
Èçâåñòèÿ ÍÀÍ Àðìåíèè. Ìàòåìàòèêà, òîì 47, í. 5, 2012, ñòð. 65-76.

GABOR FRAMES ON A HALF-LINE

F. A. SHAH

Department of Mathematics, University of Kashmir, Anantnag,

Jammu and Kashmir, India

E-mail: fashah79@gmail.com

Abstract. The objective of this paper is to construct Gabor frame on a positive

half-line. A necessary condition and two su�cient conditions for Gabor frame on

a positive half-line are given in the time domain.

MSC2000 numbers: 42C15; 42C40; 42A38; 41A17.

Keywords: Frame; Gabor frame; Riesz basis; Walsh function.

1. Introduction

Frames were �rst introduced by Du�n and Schae�er [7] in the context of non-

harmonic Fourier series. Outside signal processing, frames did not seem to generate

much interest until the seminal work by Daubechies, Grossmann, and Meyer [6]. They

showed that Du�n and Schae�er's de�nition is an abstraction of a concept given by

Gabor [11] in 1946 for doing signal analysis. The frames introduced by Gabor now are

called Gabor frames and have been widely used in communication theory, quantum

mechanics and many other �elds. For more about Gabor frames and their applications

to signal and image processing, we refer to the monographs [9, 10,13].

Gabor systems {MmbTnag(x)}m,n∈Z are generated by modulations and translations

of a single function g(x) ∈ L2(R) and hence, can be viewed as the set of time-frequency

shifts of g(x) along the lattice aZ×bZ in R2. Gabor systems that form frames for L2(R)
have a wide variety of applications. An important problem in practice is therefore to

determine conditions for Gabor systems to be frames.

Many results in this area, including necessary conditions and su�cient conditions,

have been established during the last two decades. For example, in 1990, Daubechies

[5] proved the �rst result on the necessary and su�cient conditions for the Gabor

system {MmbTnag(x)}m,n∈Z to be a frame for L2(R), Chui and Shi improved the

result of Daubechies in [4], Casazza and Christenson [1, 2] established a stronger

version of Daubechies su�cient condition for wavelet frames. Recently, Shi and Chen
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[17] have established a set of necessary conditions for Gabor frames and showed that

these conditions are also su�cient for tight frames. Li et al. [14] gave two su�cient

conditions for Gabor frames in L2(R) in terms of Fourier transform and showed the

conditions are better than those of Daubechies [5].

Although there are many results for Gabor frame on the real-line R, the counterparts
on positive half-line R+ are not yet reported. So this paper is concerned with Gabor

frame on positive half-line R+. Concerning the construction of wavelets on a half-line,

Farkov [8] has given the general construction of all compactly supported orthogonal

p-wavelets in L2(R+) and proved necessary and su�cient conditions for scaling �lters

with pn many terms (p, n ≥ 2) to generate a p-MRA analysis in L2(R+).

Recently, Shah and Debnath [16], have constructed dyadic wavelet frames on

the positive half-line R+ using the Walsh-Fourier transform and have established

a necessary condition and a su�cient condition for the system{
ψj,k(x) = 2j/2ψ(2jx⊖ k) : j ∈ Z, k ∈ Z+

}
to be a frame for L2(R+). The objective of this paper is to prove the existence of the

Gabor system {MmbTnag(x)}m,n∈Z that forms a frame for L2(R+). We also establish a

necessary condition and two su�cient conditions for the system {MmbTnag(x)}m,n∈Z

to be a frame for L2(R+).

The paper is structured as follows. In Section 1, we introduce some notations and

preliminaries related to the operations on positive half-line R+, and some lemmas to

be used throughout the paper. In Section 2, we prove the existence of the system

{MmbTnag(x)}m,n∈Z that forms a frame for L2(R+). In Section 3 we establish one

necessary condition and two su�cient conditions for Gabor frame on the positive

half-line R+.

As usual, let R+

= [0,+∞), Z+

= {0, 1, 2, ...} and N = Z+ − {0}. Denote by [x]

the integer part of x. Let a be a �xed natural number greater than 1. For x ∈ R+

and any positive integer j, we set

(1.1) xj = [ajx](mod a), x−j = [a1−jx](mod a).

