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1. INTRODUCTION

Let R® (s > 1) be the s-dimensional Euclidean space and let N* be the set of lattice
points in R*. By « = (z1,...,2s), ¥ = (y1,...,ys) we denote the points of the space
R® and by m = (my,...,ms), n = (n1,...,ns) the points of the set N°. For any
i=1,...,5s we set 1 = {1,...,i}. If B is an arbitrary subset of the set 5, then by
xp we denote the point (x},...,z,), where } = x; when ¢ € B and z; = 0 when

i € 3\B = B'. By | B| denote the number of elements of the set B.If B = {i1,... |},

then
mg my m|B|
D= D DL Cwpe Vi
vp=npg l/ilznl Vi|B|:n‘B‘

We will also use the following notation: by II; we denote the set of all nonempty
subsets of the set 5; e = (1,...,1); m*n=(m;xni,...,msEtns); m > n denotes
m; >n;, 1 €5; m — oo denotes m; — 00,1 €S; ditg = H dt; and dt = ﬁ dt;.

Let X* be either the Lebesgue space L,(T?), T € [—Tr,lfr]fj 1<p<oo, ozr:tlhe space

of continuous functions C(7%). If f € X*, by || f|/x- we denote the norm of f in the
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space X°. Besides, for any B € Il we set

1

(2m) 17! / If(t)lpdt3>p, XIBl = L(TIBl), 1< p< oo,
TIB|

£l x181 =
|B|l — |B|
mac | (1) X181 = o(rin),
jeB
It is clear that
(1.1) £z || s = 1l xs -

For f € X° we set
Apgy fl) = flz+ hiy) = flo),
and define Ay, f(z) to be the repeated applications of the operation h; when j runs

over the set B C 5. By the expression

(1.2) P [Ang f(2)llxs =wp(f,0B)x:, 6820,
hj|<d;
jEB

we define the modulus of continuity of a function f € X* with respect to those
variables whose indices belong to the set B C 5.
Let T,(,{J)(x) € X* be a trigonometric polynomial of degree m; (m; > 0) with

respect to the variable z; and coefficients depending on the remaining variables x;,

i € {j}. For m; < 0 we assume that Tfyf)(x) = 0. The following sum

(1.3) To(z) = 379 ()
j€s
is called the trigonometric quasi-polynomial of degree m (see [1]). Denote by P, the

set of trigonometric quasi-polynomials of degree < n, that is,
P, ={Tn(z): m<n}.
The quantity

(1.4) Ho(f)xe = o | f =Tl

introduced by M. K. Potapov [2], is called the best “angular” approximation of a
function f (see [2]), or the best approximation of f by the quasi-polynomials of
degree < n (see [1]). In what follows we will use the last term. M. K. Potapov [2] and

Yu. A. Brudnyi [1] have found relationships between the best approximation H, (f) xs
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and the modulus of continuity w(f,n~1!). Specifically, they proved direct and inverse
theorems for the approximation of a function f € X* by trigonometric polynomials.
Let the multiplicative matrix A = ( H )\(J) ) = (An,k) be given. The matrices
A= (N (4) ) j=1,...,s, are called C(;nstltuent matrices of the matrix A. Let the
elements of A be such that for any p € X' and f € X* we have the following relations:
oo
Ly, (p,z;) = Z Orm, exp(imjxj))\fi)’lmjl

mj=—00

(1.5) = 7/ (z; + ;) exp(imjtj))\gj)7|mj|dtj, je{l,...,N},

mj;=—00

Ln(fax): Z meeXp ijx] nj),\m]\

(1.6) H( Z exp(imjtj))\gl | )dt
(1.7) / Z exp(1myt; ;)m‘m dty =1, je {1,...,N}.

2. THE MAIN RESULT

Theorem 2.1. Let for any j €3 and ¢ € X! the inequalities
> .
(2.1) lp = L, (@)lxs < 200, Y Eny0)xr-ad),
;=0

hold, where (an; x;), j €35, are nonnegative matrices. Then for any f € X*

(2.2) 1f = LalDllxe < on 30 3 gy () [[ 0,

Bells kp=0 JEB

Proof. First, using the method of induction, we show that for any natural s
(2.3) flz+1) = > A f(
Bell,
Indeed, for s = 1 the equality (2.3) is trivial. Assuming that (2.3) is valid for any
s = d, it is easy to check that for any x,t € R4+!

