Известия НАН Армении. Математика, том 47, н. 5, 2012, стр. 21-38.

ON THE CONVERGENCE OF MULTIPLE WALSH-FOURIER SERIES OF FUNCTIONS OF BOUNDED GENERALIZED VARIATION

U. GOGINAVA AND A. A. SAHAKIAN

Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi, Georgia Yerevan State University, Armenia

E-mails: zazagoginava@gmail.com sart@ysu.am

Abstract. The convergence of multiple Walsh-Fourier series of functions of bounded generalized variation is investigated. The sufficient and necessary conditions on the sequence $\Lambda = \{\lambda_n\}$ are found for the convergence of multiple Walsh-Fourier series of functions of bounded partial Λ -variation.

MSC2000 numbers: 42C10.

Keywords: Walsh-Fourier series; generalized variation; Λ -variation.

1. Classes of Functions of Bounded Generalized Variation

In 1881 Jordan [13] introduced the class of functions of bounded variation and applied it to the theory of Fourier series. Hereafter this notion was generalized by many authors (quadratic variation, Φ -variation, Λ -variation ets., see [13, 22, 21, 14]). In two dimensional case the class BV of functions of bounded variation was introduced by Hardy [12].

Let I := [0, 1) and

$$J^k = (a^k, b^k) \subset I, \qquad k = 1, 2, \dots d.$$

Consider a measurable function f(x) defined on \mathbb{R}^d and 1-periodic with respect to each variable. For d=1 we set

$$f(J^1) := f(b^1) - f(a^1).$$

If for a function of d-1 variables the expression $f\left(J^1 \times \cdots \times J^{d-1}\right)$ is already defined, then for a function of d variables the *mixed difference* is defined as follows:

$$f(J^1 \times \cdots \times J^d) := f(J^1 \times \cdots \times J^{d-1}, b^d) - f(J^1 \times \cdots \times J^{d-1}, a^d).$$

Let $E = \{J_k\}$ be a collection of nonoverlapping intervals from I ordered in arbitrary way and let Ω be the set of all such collections E.

For sequences of positive numbers $\Lambda^j = \{\lambda_n^j\}_{n=1}^{\infty}, j = 1, 2, \dots, d$, the $(\Lambda^1, \dots, \Lambda^d)$ -variation of f with respect to the index set

$$D := \{1, 2, ..., d\}$$

is defined as follows:

$$V_{\Lambda^{1},\dots,\Lambda^{d}}^{D}\left(f\right):=\sup_{\left\{J_{s}^{j}\right\}_{s=1}^{k}\in\Omega}\sum_{i_{1},\dots,i_{d}}\frac{\left|f\left(J_{i_{1}}^{1}\times\cdots\times J_{i_{d}}^{d}\right)\right|}{\lambda_{i_{1}}\cdots\lambda_{i_{d}}}.$$

For an index set $\alpha = \{j_1, ..., j_p\} \subset D$ and any $x = (x_1, ..., x_d) \in R^d$ we set $\widetilde{\alpha} := D \setminus \alpha$ and denote by x_{α} the vector of R^p consisting of components $x_j, j \in \alpha$, i.e.

$$x_{\alpha} = (x_{j_1}, ..., x_{j_p}) \in R^p$$
.

By $V^{\alpha}_{\Lambda^{j_1},...,\Lambda^{j_p}}(f,x_{\tilde{\alpha}})$ and $f\left(J^1_{i_{j_1}}\times\cdots\times J^p_{i_{j_p}},x^{\tilde{\alpha}}\right)$ we denote respectively the $\left(\Lambda^{j_1},...,\Lambda^{j_p}\right)$ -variation and the mixed difference of f as a function of variables $x_{j_1},...,x_{j_p}$ over the p-dimensional cube I^p with fixed values $x_{\tilde{\alpha}}$ of other variables. The $\left(\Lambda^{j_1},...,\Lambda^{j_p}\right)$ -variation of f with respect to index set α is defined as follows:

$$V_{\Lambda^{j_1},\dots,\Lambda^{j_p}}^{\alpha}\left(f\right) = \sup_{x_{\widetilde{\alpha}} \in I^{d-p}} V_{\Lambda^{j_1},\dots,\Lambda^{j_p}}^{\alpha}\left(f, x_{\widetilde{\alpha}}\right),$$

where $I^p := [0, 1)^p$.

Definition 1.1. We say that the function f has Bounded total $(\Lambda^1, ..., \Lambda^d)$ -variation on I^d and write

$$f \in BV_{\Lambda^1 \dots \Lambda^d} := BV_{\Lambda^1 \dots \Lambda^d}(T^d),$$

if

$$V_{\Lambda^1,...,\Lambda^d}(f) := \sum_{\alpha \subset D} V^\alpha_{\Lambda^{j_1},...,\Lambda^{j_p}} \ (f) < \infty.$$

Definition 1.2. We say that the function f is continuous in $(\Lambda^1, ..., \Lambda^d)$ -variation on I^d and write

$$f \in CV_{\Lambda^1,\ldots,\Lambda^d} := CV_{\Lambda^1,\ldots,\Lambda^d}(T^d),$$

if

$$\lim_{n\to\infty} V^{\alpha}_{\Lambda^{j_1},\dots,\Lambda^{j_{k-1}},\Lambda^{j_k}_n,\Lambda^{j_{k+1}},\dots,\Lambda^{j_p}}(f) = 0, \qquad k = 1,2,\dots,p$$
 for any $\alpha \subset D, \ \alpha := \{j_1,\dots,j_p\}, \ where \ \Lambda^{j_k}_n := \left\{\lambda^{j_k}_s\right\}_{s=n}^{\infty}.$

Definition 1.3. We say that the function f has Bounded Partial $(\Lambda^1, ..., \Lambda^d)$ -variation and write

$$f \in PBV_{\Lambda^1,\dots,\Lambda^d} := PBV_{\Lambda^1,\dots,\Lambda^d}(T^d),$$

if

$$PV_{\Lambda^{1},...,\Lambda^{d}}(f) := \sum_{i=1}^{d} V_{\Lambda^{i}}^{\{i\}}(f) < \infty.$$