We consider on R+

the addition de�ned as follows:

x⊕ y =
∑
j<0

ζja
−j−1 +

∑
j>0

ζja
−j
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with ζj = xj + yj(mod a) (j ∈ Z \ {0}), where ζj ∈ {0, 1, 2, ..., a− 1} and xj , yj are

calculated by (1.1). Note that z = x ⊖ y if z ⊕ y = x, where ⊖ denotes subtraction

modulo a in R+

.

For x ∈ [0, 1), let r0(x) be given by

r0(x) =

{
1, if x ∈ [0, 1/a)

εℓa, if x ∈ [ℓa−1, (ℓ+ 1)a−1), ℓ = 1, 2, ..., a− 1,

where εa = exp(2πi/a). The extension of the function r0 to R
+

is given by the equality

r0(x+1) = r0(x), x ∈ R+

. Then, the generalized Walsh functions {wm(x) : m ∈ Z+}
are de�ned by

w0(x) ≡ 1, wm(x) =
k∏

j=0

(
r0(a

jx)
)µj

,

where m =
∑k

j=0 µja
j , µj ∈ {0, 1, 2, ..., a− 1} , µk ̸= 0.

For x, y ∈ R+

, let

(1.2) χ(x, y) = exp

2πi

a

∞∑
j=1

(xjy−j + x−jyj)

 ,

where xj , yj are given by (1.1). Note that χ(x,m/a
n−1) = χ(x/an−1,m) = wm(x/an−1)

for all x ∈ [0, an−1), m ∈ Z+

. If x, y, ξ ∈ R+

and x⊕ y is a-adic irrational, then

(1.3) χ(x⊕ y, ξ) = χ(x, ξ)χ(y, ξ).

It was shown by Golubov et al. [12] that both the systems {χ(α, .)}∞α=0 and {χ(., α)}∞α=0

are orthonormal bases in L2[0,1].

By a-adic interval I ⊂ R+ of range n, we mean interval of the form

I = Ikn =
[
ka−n, (k + 1)a−n

)
, k ∈ Z+.

The a-adic topology is generated by the collection of a-adic intervals and each a-

adic interval is both open and closed under the a-adic topology (see [15]). Therefore,

for each 0 ≤ j, k < an, the Walsh function wj(x) is piecewise constant and hence

continuous. Thus wj(x) = 1 for x ∈ I0n.

Let En(R+) be the space of a-adic entire functions of order n, that is, the set of

all functions which are constant on all a-adic intervals of range n. Thus, for every

f ∈ En(R+), we have

(1.4) f(x) =
∑
k∈Z+

f(a−nk)χIk
n
(x), x ∈ R+.
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Clearly each Walsh function of order an−1 belong to En(R+). The set E(R+) of a-adic

entire functions on R+ is the union of all the spaces En(R+). It is clear that E(R+)

is dense in Lp(R+), 1 ≤ p < ∞ and each function in E(R+) is of compact support.

Thus, we will consider the following set of functions:

(1.5) E0(R+) =
{
f ∈ E(R+) : supp f ⊂ R+ \ {0}

}
.

De�nition 1.1. A function f de�ned on R+ is said to be with period a if f(x⊕ka) =
f(x) for all x ∈ R+ and k ∈ Z+.

De�nition 1.2. Let H be a separable Hilbert space. A sequence {fk}∞k=1 in H is

called a frame for H if there exist constants A and B with 0 < A ≤ B <∞ such that

(1.6) A∥f∥2 ≤
∞∑
k=1

∣∣⟨f, fk⟩∣∣2 ≤ B∥f∥2 for all f ∈ H.

The largest constant A and the smallest constant B satisying (1.6) are called the

upper and the lower frame bound respectively. The sequence {fk}∞k=1 is called a tight

frame for H if the upper frame bound A and the lower frame bound B coincide.

The sequence {fk}∞k=1 is called a Bessel sequence in H if only the right-hand side

inequality in (1.6) holds and is called Riesz basis for H if there exists a linear, bounded

bijective operator T : H → H such that {fk}∞k=1 = {Tek}∞k=1, where {ek}∞k=1 is an

orthonormal basis for H. For the fundamentals of frame theory and its applications

we refer to [3, 13].

