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1. INTRODUCTION

Frames were first introduced by Duffin and Schaeffer [7] in the context of non-
harmonic Fourier series. Outside signal processing, frames did not seem to generate
much interest until the seminal work by Daubechies, Grossmann, and Meyer [6]. They
showed that Duffin and Schaeffer’s definition is an abstraction of a concept given by
Gabor [11] in 1946 for doing signal analysis. The frames introduced by Gabor now are
called Gabor frames and have been widely used in communication theory, quantum
mechanics and many other fields. For more about Gabor frames and their applications
to signal and image processing, we refer to the monographs [9, 10,13].

Gabor systems {]V[manag(a:)}m_’nGZ are generated by modulations and translations
of a single function g(x) € L?(R) and hence, can be viewed as the set of time-frequency
shifts of g(x) along the lattice aZ xbZ in R2. Gabor systems that form frames for L?(R)
have a wide variety of applications. An important problem in practice is therefore to
determine conditions for Gabor systems to be frames.

Many results in this area, including necessary conditions and sufficient conditions,
have been established during the last two decades. For example, in 1990, Daubechies
[5] proved the first result on the necessary and sufficient conditions for the Gabor
system {MppTnag(%)},, nez to be a frame for L?(R), Chui and Shi improved the
result of Daubechies in [4], Casazza and Christenson [1, 2] established a stronger

version of Daubechies sufficient condition for wavelet frames. Recently, Shi and Chen
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[17] have established a set of necessary conditions for Gabor frames and showed that
these conditions are also sufficient for tight frames. Li et al. [14] gave two sufficient
conditions for Gabor frames in L?(R) in terms of Fourier transform and showed the
conditions are better than those of Daubechies [5].

Although there are many results for Gabor frame on the real-line R, the counterparts
on positive half-line R™ are not yet reported. So this paper is concerned with Gabor
frame on positive half-line R™. Concerning the construction of wavelets on a half-line,
Farkov [8] has given the general construction of all compactly supported orthogonal
p-wavelets in L?(R*) and proved necessary and sufficient conditions for scaling filters
with p” many terms (p,n > 2) to generate a p-MRA analysis in L?(R").

Recently, Shah and Debnath [16], have constructed dyadic wavelet {rames on
the positive half-line RT using the Walsh-Fourier transform and have established

a necessary condition and a sufficient condition for the system
{%k(x) =212y(2izok): jE€L ke Z+}

to be a frame for L2(R"). The objective of this paper is to prove the existence of the
Gabor system {M,,pThag(x)} ; that forms a frame for L?(R™"). We also establish a
necessary condition and two sufficient conditions for the system {M,,,Trag(z)}
to be a frame for L2(RT).

The paper is structured as follows. In Section 1, we introduce some notations and

m,nec

m,ne’

preliminaries related to the operations on positive half-line RT, and some lemmas to
be used throughout the paper. In Section 2, we prove the existence of the system
{MTnag(x)},, pey that forms a frame for L?(R*). In Section 3 we establish one
necessary condition and two sufficient conditions for Gabor frame on the positive
half-line R™.

As usual, let R" = [0,+00), Z' = {0,1,2,...} and N = Z* — {0}. Denote by [z]
the integer part of z. Let a be a fixed natural number greater than 1. For x € R

and any positive integer j, we set
(1.1) z; = [a’z](moda), z_;=[a"""z](moda).

We consider on R the addition defined as follows:

vdy =) Ga T+ Ga

7<0 3>0
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with {; = z; + y;(mod a) (j € Z\ {0}), where (; € {0,1,2,...,a — 1} and z;, y; are
calculated by (1.1). Note that z = z © y if z® y = z, where © denotes subtraction
modulo a in R".
For z € [0,1), let ro(x) be given by
1, if z€0,1/a
ro(@) = {ef;, itz e [[fal/, ()e+ Da1), £=1,2,a—1,

where e, = exp(27i/a). The extension of the function r¢ to R is given by the equality
ro(x+1) = ro(z), x € R". Then, the generalized Walsh functions {wpn(z) :meZ"}
are defined by

k
wo(z) =1 H 7«0 ('

where m = Z?:o pial , pi € {0,1,2,...,a— 1}, pg #0.
For z,y € ]R+, let

Ml
(1.2) X(z,y) =exp | — > (zy—i+a_jy) |
j=1
where z;, y; are given by (1.1). Note that x(z,m/a" ") = x(z/a" ", m) = wy,(x/a" )
for all x € [0,a™ 1), m € Z .M xy teR and z @y is a-adic irrational, then

(1.3) X @y, &) = x(x, &) x(y,8)-

It was shown by Golubov et al. [12] that both the systems {x(c,.)}o_, and {x(., @) }o_,
are orthonormal bases in L?[0,1].

