ω1(t) and ω2(t) be given moduli of continuity, and let

Hω1,ω2 =

{
f : f ∈ C(T 2), ω{j}

(
f,

1

nj + 1

)
C(T 2)

≤ ωj

(
1

nj + 1

)
C(T 2)

, j = 1, 2

}
.

From the asymptotic equality, obtained by A. I. Stepanetz (see [6, p. 195]) for the

quantity

sup
f∈Hω1,ω2

∥f − Sn1,n2(f)∥C(T 2),

we get the unimprovability of the estimate (2.24) in the class of functions Hω1,ω2 .

This estimate, however, becomes crude for those functions of the class Hω1,ω2 whose

best approximations by quasi-polynomials decrease rapidly. For instance, if

f(x1, x2) =
∞∑

k1=0

cos k1x1
2k1

∞∑
k2=0

cos k2x2
2k2

,

it can be easily shown that the estimates (2.23) and (2.24) in this case become more

crude than estimate (2.22).
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