Let {fk}∞k=1 be a frame in H. The operator S : H → H is called a frame operator

associated with the frame {fk}∞k=1 if Sf =
∑∞

k=1⟨f, fk⟩fk. It is well known (see

[3]) that S is linearly bounded, invertible, self-adjoint and positive, and the system{
S−1fk

}∞
k=1

is also a frame in H with bounds B−1, A−1, which is called the canonical

dual of the frame {fk}∞k=1. Moreover, this provides the reconstruction formula

(1.7) f = SS−1 =
∞∑
k=1

⟨f, S−1fk⟩fk =
∞∑
k=1

⟨f, fk⟩S−1fk,

where both series converge unconditionally for all f ∈ H. Thus, a frame {fk}∞k=1

allows every f ∈ H to be written as a series expansion of the frame elements, which

is similar to the property of basis; the main di�erence is that the frame coe�cients

⟨f, S−1fk⟩ in (1.7) can, generally, be replaced by other coe�cients. Further, it should

be noted that
{
S−1/2fk

}∞
k=1

is a tight frame with bound 1 and hence

(1.8) f =

∞∑
k=1

⟨f, S−1/2fk⟩S−1/2fk.
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In order to prove theorems to be presented in next section, we need the following

lemmas whose proofs can be found in [3].

Lemma 1.3. Let {fk}∞k=1 be a frame for a Hilbert space H. Then {fk}∞k=1 is a Riesz

basis for H if and only if {fk}∞k=1 is complete in H, and there exist constants A,B > 0

such that for every �nite scalar sequence {ck},

A
∑
k

|ck|2 ≤

∥∥∥∥∥∑
k

ckfk

∥∥∥∥∥
2

≤ B
∑
k

|ck|2.

Lemma 1.4. Let {fk}∞k=1 be a Bessel sequence with bound B for a Hilbert space H.
Then

(i) ∥fk∥2 ≤ B, k = 1, 2, ...

(ii) ⟨fj , fk⟩ = 0, j ̸= k, whenever ∥fk∥2 = B, for some k.

Lemma 1.5. Suppose that H is a Hilbert space. Let T : H → H be a bounded

operator, and assume that ⟨Tx, x⟩ = 0, for all x ∈ H. If H is a complex Hilbert space,

then T = 0; if H is a real Hilbert space and T is self-adjoint, then T = 0.

2. EXISTENCE OF A GABOR FRAME IN L2(R+)

Let p and q be two given positive real numbers. For any �xed function g ∈ L2(R+),

the family of functions of the form

(2.1)
{
MmqTnpg(x) = wmq(x)g(x⊖ np), m, n ∈ Z+, x ∈ R+

}
is called a Gabor frame for L2(R+) if there exist constants A and B, 0 < A ≤ B <∞
such that

(2.2) A∥f∥2 ≤
∑

m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 ≤ B∥f∥2, for all f ∈ L2(R+),

where Mmqf(x) = wmqf(x) and Tnpf(x) = f(x ⊖ np) are the modulation and

translation operators de�ned on L2(R+), respectively.

We �rst show that the operator S associated with the Gabor frame {MmqTnpg}m,n∈Z+

is commutative, i.e.,

(2.3) SMmqTnp =MmqTnpS.

Indeed, since MqTpf(x) = wq(x)f(x⊖ p) and TpMqf(x) = wq(x)MqTpf(x), we have

SMmqTnpf =
∑
k∈Z+

∑
ℓ∈Z+

⟨MmqTnpf,MkqTℓpg⟩MkqTℓpg

=
∑
k∈Z+

∑
ℓ∈Z+

⟨f, w(k−m)pqnM(k−m)kqT(ℓ−n)pg⟩MkqTℓpg
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=
∑
k∈Z+

∑
ℓ∈Z+

wkpqn⟨f,MkqTℓpg⟩M(k+m)qT(ℓ+n)pg

=
∑
k∈Z+

∑
ℓ∈Z+

⟨f,MkqTℓpg⟩MmqTnpMkqTℓpg =MmqTnpSf.

This commutative property of S implies that S−1 commutes with the operatorMmqTnp.