By a-adic interval I C RT of range n, we mean interval of the form
I=1If=[ka™ (k+1)a™™), keZt.

The a-adic topology is generated by the collection of a-adic intervals and each a-
adic interval is both open and closed under the a-adic topology (see [15]). Therefore,
for each 0 < j,k < a”, the Walsh function w;(z) is piecewise constant and hence
continuous. Thus w;(x) =1 for x € I2.

Let £,(R™) be the space of a-adic entire functions of order n, that is, the set of
all functions which are constant on all a-adic intervals of range n. Thus, for every
f € &,(RT), we have

(1.4) = > fla"k)xp(x), z € RT.
kezZt
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Clearly each Walsh function of order a®~! belong to &, (R™). The set &(R™) of a-adic
entire functions on RT is the union of all the spaces &, (R™). It is clear that &(R™T)
is dense in LP(R*),1 < p < oo and each function in E(R™T) is of compact support.

Thus, we will consider the following set of functions:
(1.5) EORY) = {f € ER") :supp f CRT\ {0}}.

Definition 1.1. A function f defined on R is said to be with period a if f(z®ka) =
f(z) for all z € RT and k € ZT.

Definition 1.2. Let H be a separable Hilbert space. A sequence {f},—, in H is
called a frame for H if there exist constants A and B with 0 < A < B < oo such that

(1.6) AFIZ < ST S|P < BIIFII? for all f € H.

k=1
The largest constant A and the smallest constant B satisying (1.6) are called the
upper and the lower frame bound respectively. The sequence {fi},—, is called a tight
frame for H if the upper frame bound A and the lower frame bound B coincide.

The sequence {fi},-, is called a Bessel sequence in H if only the right-hand side
inequality in (1.6) holds and is called Riesz basis for H if there exists a linear, bounded
bijective operator T : H — H such that {fy},—; = {Tex}re,, where {e;}re, is an
orthonormal basis for H. For the fundamentals of frame theory and its applications
we refer to [3, 13].

Let {fi}z—; be a frame in H. The operator S : H — H is called a frame operator
associated with the frame {fr};—, if Sf = Yoo (f, fi)fe. It is well known (see
[3]) that S is linearly bounded, invertible, self-adjoint and positive, and the system
{S*Ifk}?:l is also a frame in H with bounds B~', A~!, which is called the canonical

dual of the frame {f;};—,. Moreover, this provides the reconstruction formula

oo oo

(1.7) F=88T1 = (f 87 ) e =Y U ) ST i

k=1 k=1
where both series converge unconditionally for all f € H. Thus, a frame {f;},—,
allows every f € H to be written as a series expansion of the frame elements, which
is similar to the property of basis; the main difference is that the frame coefficients
(f,S71fx) in (1.7) can, generally, be replaced by other coefficients. Further, it should
be noted that {S‘l/ka}iil is a tight frame with bound 1 and hence

(1.8) F=Y 872 f) ST 2 e
k=1
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In order to prove theorems to be presented in next section, we need the following
lemmas whose proofs can be found in [3].

Lemma 1.3. Let {f},-, be a frame for a Hilbert space H. Then {fi};, is a Riesz
basis for H if and only if { fi},-; is complete in H, and there exist constants A, B > 0

such that for every finite scalar sequence {cx},

2
AZ|Ck|2§ chfk SBZM\Q-
% k %

Lemma 1.4. Let {f},-, be a Bessel sequence with bound B for a Hilbert space H.
Then

G) [Ifl?<B, k=1,2,..

(i) (fj, fx) =0, j # k, whenever || fx||* = B, for some k.
Lemma 1.5. Suppose that H is a Hilbert space. Let T : H — H be a bounded

operator, and assume that (T'z,z) = 0, for all z € H. If H is a complex Hilbert space,
then T = 0; if H is a real Hilbert space and T is self-adjoint, then 7' = 0.