(24) Z AtB At{d+1}( Z Ath ) Z AtB +At{d+1}f( )

BEM 44 Bell, Belly
21



L. GOGOLADZE

In view of the assumption we have
> A fz) = flo+tg) — f(a).
Belly

From this and (2.4) we get

> A f@) = fa+t) = fle+tg) — f@+taey) + f@)

BGHd+1

+ flz+tg) — f(@) + flx +tary) — f(@) = f(z + 1) — f(z),
yielding (2.3) for any natural s.
Further, it follows from (1.6), (1.7) and (2.3) that

S o0

Lot~ @) =0 [ G-t [ X ewtmund,, )

T j=1 “mj=—o0

= (QW)*S/TS Ath(x)H< 3 exp(imjtj)Afjj{mj)dt > I(B.f.A2).
Bell, j=1 “mj=—oc0 Bell,
Therefore we have
(2.5) If = La(Hllxs < D (B, £ A, 2)||x- -
Bellg

We now proceed to estimate the norm ||I(B, f, A, x)| x=. Note first that A, f(z)

does not depend on ¢p:. Consequently, in view of (1.7), we get

oo

Z exp(imjtj)/\ii),mjl)dt

20) 1580 =0 [ s (
j=1

oo

= (2m)" 1Bl A, f(2) H ( Z exp(imjtj))\gi),lmj|>dtB.

B
TI5| jEB m;=—00

Assuming that for any B € I the inequality

(2.7) (B, [, Ap, )| xim < seay 3 1 = Thp—ep i [ 0,
kp=0 jEB

is proved, where T}, ., is any trigonometric quasi-polynomial of degree kg — ep

and Ap = ( 11 )\5;7,),6,), in view of (1.1), we obtain
]EB 7™

II(B. £ Ap.x)|xe < ey O 1 = Thp—epllxe [[ 0¥,
k=0 jEB

From the latter inequality and (2.5), by virtue of arbitrariness of Ty, ., (z) the

assertion of the theorem follows.
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To complete the proof, it remains to prove the inequality (2.7) for any B € II;.
We apply induction on the number of elements in the set B. Consider first the case
where |B| = 1, that is, B consists of one element.

By (2.1), for any trigonometric polynomial T ,g )(ac) of degree k; with respect to
the variable z; with coefficients depending on the remaining variables z;, i € {j}’,

we have

1 = Lo, (Dl < en, 1 =T x50, i, -
k;=0

Let B = {j}. It follows from (1.5), (1.7) and (2.6) that

L'fl/j(f?x) - f(ﬂ?) = I({j},f,A{j},],‘)

The last two relations imply (2.7) in the case where B € Il consists of one element.
Assume now that (2.7) is true for those B € II; for which |B| = d, and prove it
when |B|=d+ 1.
Let By = {j1,...,ja} and B2 = {j1,...,Ja+1}. Using (2.6) it is easy to show that

(28) I(B27 fv Aa $) = I({jd+1}a I(Bla f, ABl)’ A{d+1}7 LE),
(29) I(Bla fl + f27ABlvx) = I(BlvflaAvx) + I(Bl7f27Avx)'
Besides, if T,g::l) is any trigonometric polynomial of degree kj;,,, with respect

to the variable x;,,, with coefficients depending on the remaining variables, then

I1(B, T,Ejjill), A, z) will be a trigonometric polynomial of degree kj,., with respect to

the variable z;,, , .
Therefore, by the validity of inequality (2.7) when B counsists of one element,for

B ={ji+1} we have

(2'10) HI(BQ’ f7 ABzvx)Hx\{jdH}

< sp

Z HI(B1,f7 Ap,,x) — I(Bl’Tigfjﬁ)7Aan)H a(jd+1)k

Jd+1 Xde+1” MNjgi1>
0

Jar1
Kjgir=
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Assuming (2.7) when By = {ji1,...,74}, in view of (2.9), we have