Consequently, S−1/2 also commutes with MmqTnp and as a consequence, we have the

following theorem.

Theorem 2.1. Let {MmqTnpg}m,n∈Z+ be a Gabor frame for L2(R+). Then, Gabor

structure of the canonical dual is given by
{
MmqTnpS

−1g
}
m,n∈Z+ , where g ∈ L2(R+)

and p, q ∈ R+\ {0}. Moreover, the canonical tight frame associated with {MmqTnpg}m,n∈Z+

is
{
MmqTnpS

−1/2g
}
m,n∈Z+ .

First we prove two lemmas, which will be used in the proofs of the main results.

Lemma 2.2. Let f, g ∈ L2(R+), p, q ∈ R+\ {0} and k ∈ Z+ be given. Then the series

(2.4)
∑
n∈Z+

f(x⊖ np)g(x⊖ np⊖ q−1k), x ∈ R+

converges absolutely for almost all x ∈ R+. Furthermore, for any m ∈ Z+, we have

(2.5) ⟨f,MmqTnpg⟩ =
∫ p

0

Gn(x)wmq(x)dx,

where

(2.6) Gn(x) =
∑
k∈Z+

f(x⊖ q−1k)g(x⊖ np⊖ q−1k).

Proof. Since f, Tq−1kg(x) ∈ L2(R+), we have f. Tq−1kg(x) ∈ L1(R+). Thus∫ p

0

∑
n∈Z+

|f(x⊖ np)g(x⊖ np⊖ q−1k)|dx =

∫
R+

|f(x)g(x⊖ q−1k)|dx <∞,

and hence∑
n∈Z+

|f(x⊖ np)g(x⊖ np⊖ q−1k)| <∞, for almost all x ∈ [0, p).

Since the series in (2.4) converges a.e. on [0, p), therefore, it converges absolutely a.e.

on x ∈ R+ and by the De�nition 1.1, it de�nes a function with period p. Further, we

have

⟨f,MmqTnpg⟩ =
∫
R+

f(x)g(x⊖ np). wmq(x)dx

=
∑
k∈Z+

∫ q−1

0

f(x⊖ q−1k)g(x⊖ np⊖ q−1k). wmq(x)dx =

∫ q−1

0

Gn(x)wmq(x)dx.

This completes the proof.
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To prove the existence of the system (2.1) that forms a Gabor frame in L2(R+),

we set

(2.7) D(x) =
∑
n∈Z+

|g(x⊖ np)|2, x ∈ R+,

(2.8) Ek(x) =
∑
n∈Z+

g(x⊖ np)g(x⊖ np⊖ q−1k), x ∈ R+, k ∈ Z+.

Note that D(x) and Ek(x) are bounded functions with period p and D(x) = E0(x).

Lemma 2.3. Let f be in E0(R+) and g be in L2(R+) with p, q ∈ R+\ {0}. Then

(2.9)
∑

m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 =
1

|q|

∫
R+

|f(x)|2D(x)dx+Rg(f),

where

(2.10) Rg(f) =
1

|q|
∑
k∈N

∫
R+

f(x)f(x⊖ q−1k)Ek(x)dx.

Proof. Since f ∈ E0(R+), the function f(x⊖ q−1k) can be non-zero only for �nitely

many values of k. The number of values of k, for which f(x⊖ q−1k) ̸= 0 is uniformly

bounded. Consequently, each Gn(x) de�ned by (2.6) is bounded, and hence Gn ∈
L1[0, q−1) ∩ L2[0, q−1). By Lemma 1.2, for all m,n ∈ Z+, we have

(2.11) ⟨f,MmqTnpg⟩ =
∫ q−1

0

Gn(x)wmq(x)dx.

Applying Parseval's theorem and using the fact that
{
q1/2wmq(x)

}
m∈Z+ forms an

orthonormal basis for L2[0, q−1), we obtain

(2.12)
∑

m∈Z+

∣∣∣∣∣
∫ q−1

0

Gn(x)wmq(x)dx

∣∣∣∣∣
2

=
1

|q|

∫ q−1

0

|Gn(x)|2dx.