In the case $\Lambda^1 = \cdots = \Lambda^d = \Lambda$ we denote

$$BV_{\Lambda} := BV_{\Lambda^1,...,\Lambda^d}, \quad CV_{\Lambda} := CV_{\Lambda^1,...,\Lambda^d},$$

and

$$PBV_{\Lambda} := PBV_{\Lambda^1} \quad {}_{\Lambda^d}.$$

If $\lambda_n \equiv 1$ (or if $0 < c < \lambda_n < C < \infty$, n = 1, 2, ...) the classes BV_{Λ} and PBV_{Λ} coincide with the Hardy class BV and PBV respectively. Hence it is reasonable to assume that $\lambda_n \to \infty$, and since the intervals in the collection $E = \{J_i\}$ are ordered arbitrarily, we suppose, without loss of generality, that the sequence $\{\lambda_n\}$ is increasing. Thus,

(1.1)
$$1 < \lambda_1 \le \lambda_2 \le \dots, \qquad \lim_{n \to \infty} \lambda_n = \infty.$$

When $\lambda_n = n$ for all n = 1, 2... we say *Harmonic Variation* instead of Λ -variation and write H instead of Λ (BV_H , PBV_H , CV_H , ets).

Remark 1.1. The notion of Λ -variation was introduced by Waterman [21] in one dimensional case, by Sahakian [19] in two dimensional case and by Sablin [18] in the case of higher dimensions. The notion of bounded partial variation (class PBV) was introduced by Goginava in [7]. These classes of functions of generalized bounded variation play an important role in the theory Fourier series.

Observe, that the number of variations in Definition 1.1 of total variation is 2^d-1 , while the number of variations in Definition 1.3 of partial variation is only d.

The statements of the following theorem are known.

Theorem A. 1) (Dragoshanski [5]) If d = 2, then $BV_H = CV_H$.

2) (Bakhvalov [1]) For any $d \geq 2$,

$$CV_H = \bigcup_{\Gamma} BV_{\Gamma},$$

where the union is taken over all sequences $\Gamma = \{\gamma_n\}_{n=1}^{\infty}$ with $\gamma_n = o(n)$ as $n \to \infty$. The main result of this section is the following theorem.

Theorem 1.1. Let $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ and $d \geq 2$. If

(1.2)
$$\frac{\lambda_n}{n} \downarrow 0 \quad and \quad \sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n}{n^2} < \infty,$$

then there exists a sequence $\Gamma = \{\gamma_n\}_{n=1}^{\infty}$ with

$$(1.3) \gamma_n = o(n) as n \to \infty,$$

such that $PBV_{\Lambda} \subset BV_{\Gamma}$.

Proof of Theorem 1.1. Choosing the sequence $\{A_n\}_{n=1}^{\infty}$ such that

(1.4)
$$A_n \uparrow \infty, \qquad \frac{\lambda_n A_n}{n} \downarrow 0, \qquad \sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n A_n^d}{n^2} < \infty,$$

we set

$$\gamma_n = \frac{n}{A_n}, \qquad n = 1, 2, \dots$$

We prove that there is a constant C > 0 such that

(1.6)
$$\sum_{i_1, \dots, i_p} \frac{\left| f\left(J^1_{i_1} \times \dots \times J^p_{i_p}, x^{\widetilde{\alpha}}\right) \right|}{\gamma_{i_1} \cdots \gamma_{i_p}} < C \cdot PV_{\Lambda}(f),$$

for any $f \in PBV_{\Lambda}$, $\{J_{i_j}^j\}_{i_j=1}^{k_j} \in \Omega$, $j=1,2,\ldots,d$, and $\alpha:=\{i_1,\ldots,i_p\} \subset D$. To prove (1.6) observe, that

(1.7)
$$\sum_{i_1,\dots,i_p} \frac{\left| f\left(J_{i_1}^1 \times \dots \times J_{i_p}^p, x^{\widetilde{\alpha}}\right) \right|}{\gamma_{i_1} \cdots \gamma_{i_p}}$$

$$= \sum_{\sigma} \sum_{i_{\sigma(1)} \leq \dots \leq i_{\sigma(p)}} \frac{\left| f\left(J_{i_1}^1 \times \dots \times J_{i_p}^p, x^{\widetilde{\alpha}}\right) \right|}{\gamma_{i_1} \cdots \gamma_{i_p}} < \infty,$$

where the sum is taken over all rearrangements $\sigma = {\sigma(k)}_{k=1}^p$ of the set $\{1, 2, \dots, p\}$.

Denoting $M = PV_{\Lambda}(f)$ and using (1.5), (1.4) and (1.2) we obtain:

$$\sum_{i_{1} \leq i_{2} \leq \dots \leq i_{p}} \frac{\left| f\left(J_{i_{1}}^{1} \times \dots \times J_{i_{p}}^{p}, x^{\tilde{\alpha}}\right) \right|}{\gamma_{i_{1}} \cdots \gamma_{i_{p}}}$$

$$= \sum_{i_{1} \leq i_{2} \leq \dots \leq i_{p-1}} \frac{A_{i_{1}} \cdots A_{i_{p-1}}}{i_{1} \cdots i_{p-1}} \sum_{i_{p} \geq i_{p-1}} \frac{\left| f\left(J_{i_{1}}^{1} \times \dots \times J_{i_{p}}^{p}, x^{\tilde{\alpha}}\right) \right|}{\lambda_{i_{p}}} \cdot \frac{\lambda_{i_{p}} A_{i_{p}}}{i_{p}}$$

$$\leq M \sum_{i_{1} \leq i_{2} \leq \dots \leq i_{p-1}} \frac{A_{i_{p-1}}^{p} \lambda_{i_{p-1}}}{i_{p-1}^{2}} \cdot \frac{1}{i_{1} \cdots i_{p-2}}$$