2. EXISTENCE OF A GABOR FRAME IN L?(R™)

Let p and ¢ be two given positive real numbers. For any fixed function g € L?(R™),

the family of functions of the form
(2.1) { Mg Topg(2) = wig(z)g(xz ©np), m,neZ,xzeRT}

is called a Gabor frame for L?(R™) if there exist constants A and B, 0 < A < B < oo
such that

(22)  AIFIP< D] Y F MingTapg)* < B fI?, for all f € L*(RY),
meZt neZ+t
where My, f(z) = wWmef(z) and T, f(z) = f(z © np) are the modulation and
translation operators defined on L?(R™), respectively.
We first show that the operator S associated with the Gabor frame {M"L‘IT’lpg}m,neZ+
is commutative, i.e.,

(2.3) S Mg Trp = Mg ToipS.

Indeed, since M,T, f(x) = wqy(z) f(z © p) and T, M, f(z) = we(x) M T, f(x), we have

SMqunpf = Z Z <Mqunpfa quTZpg>quTZpg
kEZT LeZt

= Z Z <f7w(k—m)pqnM(k—m)qu(K—n)pg>quTEpg
kEZT LeLt
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- Z Z wkpqn<fa quTfpg>M(k+m)qT(€+n)pg
keZt LeZ+

= Z Z <f7 quTépg>Mqunp]\/[qu€pg = MqunpSf
kEZT LeZ+t
This commutative property of S implies that S~! commutes with the operator M, Tpyp-

Consequently, S—1/2

also commutes with M,;,,T,, and as a consequence, we have the
following theorem.
Theorem 2.1. Let {M,,,Tpg} be a Gabor frame for L?(R*). Then, Gabor

structure of the canonical dual is given by {M"LQT”PS_lg}m,nez+7 where g € L? (RT)

m,neZt

and p, ¢ € RT\ {0}. Moreover, the canonical tight frame associated with {M,,,Typ9}
is {MingTopS™ 29}, cnr-

First we prove two lemmas, which will be used in the proofs of the main results.
Lemma 2.2. Let f,g € L2(R"),p,q¢ € RT\ {0} and k € Z* be given. Then the series

(2.4) S feonp)swomee k), «eR'
nezZt

m,nezZt

converges absolutely for almost all z € RT. Furthermore, for any m € Z*, we have

(2.5) (fs MpmqThpg) = /p G (2)wmq(x)dz,
0
where
(2.6) Gul@)= ) fle©q  k)gle Snp & ¢ 1k).
keZ+

Proof. Since f,T,-1,9(z) € L*(RT), we have f.T,-1,9(z) € L*(RT). Thus

[ S e o omor i = [ 15@oq Rl < .

+
nezZ+t R

and hence

Z |f(zenp)g(z ©np© ¢~ k)| < oo, for almost all z € [0,p).
neZ+t

Since the series in (2.4) converges a.e. on [0, p), therefore, it converges absolutely a.e.
on x € RT and by the Definition 1.1, it defines a function with period p. Further, we

have

(fs MgThpg) = - f(z)g(x © np). wyq(z)dz

¢t g1
=3 [ swor Wi o g R e = [ G e
ezt 70 0
This completes the proof.
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To prove the existence of the system (2.1) that forms a Gabor frame in L?(R™),

we set
(2.7) D(x) =Y lg(zenp)f’, zeRY,
nezZ+
(2.8) Ei(x) = Z glzonp)glronpoqlk), xR kecZ .

neZ+t
Note that D(x) and Ej(z) are bounded functions with period p and D(z) = Ey(x).
Lemma 2.3. Let f be in E°(RT) and g be in L?(RT) with p,q € RT\ {0}. Then

(2.9) SN U Mg Tpg)? =1 / z)dz + R,(f),
meZt neZt
where
(2.10) Ry( |Z/ f(@)f(x e q k) Ey(x)dr.
keN

Proof. Since f € E°(R1), the function f(x © ¢ 'k) can be non-zero only for finitely
many values of k. The number of values of k, for which f(z © ¢~ 'k) # 0 is uniformly
bounded. Consequently, each G,,(z) defined by (2.6) is bounded, and hence G,, €
LY0,q 1) N L?][0,¢71). By Lemma 1.2, for all m,n € Z*, we have

(2.11) (fs MpqThpg) = /Oq G (2)wmg(x)dz.

