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Abstract. Let K be a compact set in the complex plane, such that its complement in the Riemann
sphere, (C ∪ {∞}) rK, is connected. Also, let U ⊂ C be an open set which contains K. Then there
exists a simply connected open set V ⊂ C such that K ⊂ V ⊂ U . We show that if K is replaced by
a closed set F ⊂ C, then the preceding result is equivalent to the fact that F is an Arakelian set in
C. This holds in more general case when C is replaced by any simply connected open set Ω ⊂ C. In
the case of an arbitrary open set Ω ⊂ C, the above extends to the one point compactification of Ω.
Furthermore, if we do not require (C ∪ {∞}) rK to be connected, we can demand that each com-
ponent of (C ∪ {∞}) r V intersects a prescribed set A containing one point in each component of
(C ∪ {∞}) rK. Using the previous result, we prove that again if we replace K by a closed set F ,
the latter is equivalent to the fact that F is a set of uniform meromorphic approximation with
poles lying entirely in A.
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1. Introduction

When one starts doing approximations in complex analysis, he quickly realizes that

topological lemmas play a key role to his work. This may seem strange to someone not

familiar with the subject, but actually it is quite natural. A simple explanation is that

the main tools for this kind of research, such as Runge’s theorem [22] and Mergelyan’s

theorem [17], contain themselves topological conditions. Our work in the present

paper rotates around the following standard topological lemma (see Proposition 3.10.6

in [18]).

Lemma 1.1. Let K ⊂ C be a compact set with (C ∪ {∞}) r K connected. If U is

an open set in C containing K, then there exists a simply connected open set V such

that K ⊂ V ⊂ U .
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We note that throughout this article, when we say that an open subset of C is

simply connected, it may not necessarily be path connected (as it is often the case).

An equivalent statement is that the complement of this open set in the Riemann

sphere, C ∪ {∞}, is connected. The above lemma has given several applications.

For instance, in [4] and [16] it was used by the authors to obtain certain universal

approximations. More recently, we used it in [8] to show the density of polynomials

in a subspace of A∞(Ω), the space of holomorphic functions in a (simply connected)

open set Ω ⊂ C, smooth on the boundary. When I first encountered this lemma,

I was interested in knowing if its conclusion still holds when the compact set K is

replaced by a closed subset F of C. Eventually, I realized that the answer, in general,

is negative and a counterexample is the following:

F =
∞∪

n=1

[(
{

n∑
i=1

1

2i
} × [0, n]

)
∪
(
[

n∑
i=1

1

2i
,
n+1∑
i=1

1

2i
]× {n}

)]
∪
(
{1} × [0,∞)

)
.

This set F relates to the well-known Arakelian Approximation Theorem [1].

Theorem 1.1. Let F be a closed set in the complex plane C. Then every function

f : F → C continuous on F and holomorphic in F 0 (f ∈ A(F )) can be uniformly

approximated on F by entire functions, g ∈ H(C), if and only if the following hold:

(i) (C ∪ {∞})r F is connected and

(ii) (C ∪ {∞})r F is locally connected at ∞.

Yet, in [19] one finds another proof of Theorem 1.1, based on Mergelyan’s theorem,

where conditions (i) and (ii) are replaced by the following equivalent condition:

(iii) C r F has no bounded components and for every closed disk D in C, the

union of all bounded components of C r (F ∪ D) is a bounded set. Such a closed

set, as in Theorem 1.1, is called an Arakelian set in C. It is easy to see that in our

counterexample F does not satisfy condition (ii). This is in accordance with [14],

where it was shown that Lemma 1.1 is valid for every Arakelian set in C. In the

present article we start by proving that the converse is also true. More precisely, the

following theorem holds.

Theorem 1.2. Let F be a closed subset of C. Then the following are equivalent:

(1) for every open set U ⊂ C, which contains F , there exists a simply connected

open set V such that F ⊂ V ⊂ U ;
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(2) F is an Arakelian set in C.
More generally, Arakelian sets may be defined for an arbitrary open set Ω ⊂ C.

The question is for a relatively closed set F in Ω, whether every function f ∈ A(F )

can be uniformly approximated on F by holomorphic functions g ∈ H(Ω). This was

completely settled by Arakelian in [2], where he extended his Theorem 1.1. In this

version one considers the one point compactification of Ω, Ω ∪ {α}. The relatively

closed set F ⊂ Ω, for which the approximation is possible, is called an Arakelian set

in Ω and again a purely topological description can be provided.