$$= M \sum_{i_{p-1}=1}^{\infty} \frac{A_{i_{p-1}}^{p} \lambda_{i_{p-1}}}{i_{p-1}^{2}} \sum_{i_{p-2}=1}^{i_{p-1}} \frac{1}{i_{p-2}} \sum_{i_{p-3}=1}^{i_{p-2}} \frac{1}{i_{p-3}} \cdots \sum_{i_{1}=1}^{i_{2}} \frac{1}{i_{1}}$$

$$\leq M \sum_{i_{p-1}=1}^{\infty} \frac{A_{i_{p-1}}^{p} \lambda_{i_{p-1}}}{i_{p-1}^{2}} \left(\sum_{i=1}^{i_{p-1}} \frac{1}{i}\right)^{p-2} \leq C \cdot M \sum_{n=1}^{\infty} \frac{A_{n}^{p} \lambda_{n} \log^{d-2} n}{n^{2}} < \infty.$$

Similarly we can prove that all other summands in the right hind side of (1.7) are finite. Theorem 1.1 is proved.

2. Walsh functions

We denote the set of all non-negative integers by **N**, the set of all integers by **Z** and the set of dyadic rational numbers in the unit interval I := [0,1) by **Q**. Each element of **Q** has the form $\frac{p}{2^n}$ for some $p, n \in \mathbf{N}, 0 \le p < 2^n$.

By a dyadic interval in I we mean an interval $I_N^l := [l2^{-N}, (l+1)2^{-N})$ for some $l \in \mathbb{N}$, $0 \le l < 2^N$. Given $N \in \mathbb{N}$ and $x \in I$, we denote by $I_N(x)$ the dyadic interval of length 2^{-N} that contains x. We denote $I_N := [0, 2^{-N})$.

Let $r_{0}\left(x\right)$ be the function defined on the real line by

$$r_{0}\left(x\right) = \begin{cases} 1, & \text{if } x \in [0, 1/2) \\ -1, & \text{if } x \in [1/2, 1) \end{cases}, \qquad r_{0}\left(x+1\right) = r_{0}\left(x\right), \qquad x \in \mathbf{R}.$$

The Rademacher system is defined by

$$r_n(x) = r_0(2^n x), \quad x \in I, \quad n = 0, 1, \dots$$

Let $w_0, w_1, ...$ represent the Walsh functions, i.e. $w_0(x) \equiv 1$ and if $n = 2^{n_1} + \cdots + 2^{n_s}$ is a positive integer with $n_1 > n_2 > \cdots > n_s$ then

$$w_n(x) = r_{n_1}(x) \cdots r_{n_s}(x), \qquad x \in I.$$

The Walsh-Dirichlet kernel is defined by

$$D_n\left(x\right) = \sum_{k=0}^{n-1} w_k\left(x\right).$$

Recall that (see [20, 11]):

(2.1)
$$D_{n}(t) = w_{n}(t) \sum_{j=0}^{\infty} \delta_{j} w_{2^{j}}(t) D_{2^{j}}(t),$$

where $n = \sum_{j=0}^{\infty} \delta_j 2^j$, $\delta_j = 0$ or 1.

(2.2)
$$D_{2^{n}}(x) = \begin{cases} 2^{n}, & \text{if } x \in [0, 2^{-n}), \\ 0, & \text{if } x \in [2^{-n}, 1) \end{cases}$$

$$|D_n(x)| \le \min\left(n, \frac{1}{x}\right), \quad x \in (0, 1),$$

(2.4)
$$|D_{m_A}(x)| \ge \frac{1}{4x}, \quad 2^{-2A-1} \le x < 1,$$

where

$$(2.5) m_A := 2^{2A-2} + 2^{2A-4} + \dots + 2^2 + 2^0.$$

Given $x \in I$, the expansion

(2.6)
$$x = \sum_{k=0}^{\infty} x_k 2^{-(k+1)},$$

where $x_k = 0$ or 1, is called the dyadic expansion of x. If $x \in I \setminus \mathbf{Q}$, then (2.6) is uniquely determined. For the dyadic expansion of $x \in \mathbf{Q}$ we choose the one with $\lim_{k \to \infty} x_k = 0$.

The dyadic sum of $x, y \in I$ in terms of the dyadic expansion of x and y is defined by

$$x \dotplus y = \sum_{k=0}^{\infty} |x_k - y_k| 2^{-(k+1)}.$$

We consider the multiple Walsh system

$$w_{n_1}(x_1) \times \cdots \times w_{n_d}(x_d), \quad n_i \in \mathbb{N}, \quad i = 1, 2, ..., d$$

on the *d*-dimensional unit cube $I^d = [0,1) \times \cdots \times [0,1)$.

If
$$f \in L^1(I^d)$$
, then

$$\hat{f}(n_1,...,n_d) = \int_{I_d} f(x_1,...,x_d) w_{n_1}(x_1) \cdots w_{n_d}(x_d) dx_1 \cdots dx_d$$

is the $(n_1, ..., n_d)$ -th Walsh-Fourier coefficient of f.

The rectangular partial sums of d-dimensional Fourier series with respect to the Walsh system are defined by

$$S_{m_1,...,m_d} f(x_1,...,x_d) = \sum_{n_1=0}^{m_1-1} \cdots \sum_{n_d=0}^{m_d-1} \hat{f}(n_1,...,n_d) w_{n_1}(x_1) \cdots w_{n_d}(x_d).$$

Denoting

$$h_{\{i\}} := (0, ..., 0, h_i, 0, ..., 0) \in \mathbf{R}^d$$

and

$$\Theta\left(f,x,h_{\left\{i\right\}}\right):=f\left(x+h_{\left\{i\right\}}\right)-f\left(x\right),\qquad x\in\mathbf{R}^{d},$$

the symbols $\Theta\left(f,x,h_{\{\alpha_1,...,\alpha_p\}}\right)$ will stand for the expression which can be obtained by consecutive applying of Θ to the arguments with indices $\{\alpha_1,...,\alpha_p\}$.