Applying Parseval’s theorem and using the fact that {ql/gwmq(x)} forms an

= / z)|2dx.
~ldl

meZ+t
orthonormal basis for L? [O, q~ 1), we obtain

/ G L) Wi (T)d
mezZt

By virtue of (2.11) and (2.12), we get

Yo > K MaTa)P = D> Y

(2.12)

2

/ G (@)@

mELT neZt meLt neLt
Tl LY [ G w=t 3 [1 Gale) G
neLt nezt
\q| Z/ Z fzeqk)g(z ©np© ¢ k)Gy(z)da
neZ+t kez+
Ial Z/ f(@)g(x & np)G,(z)da
nezt
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ILZ/ glzenp) Y flxeq 'kgleonpo ¢ Tk)de
I<V/an

keZ+

= — 1132 T n, 21’
|q/+|f( Y Tt & mp)d

nezt

lz/ F@f@oq k) Y gwonp)g@ompoq k)

keN nezZ+t

:|i 1/ (2)[2D dx+—z F@)f(z © q k) E(x)dz.
ql Jr+ keN

This completes the proof.
Theorem 2.4 (Eristence). Let g € L?(RT) and p,q € RT\ {0} be given. Then the
following holds:
(). If |pg| > 1, then {MygTnpg}t,, ,ez+ is not a frame for L2(RT).
(il). I {MyngTnpg}t,, pez+ is a frame, then |pg| = 1 if and only if {MyqTnpg}
is a Riesz basis.
Proof. Suppose that {M,;Trp9}
{ Mg TapS™%g}
{Mvrqufbpg}m,%W' Then, by Lemma 2.3, we have

[ @ = 33 1 Mg Tops™ )

meZt neZ+t

=1 [ @R X 1570w o)

nezZt

m,neZt

is a Gabor frame for L?(R") and let

be the canonical tight frame associated with

m,neZt

m,neZt

Thus, this gives that ), |S=12g(xSnp)|? = |q|, a.e. on 2 € RT and consequently,
we have
P
291 = [ 15 gPde= [ 3 157 2g(e & mp) e = .
R O nezt

Now, to prove (i), it is sufficient to prove that [pg| < 1 for given frame { Mg Thpg},, ez -
Since {MqunpS_l/Qg} nez+ 1s a tight frame with bound 1, therefore, it follows by
Lemma 1.4 that ||S™ 1/29”2 |pg] <1, and the result follows.

To prove (ii), we first assume that {M,,Thpg} is a Riesz basis. Then by

m,nezt
Lemma 2.3, { M., T,,,S~ /%9 } nez+ 18 also a Riesz basis with bounds A = B = 1.
This implies that ||S~1/2g||? = |pq| =1

Now, assume that |pg| = 1, which implies that ||S™/2g||? = || MynqTnpS~/2%g||? =

. .. — 2

1, for all m,n € ZF. Using Lemma 1.4(ii), we conclude that {M,,,T;,,S ™" g}wmneZJr
is an orthonormal basis for L?(R*) and hence, by Definition 1.2, it follows that
{MmqTopg},, nez+ is a Riesz basis. This completes the proof.
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3. NECESSARY CONDITION AND SUFFICIENT CONDITIONS

In this section, we first establish a necessary condition for the system (2.1), i.e
{ Mg Trpg},, pez+ to be a frame in L2(RY).
Theorem 3.1. Suppose that {M,,T,pg}
bounds A and B, then

mnez+ 18 a Gabor frame for L*(R™) with

(3.1) lg/A < D(z) < |q|B, a.e.onz¢€RT,

where D(x) is defined by (2.7).

Proof. We use the contradiction method. Assume that the second inequality in (3.1)
is not true. Then, there exists a measurable set Q C RT with meas(Q) > 0 such that
D(x) > |q|B on Q. Suppose that 2 is contained in [0, ¢~!) with diameter of |¢|~! and
let Qo = {x € Q: D(z) > 1+ |g|B}. Further, for each k € N, we define the sets Q0 as

1 1
= . — < - .
Q% {xEQ 1+k+|q|B_D(ZE)<k+|Q|B}

Clearly, {Q% },cy forms a sequence of mutually disjoint measurable sets such that Q =
Uken Q- Therefore, there exist atleast one set say €, with property that meas(£2,) >
0, £ € N. Let f = xq, be the characteristic function on €2,. Then, clearly each f.T,,g
has a compact support in 2. Since €, is contained in an interval of length |g|~! and

{¢"2wmq(2)},, s constitutes an orthonormal basis for L?[0,¢™"), we have

> s MugTipg) = 3 [ Toapgs Ming)I? ||/ 2)2lg(x © np)2da.
meZ+t meZ+t q
Thus
Z Z ( f»Mqunpg | Z / x)||g(z © np)|*dz
meZt neZt nez*

U(ND@MxZ<B+ Ta

1
\ql lq| (€ + 1))

Consequently, B can not be an upper frame bound for {M,,,,T,pg} A similar

mneLt"

arguments can be used to show that if the first inequality in (4.1) is {/iolated, then A

cannot be a lower frame bound for {M;,qTpg},, ,cz+- The proof is completed.
Now, we are going to derive two sufficient conditions of a Gabor frame for L*(R™).