We extend Theorem 1.2 in this case by replacing the complex plane with a simply

connected open set Ω ⊂ C. This means that the open set V is still simply connected;

that is (C ∪ {∞}) r V is connected. Also, we can further extend Theorem 1.2 in

the general case for any open set Ω ⊂ C. In this case V is not necessarily simply

connected, but its complement (Ω ∪ {α})r V in the one point compactification of Ω

has to be connected.

Next, we give two applications of our results. One of these is a simple proof of the

fact that if Ω is a simply connected open subset of C, then the union of a locally

finite family of pairwise disjoint Arakelian sets in Ω is also an Arakelian set in Ω. We

notice that when Ω is not simply connected the latter fails.

N. Tsirivas in his master thesis [25] used a variation of Lemma 1.1, without the

assumption that (C ∪ {∞}) r K is connected (see Lemma 2.2 in [6]). In this case

one considers a set A which contains one point in each component of (C∪ {∞})rK

and requires that every component of (C ∪ {∞}) r V intersects A. We consider the

same problem, as before, by replacing the compact set K with a closed set F and

we manage to fully characterize the closed sets that satisfy the previous conclusion.

Indeed, we realize that they are exactly these for which every function f ∈ H(F ),

holomorphic in some neighborhood of F , can be uniformly approximated on F by

meromorphic functions whose poles lie in A. Finally, we investigate the latter type

of approximation for the larger space A(F ) and give a characterization relating to

the preceding result. We note that this kind of approximation is different and more

restrictive than, namely, uniform meromorphic approximation (see Roth’s theorem

[20]). The former approximation problem (in a much more general context though)

was solved by Scheinberg in [24], where a topological description of such closed sets

is given.
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We remark that the above approximation problems have also been studied in the

case of open Riemann surfaces. For example, in [10], [23], [24] the authors obtained

their results for arbitrary open Riemann surfaces Ω and closed subsets F of essentially

finite genus. We believe that our results can be extended in this case, but this is up

to investigation. In the present article we will only consider planar open sets Ω ⊂ C

as domains of definition. P. M. Gauthier suggested that some alternative proofs could

relate to Runge pairs and harmonic approximation (see [3], [11], [12]). A preliminary

version of this article can be found in [7].

2. The main result and applications

In [2] N. U. Arakelian proved the following theorem.

Theorem 2.1. Let Ω ⊂ C be an open set and F be a relatively closed subset of Ω.

Then every function f ∈ A(F ) can be uniformly approximated on F by functions

g ∈ H(Ω) holomorphic in Ω, if and only if the following hold:

(i) (Ω ∪ {α})r F is connected and

(ii) (Ω ∪ {α}) r F is locally connected at α, where Ω ∪ {α} is the one point

compactification of Ω.

Such a set F is also called an Arakelian set in Ω.

It is easy to see that condition (ii) is equivalent to the seemingly stronger one:

"(Ω ∪ {α})rF is locally connected". From now on, we shall say that B is a "hole of

F"in Ω, iff B is a component of ΩrF which is contained in some compact subset of

Ω. Note that (Ω ∪ {α})r F is connected, iff F has no holes in Ω.

Proposition 2.1. A closed set F in Ω, without holes, is an Arakelian set in Ω, if

and only if for every compact set K ⊂ Ω, the union of all holes of F ∪ K in Ω is

contained in a compact subset of Ω.

For the case Ω = C see also [19]. We include a proof of the general case, for the

sake of completeness.

Proof. (⇒) Suppose that there is a compact set K ⊂ Ω, such that the union of all

holes in Ω of F ∪K is not contained in any compact subset of Ω. The complement

(Ω∪{α})rK is a neighborhood of α in Ω∪{α}. Hence, there exists a neighborhood
6
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W ⊂ (Ω ∪ {α}) rK of α in Ω ∪ {α}, such that W ∩
[
(Ω ∪ {α}) r F

]
is connected.

Since (Ω∪{α})rW is contained in a compact subset of Ω, there is a hole B of F ∪K

in Ω, such that B ∩W ̸= ∅. Observe that ∂B ⊂ F ∪K. Since W ∩
[
(Ω ∪ {α})r F

]
and F ∪K are disjoint, it follows that W ∩

[
(Ω ∪ {α})r F

]
⊂ B ∪

[
(Ω ∪ {α})rB

]
,

which is a contradiction.

(⇐) Let U ⊂ Ω ∪ {α} be an open neighborhood of α in Ω ∪ {α}. The set K =

(Ω ∪ {α}) r U ⊂ Ω is compact. Therefore, the union of all holes in Ω of F ∪ K is

contained in a compact subset of Ω. Let B1, B2 . . . be those holes. Also, let W =

(Ω ∪ {α})r (K ∪B1 ∪B2 ∪ · · · ). Obviously, W is a neighborhood of α and W ⊂ U .