We denote by $C(I^d)$ the space of continuous, 1-periodic with respect to each variable functions defined on \mathbf{R}^d with the norm

$$||f||_C := \sup_{x \in I^d} |f(x)|.$$

For $f \in C(I^d)$ the expressions

$$\omega_{\alpha_1,...,\alpha_p} \left(\delta_{\alpha_1},...,\delta_{\alpha_1}; f \right)_C := \sup_{\left| h_{\alpha_i} \right| \le \delta_{\alpha_i}, \ i=1,...,p} \left\| \Theta \left(f, \cdot, h_{\{\alpha_1,...,\alpha_p\}} \right) \right\|_C$$

are called moduli of continuity of function f.

3. Convergence of d-dimensional Walsh-Fourier series

In this paper we consider convergence of **only rectangular partial sums** (convergence in the sense of Pringsheim) of d-dimensional Walsh-Fourier series.

We say that $f(x_1,...,x_d)$ is continuous at $(x_1,...,x_d)$ if

(3.1)
$$\lim_{h_i \to 0+, i=1,...,d} f(x_1 \dotplus h_1,...,x_d \dotplus h_d) = f(x_1,...,x_d).$$

The well known Dirichlet-Jordan theorem (see [23]) states that the Fourier series of a function f(x), $x \in T$ of bounded variation converges at every point x to the value [f(x+0)+f(x-0)]/2.

Hardy [12] generalized the Dirichlet-Jordan theorem to the double Fourier series. He proved that if function f(x,y) has bounded variation in the sense of Hardy $(f \in BV)$, then S[f] converges at any point (x,y) to the value $\frac{1}{4} \sum f(x \pm 0, y \pm 0)$.

Convergence of d-dimensional trigonometric Fourier series of functions of bounded Λ -variation was investigated in details by Sahakian [19], Dyachenko [2, 3, 4], Bakhvalov [1], Sablin [18], Goginava, Sahakian [10].

For the *d*-dimensional Walsh-Fourier series the convergence of partial sums of functions Harmonic bounded fluctuation and other bounded generalized variation were studied by Moricz [15, 16], Onnewer, Waterman [17], Goginava [8, 9].

For two-dimensional functions of bounded Harmonic variation Sargsyan [24] has proved the following

Theorem S. [Sargsyan [24]] If $f \in BV_H(I^2)$, then the 2-dimensional Walsh-Fourier series of f converges to $f(x_1, x_2)$ at any point $(x_1, x_2) \in I^2$, where f is continuous.

Now we formulate the main results of this paper.

Theorem 3.1. Let $f \in CV_H(I^d)$, $d \geq 2$. Then the d-dimensional Walsh-Fourier series of f converges to f(x) at any point $x \in I^d$, where the function f is continuous.

The next theorem shows that Theorem S is not true for d > 2.

Theorem 3.2. Let d > 2. Then there exists a continuous function $f \in BV_H(I^d)$ such that the d-dimensional Walsh-Fourier cubic partial sums of f diverge at some point.

Note that similar results for the trigonometric system were proved by Bakhvalov [1].

In the next theorem we consider the behavior of the multidimensional Walsh-Fourier series of functions of bounded partial Λ -variation.

Theorem 3.3. Let $\Lambda = {\lambda_n}_{n=1}^{\infty}$ and $d \geq 2$.

a) If

$$(3.2) \sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n}{n^2} < \infty,$$

then the d-dimensional Walsh-Fourier series of a function $f \in PBV_{\Lambda}(I^d)$ converges to f(x) at any point $x \in I^d$, where f is continuous.

b) If

(3.3)
$$\frac{\lambda_n}{n} = O\left(\frac{\lambda_{[n^{\delta}]}}{[n^{\delta}]}\right)$$

for some $\delta > 1$, and

(3.4)
$$\sum_{n=1}^{\infty} \frac{\lambda_n \log^{d-2} n}{n^2} = \infty,$$

then there exists a continuous function $f \in PBV_{\Lambda}(I^d)$ such that the d-dimensional cubic partial sums of its Walsh-Fourier series diverge at some point.

Theorem 3.3 implies

Corollary 3.1. a) If $\Lambda = \{\lambda_n\}_{n=1}^{\infty}$ with

$$\lambda_n = \frac{n}{\log^{d-1+\varepsilon} n}, \quad n = 2, 3, \dots, \qquad d \ge 2,$$

for some $\varepsilon > 0$, then the d-dimensional Walsh-Fourier series of a function $f \in PBV_{\Lambda}(I^d)$ converges to f(x) at any point x, where f is continuous.

b) If
$$\Lambda = \{\lambda_n\}_{n=1}^{\infty}$$
 with

$$\lambda_n = \frac{n}{\log^{d-1} n}, \quad n = 2, 3, \dots, \qquad d \ge 2,$$

then there exists a continuous function $f \in PBV_{\Lambda}(I^d)$ such that the d-dimensional cubic partial sums of its Walsh-Fourier series diverge at some point.