By virtue of (2.11) and (2.12), we get

∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 =
∑

m∈Z+

∑
n∈Z+

∣∣∣∣∣
∫ q−1

0

Gn(x)wmq(x)dx

∣∣∣∣∣
2

=
1

|q|
∑
n∈Z+

∫ q−1

0

|Gn(x)|2dx =
1

|q|
∑
n∈Z+

∫ q−1

0

Gn(x)Gn(x)dx

=
1

|q|
∑
n∈Z+

∫ q−1

0

∑
k∈Z+

f(x⊖ q−1k)g(x⊖ np⊖ q−1k)Gn(x)dx

=
1

|q|
∑
n∈Z+

∫
R+

f(x)g(x⊖ np)Gn(x)dx
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=
1

|q|
∑
n∈Z+

∫
R+

f(x)g(x⊖ np)
∑
k∈Z+

f(x⊖ q−1k)g(x⊖ np⊖ q−1k)dx

=
1

|q|

∫
R+

|f(x)|2
∑
n∈Z+

|g(x⊖ np)|2dx

+
1

|q|
∑
k∈N

∫
R+

f(x)f(x⊖ q−1k)
∑
n∈Z+

g(x⊖ np)g(x⊖ np⊖ q−1k)

=
1

|q|

∫
R+

|f(x)|2D(x)dx+
1

|q|
∑
k∈N

∫
R+

f(x)f(x⊖ q−1k)Ek(x)dx.

This completes the proof.

Theorem 2.4 (Existence). Let g ∈ L2(R+) and p, q ∈ R+\ {0} be given. Then the

following holds:

(i). If |pq| > 1, then {MmqTnpg}m,n∈Z+ is not a frame for L2(R+).

(ii). If {MmqTnpg}m,n∈Z+ is a frame, then |pq| = 1 if and only if {MmqTnpg}m,n∈Z+

is a Riesz basis.

Proof. Suppose that {MmqTnpg}m,n∈Z+ is a Gabor frame for L2(R+) and let{
MmqTnpS

−1/2g
}
m,n∈Z+ be the canonical tight frame associated with

{MmqTnpg}m,n∈Z+ . Then, by Lemma 2.3, we have∫
R+

|f(x)|2dx =
∑

m∈Z+

∑
n∈Z+

|⟨f,MmqTnpS
−1/2g⟩|2

=
1

|q|

∫
R+

|f(x)|2
∑
n∈Z+

|S−1/2g(x⊖ np)|2dx

Thus, this gives that
∑

n∈Z+ |S−1/2g(x⊖np)|2 = |q|, a.e. on x ∈ R+ and consequently,

we have

∥S−1/2g∥2 =

∫
R+

|S−1/2g|2dx =

∫ p

0

∑
n∈Z+

|S−1/2g(x⊖ np)|2dx = |pq|.

Now, to prove (i), it is su�cient to prove that |pq| ≤ 1 for given frame {MmqTnpg}m,n∈Z+ .

Since
{
MmqTnpS

−1/2g
}
m,n∈Z+ is a tight frame with bound 1, therefore, it follows by

Lemma 1.4 that ∥S−1/2g∥2 = |pq| ≤ 1, and the result follows.

To prove (ii), we �rst assume that {MmqTnpg}m,n∈Z+ is a Riesz basis. Then by

Lemma 2.3,
{
MmqTnpS

−1/2g
}
m,n∈Z+ is also a Riesz basis with bounds A = B = 1.

This implies that ∥S−1/2g∥2 = |pq| = 1.

Now, assume that |pq| = 1, which implies that ∥S−1/2g∥2 = ∥MmqTnpS
−1/2g∥2 =

1, for all m,n ∈ Z+. Using Lemma 1.4(ii), we conclude that
{
MmqTnpS

−1/2g
}
m,n∈Z+

is an orthonormal basis for L2(R+) and hence, by De�nition 1.2, it follows that

{MmqTnpg}m,n∈Z+ is a Riesz basis. This completes the proof.
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3. NECESSARY CONDITION AND SUFFICIENT CONDITIONS

In this section, we �rst establish a necessary condition for the system (2.1), i.e.

{MmqTnpg}m,n∈Z+ to be a frame in L2(R+).