The first sufficient condition is given in the next theorem.

Theorem 3.2. Let f be in E°(R*) and g be in L?(R*) with p,q € R*\ {0}. Suppose

that there are constants A, B > 0 such that

(3.2) A<D(z)<B, aeonzeR"
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and

(33) > 1Bkl < A

keN
Then {M,gTnpg},, nez+ 18 @ Gabor frame for L?(RY).
Proof. By Lemma 2.3, we have

||Z/f Vf(x© q k) Ey(z)dx

keN

< e e )'dz}w [ veormpmmie)”

keN

< [ @ @sa b Bl s

keN

) 1/2 1/2
- )2 Ei( dx “1E)|2 E, d
gq|{/ o |3 1B } {/le(:v@q ” |2 ) x}

. 1/2 1/2
< — )|? Ei( d )2 Ey( LV d
_|q|{/ 2)| ];Nm )| x} {/ 2)| k%ux@q |] x}

D |Bi(x

keN

}1/2

D |Eix

i }m{/ g

(3.4) _MZ / (o) do < 1o ZnEkn 112

keN keN
It follows from (2.9) and (3.4) that

Yo D W Mg Topg)l® < WHJ”II2 {IIDlloo + > 1l }

meZt neZ+t keN

and
7 |||f|2{|D|oo > 1Bk }S S W Mg Tapg) .
keN meZt neZ+t

Taking into account (3.2) and (3.3), we get

|||f||2{A ZHEk” }S Z Z |<faMqunp9>|2

keN meZt neZt

< e {B+ D 1Bl }

keN
Hence { M Thpgt,, nez+ 18 a Gabor frame for L2(RT).
Now we establish the second sufficient condition for Gabor frame for L?(R™).
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Theorem 3.3. Let g € L?(R™) be such that

1
3.5 A — inf < D(x)— Fi(x >0
(35) )= |q|le[07p){ @)= 31 >}
and
(3.6) By = — sup Z |Ex(x)] < 4o0.

|Q‘ z€[0,p) Lez+
Then {MngTnpg},, nez+ is @ Gabor frame for L?*(R™) with bounds 4, and B,.
Proof. Using (2.8), we have

Z|qu*1kEk |—Z\T,q 1p Z (xenp)g(zonpsq k)
keN keN neLt
= Z 1T g1k Z Tpg(®) Thprg—119(x | = Z | Z Top—q-129(7) Trpg ()]
keN nezt keEN nezt
= Z | Z Tnp+q*1kg npg | - Z | Z Tnp+q 1kg npg | - Z ‘Ek
keN nez+ keN neZ+ kEN

We now estimate the term Ry(f) given by (2.10), using Cauchy-Schwartz’s inequality

Z/f flxoq k) Ex( Z/f Tg-11.f (x) Ex(z)da

keN keN
<> / Ty f (@) [ B (o) da
<[ rerime >|dx}1/2 {L |Tq-1kf<x>|2|Ek<x>|dx}1/2

keN

{Z/ o) 2w >|dx} {Z/ Ty @)1l W}m
={/ DY |Belx) |da:}1/2{/ Ty d @) Y 1Bu(a) |dw}1/2

keN keN

(3.7) / )|*dz Y |By(a

keN
Combining (3.7) and (2.9), we get

(38) |f<x>|2{D<x>—ZEk<x>|}dxs S 3 [ Moy Topg)

lal Jr+ kEN meZ+ nel+
and

39 Zif,Mqunpg>|2<|q| If(w)l2{D(z)+ZEk(z)l}dx

meZt nezZt keN
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Taking infimum in (3.8) and supremum in (3.9), respectively, we obtain

AlFIE < D0 D K MingTupg)” < Byl f13,

meZt nezZt

which holds for all f € €°(RT), where A, and B, are given by (3.5) and (3.6),

respectively. This completes the proof of the theorem.

(1]
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