4. Proofs of Main Results

Proof of Theorem 3.1. Let $n_i := 2^{N_i} + n_i', \ 0 \le n_i' < 2^{N_i}, \ i = 1, 2, ..., d$. Since

$$D_{2^{N_i} + n'_i} = D_{2^{N_i}} + w_{2^{N_i}} D_{n'_i}$$

we can write

$$(4.1) S_{n_{1},...,n_{d}} f(x_{1},...,x_{d}) - f(x_{1},...,x_{d})$$

$$= \int_{I^{d}} \left[f(x_{1} \dotplus s_{1},...,x_{d} \dotplus s_{d}) - f(x_{1},...,x_{d}) \right] \prod_{j=1}^{d} D_{n_{j}}(s_{j}) ds_{1} \cdots ds_{d}$$

$$= \sum_{\alpha \subset D} \int_{I^{d}} \left[f(x_{1} \dotplus s_{1},...,x_{d} \dotplus s_{d}) - f(x_{1},...,x_{d}) \right]$$

$$\times \prod_{r \in D \setminus \alpha} D_{2^{N_{r}}}(s_{r}) \prod_{l \in \alpha} w_{2^{N_{l}}}(s_{l}) D_{n'_{l}}(s_{l}) ds_{1} \cdots ds_{d} =: \sum_{\alpha \subset D} A_{\alpha}.$$

If $\alpha = \emptyset$, then from (2.2) we have

(4.2)
$$A_{\alpha} = o(1), \quad \text{as} \quad \min\{n_1, \dots, n_d\} \to \infty.$$

If $\alpha = D$, then we can write

$$A_{D} = \sum_{i_{1}=0}^{2^{N_{1}}-1} \cdots \sum_{i_{d}=0}^{2^{N_{d}}-1} \int_{I_{N_{1}}^{i_{1}} \times \cdots \times I_{N_{d}}^{i_{d}}} [f(x_{1} + s_{1}, ..., x_{d} + s_{d}) - f(x_{1}, ..., x_{d})]$$

$$\times \prod_{l=1}^{d} w_{2^{N_{l}}}(s_{l}) D_{n'_{l}}(s_{l}) ds_{1} \cdots ds_{d}$$

$$= \sum_{i_{1}=0}^{2^{N_{1}-1}} \cdots \sum_{i_{d}=0}^{2^{N_{d}-1}} \prod_{r=1}^{d} D_{n'_{l}} \left(\frac{i_{r}}{2^{N_{r}}}\right)$$

$$\times \int_{I_{N_{1}}^{i_{1}} \times \cdots \times I_{N_{d}}^{i_{d}}} [f(x_{1} + s_{1}, ..., x_{d} + s_{d}) - f(x_{1}, ..., x_{d})]$$

$$\times \prod_{l=1}^{d} w_{2^{N_{l}}}(s_{l}) ds_{1} \cdots ds_{d}.$$

$$29$$

Since

$$\int_{I_{N_{1}}^{i_{1}} \times \cdots \times I_{N_{d}}^{i_{d}}} [f(x_{1} + s_{1}, ..., x_{d} + s_{d}) - f(x_{1}, ..., x_{d})]$$

$$\times \prod_{l=1}^{d} w_{2^{N_{l}}}(s_{l}) ds_{1} \cdots ds_{d}.$$

$$= \int_{I_{N_{1}+1}^{2i_{1}} I_{N_{2}}^{i_{2}} \times \cdots \times I_{N_{d}}^{i_{d}}} \Delta^{N_{1}+1} f(x_{1} + s_{1}, ..., x_{d} + s_{d}) \prod_{l=2}^{d} w_{2^{N_{l}}}(s_{l}) ds_{1} \cdots ds_{d}$$

$$= \cdots$$

$$= \int_{I_{N_{1}+1}^{2i_{1}} \times \cdots \times I_{N_{d}+1}^{2i_{d}}} \Delta^{N_{d}+1} (\Delta^{N_{d-1}+1} \cdots \Delta^{N_{1}+1}$$

$$f(x_{1} + s_{1}, ..., x_{d} + s_{d})_{1} \cdots)_{d} ds_{1} \cdots ds_{d},$$

where

$$\Delta^{N} f(x_{1},...,x_{d})_{j} := f(x_{1},...,x_{d})$$
$$-f(x_{1},...,x_{j-1},x_{j} + 2^{-N},x_{j+1},...,x_{d}).$$

From (2.3) we have

$$|A_{D}| \leq c \prod_{r=1}^{d} 2^{N_{r}} \int_{I_{N_{1}+1} \times \cdots \times I_{N_{d}+1}} \sum_{i_{1}=0}^{2^{N_{1}}-1} \cdots \sum_{i_{d}=0}^{2^{N_{d}}-1} \prod_{r=1}^{d} \frac{1}{i_{r}+1} \times |\Delta^{N_{d}+1} \left(\cdots \Delta^{N_{1}+1} \right.$$

$$+ \left. \left(x_{1} \dotplus s_{1} \dotplus \frac{i_{1}}{2^{N_{1}}}, ..., x_{d} \dotplus s_{d} \dotplus \frac{i_{d}}{2^{N_{d}}} \right)_{1} \cdots \right)_{d} ds_{1} \cdots ds_{d}$$

Set

$$\tau\left(N_{1},...,N_{d}\right):=\left[\min\left\{N_{1}-2,...,N_{d}-2,\left(\theta\left(N_{1},...,N_{d}\right)\right)^{-1}\right\}\right],$$

where

$$\theta(N_1, ..., N_d) = \sup_{0 < s_i < N_i 2^{-N_i}, \ i=1,...,d} |f(x_1 \dotplus s_1, ..., x_d \dotplus s_d) - f(x_1, ..., x_d)|.$$

Then we can write

$$|A_{D}| \leq c \prod_{r=1}^{d} 2^{N_{r}} \int_{I_{N_{1}+1} \times \cdots \times I_{N_{d}+1}} \sum_{i_{1}, \dots, i_{d}=0}^{\tau(N_{1}, \dots, N_{d})} \prod_{r=1}^{d} \frac{1}{i_{r}+1}$$

$$\times |\Delta^{N_{d}+1} (\cdots \Delta^{N_{1}+1})| \qquad f \left(x_{1} + s_{1} + \frac{i_{1}}{2^{N_{1}}}, \dots, x_{d} + s_{d} + \frac{i_{d}}{2^{N_{d}}}\right)_{1} \cdots \right)_{d} ds_{1} \cdots ds_{d}$$