We notice that W ∩
[
(Ω ∪ {α}) r F

]
is the union of {α} and all the components of

Ω r (F ∪K), which are either unbounded or have zero distance from the boundary

of Ω. Thus, W ∩
[
(Ω ∪ {α})r F

]
is connected and the proof is complete. �

Remark 2.1. In order to determine whether a relatively closed set F , without holes,

is an Arakelian set in Ω, it suffices to check the condition of Proposition 2.1 only for

an exhausting sequence, (Kn)n∈N, of compact subsets of Ω. Such a sequence can be

chosen so that Kn ⊂ K0
n+1, n ∈ N,

∞∪
n=1

K0
n = Ω and every component of (C∪{∞})r

Kn contains a component of (C ∪ {∞}) r Ω, for all n ∈ N (see [21], p. 267). The

latter is equivalent to the fact that Kn, n ∈ N, has no holes in Ω.

Also, assuming that a closed set F , without holes, is not an Arakelian set in Ω,

by Proposition 2.1 there exists a compact set K such that the union of all holes of

F ∪K is not contained in any compact subset of Ω. If we consider a larger compact

set K ⊂ K̃ ⊂ Ω, then the same holds for the union of all holes of F ∪ K̃ in Ω. Thus,

we can consider K̃ to be a finite union of squares in a grid, whose sides are parallel

to the coordinate axes and of the same length δ > 0.

Proposition 2.2. If F is an Arakelian set in Ω, then for every open set U ⊂ Ω,

which contains F , there exists an open set V ⊂ Ω such that F ⊂ V ⊂ U and

(Ω ∪ {α})r V is connected.

Proof. Let F be an Arakelian set in Ω and U ⊂ Ω be an open set such that F ⊂ U .

For every x ∈ Ω r U , we define dx = min{dist(x,F )
2 , dist(x,CrΩ)

2 , 1} > 0. Also, let

(Kn)n∈N be an exhausting sequence of compact subsets of Ω, as in Remark 2.1.
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• Observe that the cover {D(x, dx) | x ∈ Ω r U} of the relatively closed set

ΩrU , has a locally finite subcover in Ω, which we denote by
{
D(xi, dxi)

}∞
i=1

.

Indeed, it suffices to choose a finite cover of disks D(x, dx), x ∈ Ω r U , for

each of the compact sets (Kn rK0
n−1) ∩ (Ω r U), n ∈ N, K0 = ∅.

This implies that every compact subset of Ω intersects a finite number of disks

from
{
D(xi, dxi)

}∞
i=1

. Observe that
∞∪
i=1

D(xi, dxi) ⊂ Ω is relatively closed and the set

{xi | i = 1, 2, . . .} has no accumulation points in Ω. Hence, U1 = Ωr
( ∞∪
i=1

D(xi, dxi)
)

is open and F ⊂ U1 ⊂ U .

• We say that a point x ∈ Ω is joined with α by a curve Γ in E ⊂ Ω, if

Γ : [0,+∞) → E is continuous and Γ (0) = x, lim
t→+∞

Γ (t) = α. The image

of such a curve, Γ
(
[0,+∞)

)
, is closed in Ω.

Each xi can be joined with α by a curve Γi in Ω r F , i = 1, 2, . . ., such that for

every n ∈ N only finitely many curves intersect the compact set Kn. Indeed, for every

n ∈ N, by Proposition 2.1 there are finitely many xi’s contained in the union of Kn

and all the holes of F ∪Kn in Ω. The points that we have not already joined with

α (induction hypothesis), are contained in components of Ωr (F ∪Kn−1), which are

either unbounded or have zero distance from the boundary of Ω. Let xi be such a

point and E be the component of Ω r (F ∪Kn−1) which contains it.

• For each s ≥ n, by Proposition 2.1, E contains a component Es of Ω r (F ∪
Ks), which is either unbounded or has zero distance from ∂Ω. Further, we

can assume that Es−1 ⊃ Es, s ≥ n, where En−1 = E. Let xis ∈ Es and

let Γis be a curve in Es−1, which joins xis−1 with xis , s ≥ n, xin−1 = xi

(such a curve exists, since Es−1 is open and connected). The desired curve,

Γi, consists of all Γis, s ≥ n.

Thus, the family of the curves Γi is locally finite in Ω and in particular the union
∞∪
i=1

Γi is relatively closed. We can easily see now that the open set V = U1 r (
∞∪
i=1

Γi)

has all the desired properties. Since the curves Γi do not intersect F , we have F ⊂

V ⊂ U1 ⊂ U and of course (Ω ∪ {α})r V =
∞∪
i=1

(
D(xi, dxi) ∪ Γi

)
∪ {α} is connected,

which completes the proof. �
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Remark 2.2. The method of proof of Proposition 2.2 implies that V can be chosen

so that the collection of components of Ω r V is locally finite in Ω.