(2.11) HI(Bl,f, Ap,,z) — I(Bl,T,i?'dH),ABUx)HX‘BH

< (Ja+1) (J)
¥Ap, Z H‘f T1d+1 TkBl_eB’1 x1B1] 1_’! nj,k; 0

k‘Bl—O NISE=31

where Ty, —.,, is any trigonometric quasi-polynomial of degree kg, — ep;. Observe
1
that (see (1.3)) for any preassigned Tj,, —,, (trigonometric quasi-polynomial of
2

degree kp, — ep;) one can choose T,y‘”ﬂ and Ty, to satisfy
d+1

—€pg/
By

*€B§< ) T(Jd+1)< ) + TkBlfeBg (3;‘)

Jd+1

Now, taking X !Z1l- norm of both sides of (2.10) and using (1.1) and (2.11), we get

0o
11(Bz, f, Ay, )| x 1821 < XA, Z ”f_TkBQ*eBIZHX'B?‘ H aizjj),kj7
k32:0 JEDB>

where Ty, _.,, is any trigonometric quasi-polynomial of degree kg, — ep;.
2
This proves (2.7) when |B| = d + 1, and hence for any B € II,. The proof of
Theorem 1.1 is completed. g

Corollary 2.1. Let the conditions of Theorem 2.1 and

(2.12) Z s gy < 70,5 JE,

k;=0

be fulfilled. Then

(2.13) 1f = LalDllxe <0 30 30 B (el

JE5 k;=0

Proof. According to the definitions of the best approximation by quasi-polynomials

(1.4) and partial best approximation by trigonometric polynomials we have
(2.14) Hypy ey (Hxe = BV (f)xe, i€5.

Let us take any B € II; and let ¢ € B. Using the monotonicity of H,(f)xs, and
(2.12), (2.14), we obtain

(2.15) S Hipe (N [T 09 < Y B (H)xe T[] 08,
kp=0 jEB k=0 JjEB
< A Z E{ } k1 .

ki=0
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This and (2.2) imply the assertion of Corollary 2.1. O
Assume that we have a sequence {ej},>_. decreasing with respect to each index

k;, j €5 and satisfying the condition
lim ¢, =0, j€S5.
kj—o0

Consider the following classes of functions
XU ={oipe X!, B 0)x Senyyepy ) JES
Xo(e)={f:fe€X® Hp(f)x: <ex}.
Now we are going to show that under the condition (2.12) the result of Theorem

2.1 is final in the following sense.

Assume that for any j € 5

(2.16) sup [l = Ln, ()l x1 = 5a, Z Ckiy ey @ (J)
pEX1(eW@) k;=0
Then
(2.17) sup | f = La(F)llxe =300 D0 D ehnep (F) [ 0y, -
feX=(e) Bell k=0 jEB

In fact, there exists ¢ € 5 such that
@)
(2.18) HAi Z Sy ey nL, ~ 511 Z%A Z Ckiiy =y nyh; -
ki=0 Jj€s kj=

It follows from (2.16) that there exists a function 1 € X' (¢(¥)) such that

(2.19) 1 = L, (0)llx1 > 520, Y Ehgiy—e gy @ g -
k;=0

Let us take any B € Il and let j € B. Then using the monotonicity of e, and
(2.12), we obtain

a9
§ 5kB —ep/ H Ong,zq < xp § :Ek{J} ey n]’kj ’

deB

This inequality ylelds

(220) Z Z Ekp—eps H and7$d = %AZ Z Ekijy— €LY nJ)7 k;

Bells kp=0 deB JES kj=0
Assume now f(z) = ¢(x;). Then, in view of (1.7), we have

L’ﬂ(f7 CL‘) = L’m (djﬂ mi)'
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Therefore

1f = Lo (F)llxs = Nl = L, () 1 x+ -
This and (2.18)—(2.20) imply (2.17).

Consider now the approximative properties of rectangular Fourier sums. This
special case of Theorem 2.1 needs special attention, since in the one-dimensional
case the properties of partial sums of Fourier series are studied in more detail than
other linear means.

Let f € L(T?) and let S, (f,z) be the partial sums of Fourier series of function
f. Below Y® stands for one of the spaces C(T®) or L(T*®). Observe that for spaces
L,(T?), 1 < p < oo the results considered below are less significant.

In the one-dimensional case K. I. Oskolkov in [3] and [4] proved that

n+1/
1 = Su(Dlls <%Z el

From this and Theorem 2.1 we obtain the following result.