$$+ c \prod_{r=1}^{d} 2^{N_{r}} \sum_{l=1}^{d} \int_{I_{N_{1}+1}^{2i_{1}} \times \cdots \times I_{N_{d}+1}^{2i_{d}}} \sum_{i_{1}=0}^{2^{N_{1}-1}} \cdots \sum_{i_{l-1}=0}^{2^{N_{l-1}-1}-1} \cdots \sum_{i_{d}=0}^{2^{N_{d}-1}} \prod_{r=1}^{d} \frac{1}{i_{r}+1}$$

$$\times |\Delta^{N_{d}+1} (\cdots \Delta^{N_{1}+1})| \qquad f \left(x_{1} + s_{1} + \frac{i_{1}}{2^{N_{1}}}, \dots, x_{d} + s_{d} + \frac{i_{d}}{2^{N_{d}}}\right)_{1} \cdots \right)_{d} ds_{1} \cdots ds_{d}$$

$$\leq c\theta (N_{1}, \dots, N_{d}) \log^{d} \left(\frac{1}{\theta (N_{1}, \dots, N_{d})}\right)$$

$$+ c \sum_{l=1}^{d} V_{\{i_{1}\} \dots \{i_{l-1}\} \{i_{l} + \tau(N_{1}, \dots, N_{d})\} \{i_{l+1}\} \dots \{i_{d}\}} (f) = o(1),$$

as $\min(n_1,...,n_d) \to \infty$.

If $\alpha \subset D$, $\alpha \neq \emptyset$, $\alpha \neq D$, then we can prove similarly, that

$$(4.4) A_{\alpha} = o(1) \text{ as } \min(n_1, ..., n_d) \to \infty.$$

Combining (4.1)-(4.4) we complete the proof of Theorem 3.1.

Proof of Theorem 3.2. Let $\{A_k : k \geq 1\}$ be an increasing sequence of positive integers, satisfying

$$(4.5) A_k > 2A_{k-1},$$

$$\frac{A_k 2^{2dA_{k-1}}}{2^{A_k}} < \frac{1}{k^2},$$

$$\frac{A_{k-1}^d}{A_k} < \frac{1}{k}.$$

Set

$$\varphi_{k}\left(x\right) := \begin{cases} 2\left(2^{2A_{k}}x - j\right), & \text{if } x \in \left[j2^{-2A_{k}}, \left(2j + 1\right)2^{-2A_{k} - 1}\right) \\ -2\left(2^{2A_{k}}x - j - 1\right), & \text{if } x \in \left[\left(2j + 1\right)2^{-2A_{k} - 1}, \left(j + 1\right)2^{-2A_{k}}\right) \\ & j = 1, 2, ..., 2^{2A_{k} - 2A_{k-1}} - 1 \\ 0, & \text{otherwise} \end{cases},$$

$$\psi_{k}\left(x\right) := \begin{cases} 2\left(2^{2A_{k}}x - 1\right), & \text{if } x \in \left[2^{-2A_{k}}, 3 \cdot 2^{-2A_{k} - 1}\right) \\ -2\left(2^{2A_{k}}x - 2\right), & \text{if } x \in \left[3 \cdot 2^{-2A_{k} - 1}, 2^{-2A_{k} + 1}\right) \\ 0, & \text{otherwise} \end{cases}.$$

Let

$$g_k(x) := \varphi_k(x) \operatorname{sgn}\left(D_{m_{A_k}}(x)\right), \qquad g_k(x+l) = g_k(x), \quad l = 0, \pm 1, \pm 2, \dots,$$

$$h_k(x) := \psi_k(x) \operatorname{sgn}\left(D_{m_{A_k}}(x)\right), \qquad h_k(x+l) = h_k(x), \quad l = 0, \pm 1, \pm 2, \dots,$$

Consider the function f defined by

(4.8)
$$f(x_1,...,x_d) := \sum_{k=1}^{\infty} f_k(x_1,...,x_d), \qquad f(0,...,0) = 0,$$

where

$$f_{k}\left(x_{1},...,x_{d}\right):=\frac{g_{k}\left(x_{1}\right)}{A_{k}}\prod_{j=2}^{d}h_{k}\left(x_{j}\right).$$

First, we prove that $f \in BV_H$. We consider several cases:

a) If $\alpha := \{\alpha_1, ..., \alpha_p\} \subset D \setminus \{1\}$ then by the construction of f we can write

$$(4.9) V_H^{\alpha}(f) \leq \frac{c}{A_k} \sum_{\substack{i_{\alpha_1}, \dots, i_{\alpha} \\ i_{\alpha_1}, \dots, i_{\alpha_p}}} \frac{\left| h_k \left(I_{i_{\alpha_1}}^{\alpha_1}, \dots, I_{i_{\alpha_p}}^{\alpha_p} \right) \right|}{i_{\alpha_1} \cdots i_{\alpha_p}} \leq c < \infty, k = 1, 2, \dots$$

b) If $\alpha := \{1, \alpha_2, ..., \alpha_p\} \subset D$ and p < d - 1, then we have

$$(4.10) \qquad V_{H}^{\alpha}\left(f\right) \leq \frac{c}{A_{k}} \sum_{i_{1},i_{\alpha_{0}},...,i_{\alpha_{p}}} \frac{\left|g_{k}\left(I_{i_{1}}^{1}\right)\right|}{i_{1}} \frac{\left|h_{k}\left(I_{i_{\alpha_{2}}}^{\alpha_{2}},...,I_{i_{\alpha_{p}}}^{\alpha_{p}}\right)\right|}{i_{\alpha_{2}}\cdots i_{\alpha_{p}}}, \qquad k=1,2,....$$

On the other hand,

$$(4.11) \sum_{i_1} \frac{\left| g_k \left(I_{i_1}^1 \right) \right|}{i_1} \le cA_k$$

and

(4.12)
$$\sum_{i_{\alpha_2},\dots,i_{\alpha_p}} \frac{\left| h_k \left(I_{i_{\alpha_2}}^{\alpha_2},\dots,I_{i_{\alpha_p}}^{\alpha_p} \right) \right|}{i_{\alpha_2}\cdots i_{\alpha_p}} \le c < \infty.$$