We note that the previous proposition, in the case Ω = C, is known (see [14]).

Proposition 2.3. If F is a closed subset of Ω such that for every open set U ⊂ Ω,

which contains F , there exists an open set V ⊂ Ω with F ⊂ V ⊂ U and (Ω∪{α})rV

connected, then F is an Arakelian set in Ω.

Proof. First, we notice that F has no holes in Ω. Indeed, if B is a hole of F in Ω and

x ∈ B, then the open set U = Ω r {x} contains F . Hence, there exists an open set

V ⊂ Ω such that F ⊂ V ⊂ U and (Ω ∪ {α}) r V is connected. Evidently, we have

(Ω ∪ {α})r F ⊃ (Ω ∪ {α})r V . Therefore, the latter is contained in the component

of (Ω ∪ {α})r F that contains α. However, x ∈
[
(Ω ∪ {α})r V

]
∩B ̸= ∅, which is a

contradiction, because B is a component of (Ω ∪ {α})r F not containing α.

Suppose now that F is not an Arakelian set in Ω. By Proposition 2.1 there exists

a compact set K ⊂ Ω, such that α is an accumulation point of the union of all holes

of F ∪K in Ω. Moreover, Remark 2.1 enables us to assume that K is a finite union of

closed squares in a grid, whose sides are parallel to the coordinate axes and of some

length δ > 0.

Let B1, B2, . . . be a sequence of holes of F ∪K in Ω and let xn ∈ Bn, n ∈ N be

such that xn → α, as n → +∞. The open set U = Ω r {x1, x2, . . .} contains F .

Thus, there exists an open set V with F ⊂ V ⊂ U and (Ω ∪ {α}) r V connected.

Observe that (Ω ∪ {α}) r V intersects Bn and (Ω ∪ {α}) r Bn for all n ∈ N. This

implies that there exists yn ∈ (Ω r V ) ∩ ∂Bn ∩ ∂K, n ∈ N. Since ∂K is compact,

(yn)n∈N has a limit point y ∈ ∂K. Also, y ∈ Ω r V , because Ω r V is closed in Ω

and y ∈ Ω. We claim that y ∈ F ⊂ V , which is obviously a contradiction. Indeed, if

y ̸∈ F , then there exists ε > 0 such that the disk D(y, ε) ⊂ Ω does not intersect F .

In addition, we can choose ε > 0 small enough, depending on the place of y in the

grid, so that D(y, ε)rK has at most two components. This is a contradiction, since

D(y, ε)rK ⊂ Ωr (F ∪K) intersects infinitely many holes of F ∪K in Ω. The proof

is complete. �
According to Propositions 2.2 and 2.3, we have the following characterization of

Arakelian sets.
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Theorem 2.2. Let Ω ⊂ C be an open set and Ω∪{α} be its one point compactification.

If F is a closed set in Ω, then the following are equivalent:

(1) for every open set U ⊂ Ω, which contains F , there exists an open set V ⊂ Ω

such that F ⊂ V ⊂ U and (Ω ∪ {α})r V is connected;

(2) F is an Arakelian set in Ω.

Our achievement so far was, in fact, to show the equivalence of two topological

descriptions regarding relatively closed sets in open subsets of C. In other words,

Theorem 2.2 takes the following equivalent form for planar open sets Ω.

Theorem 2.3. Let Ω be an open set in C and F be a relatively closed subset of Ω.

Then the following are equivalent:

(1) for every open set U ⊂ Ω with F ⊂ U there exists an open set V ⊂ Ω such

that F ⊂ V ⊂ U and (Ω ∪ {α})r V is connected;

(2) (Ω ∪ {α})r V is connected and locally connected.

The advantage of this formulation, as P. M. Gauthier suggested, is that it can be

examined if it is true for arbitrary open Riemann surfaces Ω, where the analogue of

Theorem 2.1 does not hold in full generality (see [13], [23]).

Lemma 2.1. Let Ω ⊂ C be a simply connected open set. A set G ⊂ Ω has connected

complement in Ω ∪ {α} if and only if its complement in the Riemann sphere, (C ∪
{∞})rG, is connected.

Proof. (⇒) Let G ⊂ Ω with (Ω ∪ {α})rG connected. Assume that (C∪ {∞})rG is

not connected. Thus, there are two open sets U1, U2 in C∪{∞}, such that Ui ∩
[
(C∪

{∞})rG
]
̸= ∅, i = 1, 2, (C∪{∞})rG ⊂ U1∪U2 and U1∩U2∩

[
(C∪{∞})rG

]
= ∅.