Theorem 3.1. Suppose that {MmqTnpg}m,n∈Z+ is a Gabor frame for L2(R+) with

bounds A and B, then

(3.1) |q|A ≤ D(x) ≤ |q|B, a.e. on x ∈ R+,

where D(x) is de�ned by (2.7).

Proof.We use the contradiction method. Assume that the second inequality in (3.1)

is not true. Then, there exists a measurable set Ω ⊆ R+ with meas(Ω) > 0 such that

D(x) > |q|B on Ω. Suppose that Ω is contained in [0, q−1) with diameter of |q|−1 and

let Ω0 = {x ∈ Ω : D(x) ≥ 1 + |q|B}. Further, for each k ∈ N, we de�ne the sets Ωk as

Ωk =

{
x ∈ Ω :

1

1 + k
+ |q|B ≤ D(x) <

1

k
+ |q|B

}
.

Clearly, {Ωk}k∈N forms a sequence of mutually disjoint measurable sets such that Ω =∪
k∈N Ωk. Therefore, there exist atleast one set say Ωℓ with property that meas(Ωℓ) >

0, ℓ ∈ N. Let f = χΩℓ
be the characteristic function on Ωℓ. Then, clearly each f. Tnpg

has a compact support in Ωℓ. Since Ωℓ is contained in an interval of length |q|−1 and{
q1/2wmq(x)

}
m∈Z+ constitutes an orthonormal basis for L2[0, q−1), we have∑

m∈Z+

|⟨f,MmqTnpg⟩|2 =
∑

m∈Z+

|⟨fTnpg,Mmq⟩|2 =
1

|q|

∫
R+

|f(x)|2|g(x⊖ np)|2dx.

Thus ∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 =
1

|q|
∑
n∈Z+

∫
R+

|f(x)|2|g(x⊖ np)|2dx

=
1

|q|

∫
Ωℓ

|f(x)|2D(x)dx ≥
(
B +

1

|q|(ℓ+ 1)

)
∥f∥2.

Consequently, B can not be an upper frame bound for {MmqTnpg}m,n∈Z+ . A similar

arguments can be used to show that if the �rst inequality in (4.1) is violated, then A

cannot be a lower frame bound for {MmqTnpg}m,n∈Z+ . The proof is completed.

Now, we are going to derive two su�cient conditions of a Gabor frame for L2(R+).

The �rst su�cient condition is given in the next theorem.

Theorem 3.2. Let f be in E0(R+) and g be in L2(R+) with p, q ∈ R+\ {0}. Suppose
that there are constants A,B > 0 such that

(3.2) A ≤ D(x) ≤ B, a.e. on x ∈ R+
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and

(3.3)
∑
k∈N

∥Ek∥∞ < A.

Then {MmqTnpg}m,n∈Z+ is a Gabor frame for L2(R+).

Proof. By Lemma 2.3, we have

|Rg(f)| =

∣∣∣∣∣ 1|q| ∑
k∈N

∫
R+

f(x)f(x⊖ q−1k)Ek(x)dx

∣∣∣∣∣ ≤ 1

|q|
∑
k∈N

∫
R+

|f(x)|.|f(x⊖q−1k)| |Ek(x)| dx

≤ 1

|q|
∑
k∈N

{∫
R+

|f(x)|2 |Ek(x)| dx
}1/2 {∫

R+

|f(x⊖ q−1k)|2 |Ek(x)| dx
}1/2

≤ 1

|q|

{∫
R+

|f(x)|2
[∑
k∈N

|Ek(x)|

]
dx

}1/2 {∫
R+

|f(x⊖ q−1k)|2
[∑
k∈N

|Ek(x)|

]
dx

}1/2

≤ 1

|q|

{∫
R+

|f(x)|2
[∑
k∈N

|Ek(x)|

]
dx

}1/2 {∫
R+

|f(x)|2
[∑
k∈N

∣∣Ek(x⊕ q−1k)
∣∣] dx}1/2

≤ 1

|q|

{∫
R+

|f(x)|2
[∑
k∈N

|Ek(x)|

]
dx

}1/2 {∫
R+

|f(x)|2
[∑
k∈N

|Ek(x)|

]
dx

}1/2

(3.4) ≤ 1

|q|
∑
k∈N

∫
R+

|f(x)|2 |Ek(x)| dx ≤ 1

|q|
∑
k∈N

∥Ek∥∞ ∥f∥2.