From (4.10) - (4.12) we obtain

$$(4.13) V_H^{\alpha}(f) \le c < \infty.$$

c) Let $\alpha = D$. Then by the construction of f we get

$$(4.14) V_{H}^{\alpha}(f) \leq c \sum_{k=1}^{\infty} \frac{1}{A_{k}} \sum_{i_{1}, i_{2}, \dots, i_{d}} \frac{\left|g_{k}\left(I_{i_{1}}^{1}\right)\right|}{i_{1}} \frac{\left|h_{k}\left(I_{i_{2}}^{2}, \dots, I_{i_{d}}^{d}\right)\right|}{i_{2} \cdots i_{d}}$$

$$\leq c \sum_{k=1}^{\infty} \frac{1}{A_{k}} \frac{1}{k^{d-1}} \sum_{i_{1}=1}^{2^{2A_{k}-2A_{k-1}}} \frac{1}{i_{1}}$$

$$\leq c \sum_{k=1}^{\infty} \frac{1}{k^{d-1}} < \infty, \quad d > 2.$$

Combining (4.9), (4.13) and (4.14) we conclude that $f \in BV_H$.

Now, we prove that the d-dimensional cubic partial sums of Walsh-Fourier series of f diverge at the point (0, ..., 0). By (4.8) we can write

$$(4.15) S_{m_{A_k},...,m_{A_k}} f(0,...,0) = S_{m_{A_k},...,m_{A_k}} f_k(0,...,0)$$

$$+ \sum_{i=1}^{k-1} S_{m_{A_k},...,m_{A_k}} f_i(0,...,0) + \sum_{i=k+1}^{\infty} S_{m_{A_k},...,m_{A_k}} f_i(0,...,0)$$

$$= J_1 + J_2 + J_3.$$

Since

$$\left| S_{m_{A_k},...,m_{A_k}} f_i(0,...,0) \right| \le \|f_i\|_C (\log m_{A_k})^d \le \frac{cA_k^d}{A_i}$$

by (4.5) and (4.7) for J_3 we obtain

(4.16)
$$J_3 \le cA_k^d \sum_{i=k+1}^{\infty} \frac{1}{A_i} \le \frac{cA_k^d}{A_{k+1}} = o(1) \text{ as } k \to \infty.$$

It is well-known [6] that

$$\begin{split} & \left\| S_{m_{A_k},...,m_{A_k}} f_i - f_i \right\|_C \\ \leq & c \sum_{\{\alpha_1,...,\alpha_p\} \subset D} \omega_{\alpha_1,...,\alpha_p} \left(\frac{1}{2^{2A_k}},...,\frac{1}{2^{2A_k}}; f_i \right)_C A_k^p. \end{split}$$

On the other hand,

$$\omega_{\alpha_1,...,\alpha_p}\left(\frac{1}{2^{2A_k}},...,\frac{1}{2^{2A_k}};f_i\right)_C \le c\left(\frac{2^{2A_i}}{2^{2A_k}}\right)^p.$$

Consequently, taking into account (4.6) and the equality $f_i(0,...,0) = 0$, we obtain

$$(4.17) J_2 \leq \sum_{i=1}^{k-1} \left| S_{m_{A_k},\dots,m_{A_k}} f_i(0,\dots,0) \right|$$

$$\leq \frac{cA_k}{2^{2A_k}} \sum_{i=1}^{k-1} 2^{2dA_i} \leq \frac{cA_k 2^{2dA_{k-1}}}{2^{2A_k}} = o(1), \text{ as } k \to \infty.$$

$$33$$

Finally, by (2.4) we have

$$\begin{aligned} & \left| S_{m_{A_k}, \dots, m_{A_k}} f_k \left(0, \dots, 0 \right) \right| \\ & = \frac{1}{A_k} \left| \int\limits_{I^d} f_k \left(x_1, \dots, x_d \right) \prod_{j=1}^d D_{m_{A_k}} \left(x_j \right) dx_1 \cdots dx_d \right| \\ & = \frac{1}{A_k} \left| \int\limits_{I} g_k \left(x_1 \right) D_{m_{A_k}} \left(x_1 \right) dx_1 \right| \\ & \times \left| \int\limits_{J^{d-1}} \prod_{j=2}^d h_k \left(x_j \right) D_{m_{A_k}} \left(x_j \right) dx_2 \cdots dx_d \right| \\ & = \frac{1}{A_k} \int\limits_{I} \varphi_k \left(x_1 \right) \left| D_{m_{A_k}} \left(x_1 \right) \right| dx_1 \\ & \times \prod\limits_{j=2}^d \int\limits_{I} \psi_k \left(x_j \right) \left| D_{m_{A_k}} \left(x_j \right) \right| dx_j \\ & = \frac{1}{A_k} \sum_{j=0}^{2^{2A_k - 2A_{k-1} - 1}} \int\limits_{j \cdot 2^{-2A_k}}^{(j+1)2^{-2A_k}} \varphi_k \left(x_1 \right) \left| D_{m_{A_k}} \left(x_j \right) \right| dx_1 \\ & \times \prod\limits_{j=2}^d \int\limits_{J^{-2A_k + 1}}^{2^{-2A_k + 1}} \psi_k \left(x_j \right) \left| D_{m_{A_k}} \left(x_j \right) \right| dx_j \end{aligned} \\ & \geq \frac{1}{16A_k} \sum_{j=0}^{2^{2A_k - 2A_{k-1} - 1}} \int\limits_{j \cdot 2^{-2A_k}}^{(j+1)2^{-2A_k}} \varphi_k \left(x_1 \right) dx_1 \prod\limits_{j=2}^d \int\limits_{J^{-2A_k + 1}}^{J^{-2A_k + 1}} \psi_k \left(x_j \right) dx_j \\ & \geq \frac{1}{16A_k} \sum_{j=0}^{2^{2A_k - 2A_{k-1} - 1}} \frac{2^{2A_k}}{j+1} \int\limits_{J^{-2A_k + 1}}^{(j+1)2^{-2A_k}} \psi_k \left(x_j \right) dx_j \\ & = \frac{1}{16A_k} \sum_{j=0}^{2^{2A_k - 2A_{k-1} - 1}} \frac{2^{2A_k}}{j+1} \frac{2^{(2A_k - 1)(d-1)}}{j+2^{2A_k + 1}} \left(\frac{1}{2^{2A_k + 1}} \right)^{d-1} \geq c > 0. \end{aligned}$$

Combining (4.15)-(4.18) completes the proof of Theorem 3.2.