Since (C ∪ {∞}) r Ω is connected and it is contained in (C ∪ {∞}) r G, it follows

that (C ∪ {∞}) r Ω is contained in exactly one of the sets U1, U2. Without loss of

generality, we assume that (C ∪ {∞}) r Ω ⊂ U1. Observe that (C ∪ {∞}) r U1 is

a compact subset of Ω. This implies that V1 =
[
U1 ∩ (Ω r G)

]
∪ {α} and the set

V2 = U2 ∩ (Ω rG) ⊂ (C∪ {∞})rU1 ⊂ Ω are two nonempty disjoint relatively open

sets in (Ω ∪ {α}) r G. Furthermore, it is immediate that (Ω ∪ {α}) r G = V1 ∪ V2

and hence we have a contradiction.
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(⇐) Let G ⊂ Ω with (C∪{∞})rG connected. We define the map ϕ : C∪{∞} →
Ω ∪ {α} :

ϕ(x) =

{
x, x ∈ Ω
α, x ̸∈ Ω.

Obviously, ϕ is continuous and so ϕ
(
(C ∪ {∞})rG

)
= (Ω ∪ {α})rG is connected.

The proof is complete. �
Combining Theorem 2.2 and Lemma 2.1, we obtain the following theorem.

Theorem 2.4. Let Ω ⊂ C be a simply connected open set and let F ⊂ Ω be a

relatively closed set. Then the following are equivalent:

(1) for every open set U ⊂ Ω, which contains F , there exists a simply connected

open set V ⊂ Ω such that F ⊂ V ⊂ U ;

(2) F is an Arakelian set in Ω.

The next corollary is an immediate application of Theorem 2.4.

Corollary 2.1. Let Ω ⊂ C be a simply connected open set. If
{
Fn

}∞
n=1

is a locally

finite family of pairwise disjoint Arakelian sets in Ω, then the union
∞∪

n=1

Fn is also

an Arakelian set in Ω.

Proof. Let U ⊂ Ω be an open set, which contains the union
∞∪

n=1

Fn. Since
{
Fn

}∞
n=1

is

a locally finite family of pairwise disjoint closed sets in Ω, there exist pairwise disjoint

open sets Gn ⊂ Ω, n = 1, 2, . . ., such that Fn ⊂ Gn for all n. By Theorem 2.4 there

are simply connected open sets Vn with Fn ⊂ Vn ⊂ Gn∩U for every n ∈ N. Obviously,

it holds
∞∪

n=1

Fn ⊂
∞∪

n=1

Vn ⊂ U and Vn, n = 1, 2, . . ., are also pairwise disjoint. The

latter implies that every component of
∞∪

n=1

Vn is simply connected and thus
∞∪

n=1

Vn

is a simply connected open set. According to Theorem 2.4, the relatively closed set
∞∪

n=1

Fn is an Arakelian set in Ω, which completes the proof. �

An alternative proof of the previous result in the case Ω = C, using Proposition

2.1, could be derived from [5]. In the same article, the authors use their proposition in

order to solve a problem of uniform entire approximation. It is worth mentioning that

if the conclusion of the preceding corollary is true for some family (not necessarily

countable) of pairwise disjoint (connected) Arakelian sets, then there is a method (see
11
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[15]) to join them all, retaining the key properties of an Arakelian set. The following

example shows that Corollary 2.1 does not hold when Ω is not simply connected.

Example 2.1. Let Ω = C r {0}, F1 = C(0, r1) and F2 = C(0, r2), where 0 <

r1 < r2. Observe that F1, F2 are two disjoint compact subsets of Ω with connected

complements in the one point compactification of Ω. Hence, both sets are Arakelian

in Ω. Nevertheless, the union F1∪F2 is not an Arakelian set in Ω, since (Ω∪{α})r
(F1 ∪ F2) is not connected.

The next example shows that even if Ω ⊂ C is a simply connected open set, it is

not true that the infinite denumerable union of pairwise disjoint Arakelian sets in Ω

is also an Arakelian set in Ω.

Example 2.2. Let Ω = C and let F0 = {2}× [0,+∞), Fn =
(
{
n−1∑
i=0

1

2i
− 1

2n
,
n−1∑
i=0

1

2i
}×

[0, n]
)
∪
(
[
n−1∑
i=0

1

2i
− 1

2n
,
n−1∑
i=0

1

2i
]×{n}

)
, n ≥ 1. It is easy to see that each Fn, n = 0, 1, . . .,

is an Arakelian set in C. However, F =
∞∪

n=0

Fn is not an Arakelian set in C, because

despite the fact that F is closed and (C ∪ {∞}) r F is connected, the union of all

holes of F ∪D(0, r) in C, r ≥ 2, is unbounded.