Theorem 2.2. Let f € Y*. Then

(2.21) 1 = Su(Dllve <60 S0 Honaysen (D= [ —

vi+1°
BeTl, vp=0 jeB J +

According to (2.14), in the special case of s = 2, Y2 = C(T?), the inequality (2.21)

becomes
(2.22) |If = Snyn, (N < S Huy oot (o)
. nins c(T2) %<Vlz:0 g:o CESES))
{1} 1 2 2} 1
+,/1220En1+1/1 T2) * T +V22220Eng+1/2(f)0(T2)' T

Next, in view of D. Jackson’s theorem (see (1.2)) we have

i 1 1
EQ,, (Nowsy < swi (f, ) < rwy; (f, ) . i=1,2.
it (%) @ n; +v; C(T?) (i n; + 1 C(T2)

Finally, according to Potapov - Brudnyi theorem (see [1], [2]), we have

1 1
Hn vi,no+v S S 1 e 1 )
vrvnates (floe) < swp 2 (f ny+1 no+ 1> (T2)
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Putting together the last two inequalities and (2.22) we obtain

(2.23) (IS = Snina (Nllo2)
1

1
< In 2 1 2
_%{w{l}(f’ n1+1>C(T2) et )+w{2}(f’ n2+1>c(T2) nne+2)
1 1
1 2)1 2)1.
+w{12}<f7n 1 n2+1)C(T2) n(ny + 2) In(ng + )}

This unimprovable inequality was obtained by L. V. Zhizhiashvili [5, p. 178|. This

inequality, on account of

w , S 21min | wW y , W ; ,
{1,2} ny + w1 Ny + o 1 o {1} ny + 1 o) {2} no + 1 o

yields the following corollary of Theorem 2.2:

(224) [If = Snyma (Dlle(@)

1
< 1 2 1 2
= [w{l} (f’ ny + 1>C(T2) B2t (f’ ng + 1)C(T2) e 2)

1 1
: : , —— 1 2)In(ny +2) | .
i (w{l](f i+ 1)C(T2) @ <f n2 + 1)c<T2)> n 2tz +2)

Let now wy (t) and wa(t) be given moduli of continuity, and let

1 1
H _ . ECTQ , i < . 5 :172 .
w1,w2 {f f ( ) w{]}<f n; +1> C(T2) _wj<nj+1)C(T2) ’ }

From the asymptotic equality, obtained by A. I. Stepanetz (see [6, p. 195]) for the

quantity

sup ||f_Sn17"2(f)HC(T2)a
fEle,wz

we get the unimprovability of the estimate (2.24) in the class of functions Hy, w,-
This estimate, however, becomes crude for those functions of the class H,,, ., whose
best approximations by quasi-polynomials decrease rapidly. For instance, if

. cos k121 e €08 koo
flar,@2) = Z 9k1 Z k2 7

k1=0 ko=0

it can be easily shown that the estimates (2.23) and (2.24) in this case become more

crude than estimate (2.22).
27



(1]
2]

(3]
[4]
(5]
(6]

L. GOGOLADZE

CIHUCOK JINTEPATYPHI

Ju. A. Brudnyi, “Approximation of functions of n variables by quasi-polynomials” [in Russian|,
Izv. Akad. Nauk SSSR, Ser. Mat., 34, 564, 564 — 583 (1970).

M. K. Potapov, “The study of certain classes of functions by means of “angular” approximation”
[in Russian|, Studies in the theory of differentiable functions of several variables and its
applications, IV. Trudy Mat. Inst. Steklov, 117, 256 — 291, 345 (1972).

K. I. Oskolkov, “Lebesgue’s inequality in the uniform metric and on a set of full measure” [in
Russian|, Mat. Zametki, 18, no. 4, 515 — 526 (1975).

K. I. Oskolkov, “Lebesgue’s inequality in the mean” [in Russian|, Mat. Zametki, 25, no. 4, 551
— 555, 636 (1979).

L. V. Zhizhiashvili, Conjugate Functions and Trigonometric Series [in Russian|, Izdat. Tbilis.
Univ., Thilisi (1969).

A. 1. Stepanets, Uniform Approximation by Trigonometric Polynomials. Linear Methods [in
Russian|, Naukova Dumka, Kiev, (1981).

[Tocrynuna 28 mekabpst 2011

28