It follows from (2.9) and (3.4) that∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 ≤ 1

|q|
∥f∥2

{
∥D∥∞ +

∑
k∈N

∥Ek∥∞

}
and

1

|q|
∥f∥2

{
∥D∥∞ −

∑
k∈N

∥Ek∥∞

}
≤

∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2.

Taking into account (3.2) and (3.3), we get

1

|q|
∥f∥2

{
A−

∑
k∈N

∥Ek∥∞

}
≤

∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2

≤ 1

|q|
∥f∥2

{
B +

∑
k∈N

∥Ek∥∞

}
.

Hence {MmqTnpg}m,n∈Z+ is a Gabor frame for L2(R+).

Now we establish the second su�cient condition for Gabor frame for L2(R+).
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Theorem 3.3. Let g ∈ L2(R+) be such that

(3.5) Ag =
1

|q|
inf

x∈[0,p)

{
D(x)−

∑
k∈N

|Ek(x)|

}
> 0,

and

(3.6) Bg =
1

|q|
sup

x∈[0,p)

∑
k∈Z+

|Ek(x)| < +∞.

Then {MmqTnpg}m,n∈Z+ is a Gabor frame for L2(R+) with bounds Ag and Bg.

Proof. Using (2.8), we have∑
k∈N

∣∣T−q−1kEk(x)
∣∣ = ∑

k∈N

|T−q−1k

∑
n∈Z+

g(x⊖ np)g(x⊖ np⊖ q−1k)|

=
∑
k∈N

|T−q−1k

∑
n∈Z+

Tnpg(x)Tnp+q−1kg(x)| =
∑
k∈N

|
∑
n∈Z+

Tnp−q−1kg(x)Tnpg(x)|

=
∑
k∈N

|
∑
n∈Z+

Tnp+q−1kg(x)Tnpg(x)| =
∑
k∈N

|
∑
n∈Z+

Tnp+q−1kg(x)Tnpg(x)| =
∑
k∈N

|Ek(x)| .

We now estimate the term Rg(f) given by (2.10), using Cauchy-Schwartz's inequality∣∣∣∣∣∑
k∈N

∫
R+

f(x)f(x⊖ q−1k)Ek(x)dx

∣∣∣∣∣ =
∣∣∣∣∣∑
k∈N

∫
R+

f(x)Tq−1kf(x)Ek(x)dx

∣∣∣∣∣
≤

∑
k∈N

∫
R+

|f(x)| |Tq−1kf(x)| |Ek(x)|dx

≤
∑
k∈N

{∫
R+

|f(x)|2|Ek(x)|dx
}1/2 {∫

R+

|Tq−1kf(x)|2|Ek(x)|dx
}1/2

≤

{∑
k∈N

∫
R+

|f(x)|2|Ek(x)|dx

}1/2 {∑
k∈N

∫
R+

|Tq−1kf(x)|2|Ek(x)|dx

}1/2

=

{∫
R+

|f(x)|2
∑
k∈N

|Ek(x)|dx

}1/2 {∫
R+

|Tq−1kf(x)|2
∑
k∈N

|Ek(x)|dx

}1/2

(3.7) =

∫
R+

|f(x)|2dx
∑
k∈N

|Ek(x)|.

Combining (3.7) and (2.9), we get

(3.8)
1

|q|

∫
R+

|f(x)|2
{
D(x)−

∑
k∈N

|Ek(x)|

}
dx ≤

∑
m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2

and

(3.9)
∑

m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 ≤ 1

|q|

∫
R+

|f(x)|2
{
D(x) +

∑
k∈N

|Ek(x)|

}
dx.
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Taking in�mum in (3.8) and supremum in (3.9), respectively, we obtain

Ag∥f∥22 ≤
∑

m∈Z+

∑
n∈Z+

|⟨f,MmqTnpg⟩|2 ≤ Bg∥f∥22,

which holds for all f ∈ E0(R+), where Ag and Bg are given by (3.5) and (3.6),

respectively. This completes the proof of the theorem.
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