Finally, we present another application of our characterization.

Corollary 2.2. Let Ω ⊂ C be a simply connected open set and F ⊂ Ω be an Arakelian

set in Ω. Also, let f ∈ A(F ) be such that f(z) ̸= 0 for all z ∈ F . Then there exists a

function g ∈ A(F ) such that f = eg.

Proof. According to Tietze’s extension theorem, there exists a continuous extension

of f on Ω, which we denote by f̃ : Ω → C. Our assumption yields that the open set

U = Ω r f̃−1({0}) contains F . Thus, by Theorem 2.4 there is a simply connected

open set V with F ⊂ V ⊂ U . If we consider the covering map exp : C → C r {0},
then the latter implies that f̃∣∣V : V → Cr {0} can be lifted to a continuous function

tg : V → C, such that f̃∣∣V = etg. The function g = tg∣∣F is obviously continuous on F

and f = eg. Since f∣∣F 0
is holomorphic, g is also holomorphic in F 0. Thus, g ∈ A(F )

and the proof is complete. �
We note that for Ω = C, Corollary 2.2 is known (see [14] for an application).
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3. An extension of the main result

As we stated in Lemma 1.1, (C ∪ {∞})rK must be connected in order for V to be

simply connected. However, if we do not require (C ∪ {∞})rK being disconnected

(e.g., when we do approximations with rational functions), then we can obtain the

following variation of Lemma 1.1 (see [6], [25]).

Lemma 3.1. Let K ⊂ C be a compact set and A ⊂ C∪ {∞} be a set containing one

point from each component of (C ∪ {∞}) rK. Then for every open set U ⊂ C with

K ⊂ U , there exists an open set V ⊂ C such that K ⊂ V ⊂ U , every component of

(C ∪ {∞})r V intersects A and Cr V has finitely many components.

Remark 3.1. If (C ∪ {∞}) r K is connected and A = {∞}, then Lemma 3.1 is

actually Lemma 1.1.

In Section 2 we investigated the relation of Lemma 1.1 with Arakelian’s theorem [1],

[2], i.e., uniform holomorphic approximation on closed sets. Our efforts in obtaining

similar results for Lemma 3.1 indicated that in this case the corresponding extension

is closely related to uniform approximation on closed sets by meromorphic functions

having prescribed poles. This kind of approximation has been studied in the past and

in a very general setting also (see the work due to S. Scheinberg [24]).

Let M(Ω) denote the set of meromorphic functions in Ω, H(F ) the set of holomorphic

functions in a (varying) neighborhood of F and R(G) the uniform limits, on G, of

rational functions (without poles in G).

Theorem 3.1. Let Ω ⊂ C be an arbitrary open set and F be a relatively closed

subset of Ω. Also, let B1, B2, . . . be the holes of F in Ω and let A ⊂ Ω ∪ {α} be a

set containing one point in each component of (Ω ∪{α})rF . Then the following are

equivalent:

(1) For every f ∈ H(F ) and ε > 0 there exists g ∈ M(Ω), all of whose poles lie

in A ∩Ω, such that ∥g − f∥F < ε.

(2) For every compact set K ⊂ Ω the union of the holes of F ∪K in Ω, which

do not intersect A, is contained in a compact subset of Ω.

(3) For every open set U ⊂ Ω, which contains F , there exists an open set V ⊂ Ω

such that F ⊂ V ⊂ U , every component of (Ω ∪ {α}) r V intersects A and

the collection of all components of Ω r V is locally finite in Ω.
13
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Proof. The proof of 1. ⇔ 2. is given in [24], Theorem 1. So we prove 2. ⇔ 3. First

we show 2. ⇒ 3. Let U ⊂ Ω be an open set with F ⊂ U and let A = {b1, b2, . . .}∪{ζ},
where bn ∈ Bn, n ∈ N and ζ belongs to the component of (Ω∪{α})rF containing α.

According to our assumption and Proposition 2.1, F̃ = F ∪ (
∞∪

n=1

Bn) is an Arakelian

set in Ω, because for any compact set K ⊂ Ω there is at most one hole of F̃ ∪ K

in Ω, which intersects A and each hole of F̃ ∪K is also a hole of F ∪K. Hence, by

Theorem 2.2 there exists an open set Ṽ ⊂ Ω such that F̃ ⊂ Ṽ ⊂ U ∪ (

∞∪
n=1

Bn) and

(Ω ∪ {α})r Ṽ is connected.

Under the notation used in the proof of Proposition 2.2, we may assume that

Ω r U =
∞∪
i=1

D(xi, dxi), where {D(xi, dxi) | i = 1, 2, . . .} is a locally finite family of

closed disks in Ω. Let k1, k2, . . . be the indices for which An = {x1, x2, . . .}∩Bkn ̸= ∅,
n ∈ N. Also, let {Km}m∈N be an exhausting sequence of compact subsets of Ω and

let Hm, m ∈ N, be the union of the holes of F ∪Km in Ω which do not intersect A.

We can join inductively the xi’s contained in each Bkn with bkn by curves Γin ⊂ Bkn ,

n ∈ N, such that every Km intersects at most finitely many of all these curves.

• For m ∈ N, our assumption and the fact that the set {x1, x2, . . .} has no

accumulation points in Ω, imply that there are finitely many xi’s contained

in Km∪Hm. If such a point xi is also contained in some Bkn and we have not

already joined it with bkn (induction hypothesis), then it must be contained in

a hole B ⊂ Bkn of F∪Km−1 in Ω, K0 = ∅, which contains bkn ∈ A. Whenever

the case, we join xi with bkn by a curve Γin ⊂ B ⊂ (Ω rKm−1) ∩Bkn .

Thus, the family of the curves Γin is locally finite in Ω and more particularly the

union
∪
n

∪
xi∈An

Γin is closed in Ω. Lastly, ζ can be joined with α by a curve Γ in

Ω r F̃ ⊂ Ω r F , since F̃ is an Arakelian set in Ω (see the proof of Proposition 2.2).

We define V to satisfy

(Ω ∪ {α})r V =
[
(Ω ∪ {α})r Ṽ

]
∪ Γ ∪

∪
n

[ ∪
xi∈An

(
D(xi, dxi) ∪ Γin

)]
.

It is evident that V is open, F ⊂ V ⊂ U and every component of (Ω ∪ {α}) r V

intersects A. Finally, by Remark 2.2 (applied to Ṽ ) and the construction of the

curves Γin, xi ∈ An, n ∈ N, it follows that the collection of all components of
14
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Ω r V = (Ω r Ṽ ) ∪ Γ ∪
∪
n

[ ∪
xi∈An

(
D(xi, dxi) ∪ Γin

)]
is locally finite in Ω, yielding

the implication 2. ⇒ 3.

To prove 3. ⇒ 2., let F̃ = F ∪ (

∞∪
n=1

Bn), A = {b1, b2, . . .} ∪ {ζ} be as above and

let U ⊂ Ω be an open set with F ⊂ F̃ ⊂ U . It follows that there exists an open set

V ⊂ Ω, such that F ⊂ V ⊂ U and every component of (Ω ∪ {α}) r V intersects A.

Further, we have F̃ ⊂ V ∪ (
∞∪

n=1

Bn) ⊂ U . Observe that Ṽ = V ∪ (
∞∪

n=1

Bn) is open

and (Ω ∪{α})r Ṽ is the component of (Ω ∪{α})rV which intersects A at ζ. Thus,

(Ω ∪ {α})r Ṽ is connected and by Theorem 2.2 F̃ is an Arakelian set in Ω.

Suppose that there is a compact set K ⊂ Ω such that the union of the holes of F∪K
in Ω, which do not intersect A, is not contained in any compact subset of Ω. Since

F̃ is an Arakelian set in Ω, Proposition 2.1 implies that there are infinitely many of

these holes, which accumulate on α and are contained in corresponding holes of F in

Ω. Let Cn ⊂ Bkn , n ∈ N, be a sequence of such holes and xn ∈ Cn with xn → α, as

n → +∞. We consider the open set U = Ωr {x1, x2, . . .}, which obviously contains

F . Based on our assumption, there exists an open set V ⊂ Ω such that F ⊂ V ⊂ U ,

each component of (Ω∪{α})rV intersects A and the collection of all components of

ΩrV is locally finite in Ω. Note that each component of (Ω ∪{α})rV is contained

in some component of (Ω ∪ {α})r F .

Since xn ∈ Ω r U ⊂ Ω r V , n ∈ N, the previous fact yields that the component

of (Ω ∪ {α})r V which contains xn, is contained in Bkn and consequently intersects

A at bkn . However, the holes Cn (of F ∪ K), n ∈ N, do not intersect A. Therefore,

either bkn ∈ ∂Cn or the latter component intersects the interior and exterior of Cn.

Whatever the case, there exist yn ∈ (Ω r V ) ∩ ∂Cn ∩ ∂K for all n ∈ N. Also, it is

clear that the terms of the sequence (yn)n∈N are contained in distinct components

of (Ω ∪ {α}) r V . Thus, K intersects infinitely many components of Ω r V and we

obtain a contradiction. The proof is complete. �

Remark 3.2. It is sufficient to require condition 2. only for an exhausting sequence

{Km}m∈N of compact subsets of Ω, as in Remark 2.1.

With our previous result, we managed to give a precise connection of Lemma 3.1

with complex approximation. However, we notice that there is an essential difference
15
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between Theorem 3.1 and Theorems 2.1, 2.2. That is because in Theorem 3.1 we

considered a smaller class of approximable functions, namely, H(F ) instead of A(F ).

Now we would like to characterize the closed sets F (in Ω ⊂ C) for which every

element in A(F ) admits the corresponding approximation.

Observe that in this case both topological conditions 2. and 3. of Theorem 3.1 fail

to imply the stronger approximation we seek. The reason behind this issue is that

the analogue of Mergelyan’s theorem [17] for rational approximation does not hold

in general. Indeed, there is an interesting "Swiss cheese"example, where for certain

compact sets K ⊂ Ω we have R(K) ̸= A(K) (see A. Roth’s construction [9], p. 110).

Thus, we need to impose an additional assumption, which will ensure that F has no

such problematic compact subsets.

Theorem 3.2. Let Ω, F , {Bn}∞n=1 and A be as in Theorem 3.1. Then the following

are equivalent:

(1) Every function f ∈ A(F ) can be uniformly approximated on F by meromorphic

functions g ∈ M(Ω), all of whose poles lie in A ∩Ω;

(2) (a) A(F ∩D) = R(F ∩D), for each disk D such that D ⊂ Ω and

(b) for every compact set K ⊂ Ω the union of the holes of F ∪ K in Ω,

which do not intersect A, is contained in a compact subset of Ω;

(3) (a) A(F ∩D) = R(F ∩D), for each disk D such that D ⊂ Ω,

(b) for every open set U ⊂ Ω, which contains F , there exists an open set

V ⊂ Ω such that F ⊂ V ⊂ U , every component of (Ω ∪ {α}) r V

intersects A and the collection of all components of Ω r V is locally

finite in Ω.

Proof. The proof of (1) ⇔ (2) follows from Theorem 1 in [24], if we take into

consideration Theorem 2 from [9] (p. 136). As for (2) ⇔ (3), by Theorem 3.1, we

have (2) (b) ⇔ (3) (b). �

Remark 3.3. If F has no holes in Ω, that is, (Ω ∪ {α})r F is connected, then one

can easily see that condition 2. (a) is satisfied thanks to Mergelyan’s theorem (see [9],

p. 135). In this case, for A = {α}, we notice that Theorem 3.2 is in fact a combination

of Theorem 2.1, Proposition 2.1, Theorem 2.2 and Remark 2.2.
16



ON A CHARACTERIZATION OF ARAKELIAN SETS

Acknowledgements: I would like to thank V. Nestoridis for his valuable sugges-

tions and his interest in this work. Also, I would like to thank P. M. Gauthier for

useful comments on preliminary versions of the present article and for bringing to my

attention references I was not aware of.

Список литературы

[1] N. U. Arakelian, “Uniform approximation on closed sets by entire functions” [in Russian], Izv.
Akad. Nauk SSSR, 28, 1187 – 1206 (1964).

[2] N. U. Arakelian, “Uniform and tangential approximations by analytic functions” [in Russian],
Izv. Akad. Nauk SSR, 3, 273 – 285 (1968); Translation in American Mathematical Society
Translations (2), 122, 85 – 97 (1984).

[3] D. H. Armitage, P. M. Gauthier, “Recent developments in harmonic approximation with
application”, Results in Math., 29, 1 – 15 (1996).

[4] G. Costakis, “Some remarks on universal functions and Taylor series”, Math. Proc. Cambr.
Philos. Soc., 128, 157 – 175 (2000).

[5] A. A. Danielyan and L. A. Rubel, “Uniform approximation by entire functions that are all
bounded on a given set”, Constr. Approx., 14, 469 – 473 (1998).

[6] E. Diamantopoulos, Ch. Mouratides and N. Tsirivas, “Universal Taylor series on unbounded
open sets”, Analysis (Munich), 26, 323 – 336 (2006).

[7] G. Fournodavlos, “On a characterization of Arakelian sets”, arXiv:1107.0393 (2011).
[8] G. Fournodavlos and V. Nestoridis, “Generic approximation of functions by their Padé
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