Proof of Theorem 3.3. Part a) immediately follows from Theorem 1.1, Theorem 3.1 and Theorem A.

To prove part b) we denote

$$A_{i_1,\dots,i_d} := \left[\frac{i_1}{2^{2N}}, \frac{i_1+1}{2^{2N}} \right) \times \dots \times \left[\frac{i_d}{2^{2N}}, \frac{i_d+1}{2^{2N}} \right),$$

$$W := \{(i_1, \dots, i_d) : i_d < i_s < i_d + m_{i_d}, \ 1 \le s < d, \ 1 \le i_d \le N_\delta\},\$$

$$N_{\delta} = \left[4^{(N-1)/(\delta+1)}\right], \qquad t_j := \left(\sum_{i=1}^{s_j} \frac{1}{\lambda_i}\right)^{-1}, \qquad s_j := \left[j^{1+\delta}\right],$$

where [x] is the integer part of x.

It is not hard to see, that for any sequence $\Lambda = \{\lambda_n\}$ satisfying (1.1) the class $C(I^d) \cap PBV_{\Lambda}(I^d)$ is a Banach space with the norm

$$||f||_{PBV_{\Lambda}} := ||f||_{C} + PV_{\Lambda}(f).$$

For $N \in \mathbb{N}$ consider the following function

$$f_N(x_1,...,x_d) := \sum_{(i_1,...,i_d)\in W} t_{i_d} 1_{A_{i_1,...,i_d}} (x_1,...,x_d) \prod_{s=1}^d \xi_N(x_s) \operatorname{sgn}(D_{m_N}(x_s)),$$

where $1_A(x_1, \ldots, x_d)$ is the characteristic function of the set $A \subset T^d$, m_a is defined by (2.5) and

$$\xi_{N}\left(x\right) := \left\{ \begin{array}{ll} 1, \text{ if } \ x = (2j+1)\,2^{-(2N+1)}, \ j = 1, 2, ..., 2^{2N} - 1 \\ 0, \text{ if } \ x \in [0, 2^{-2N}), \ x = j \cdot 2^{-2N}, \ j = 1, 2, ..., 2^{2N} \\ \text{linear and continuous on } [j2^{-(2N+1)}, (j+1)2^{-(2N+1)}], \ j = 2, 3 \dots, 2^{2N} \end{array} \right.$$

$$\xi_N(x+l) = \xi_N(x), \qquad l = \pm 1, \pm 2, \dots$$

First we show that the norms $||f_N||_{PBV_{\Lambda}}$ are uniformly bounded.

Let $(i_1, \ldots, i_{k-1}, i_{k+1}, \ldots, i_d)$ be fixed, where $k = 1, \ldots, d-1$. Then it is easy to show that

$$V_{\Lambda}^{\{k\}}\left(f_{N}\right) \leq C \cdot t_{i_{d}}\left(\sum_{i_{k}=i_{d}+1}^{i_{d}+m_{i_{d}}} \frac{1}{\lambda_{i_{k}-i_{d}}}\right) \leq C \cdot t_{i_{d}}\left(\sum_{i_{k}=1}^{m_{i_{d}}} \frac{1}{\lambda_{i_{k}}}\right) \leq C < \infty.$$

If (i_1, \ldots, i_{d-1}) is fixed, the condition $(i_1, \ldots, i_d) \in W$ implies

$$\max\left\{i_{d}\left(i_{s}\right):1\leq s\leq d-1\right\}< i_{d}<\min\left\{i_{s}:1\leq s\leq d-1\right\},$$

where

$$i_d(i_s) := \min \{i_d : i_d + m_{i_d} > i_s\}.$$

Consequently, by the definition of the function f_N we obtain that for any s = 1, ..., d-1

$$V_{\Lambda}^{\{d\}}(f_N) \leq C \sum_{i_d=i_d(i_s)+1}^{i_s} \frac{t_{i_d}}{\lambda_{i_d-i_d(i_s)}}$$

$$\leq C \cdot t_{i_d(i_s)} \sum_{i_d=i_d(i_s)+1}^{i_s} \frac{1}{\lambda_{i_d-i_d(i_s)}}$$

$$= C \cdot t_{i_d(i_s)} \sum_{i_d=1}^{i_s-i_d(i_s)} \frac{1}{\lambda_{i_d}} \leq C \cdot t_{i_d(i_s)} \sum_{i_d=1}^{m_{i_d(i_s)}} \frac{1}{\lambda_{i_d}} = C < \infty.$$

Hence $f_N \in PBV_{\Lambda}$ and

$$(4.19) ||f_N||_{PV_{\Lambda}} \le C, N = 1, 2, \dots$$

Observe, that by (3.3) we have

$$\frac{1}{t_j} = \sum_{i=1}^{m_j} \frac{1}{\lambda_i} = \sum_{i=1}^{m_j} \frac{1}{i} \cdot \frac{i}{\lambda_i} \le C \frac{m_j}{\lambda_{m_j}} \log m_j \le C \frac{j \log j}{\lambda_j}.$$

Hence

$$t_j \log j \ge c \frac{\lambda_j}{j}.$$

Consequently,

$$(4.20) \qquad S_{m_{N},\cdots,m_{N}}q_{N}\left(0,\cdots,0\right) \\ = \int_{I^{d}} q_{N}\left(x_{1},\cdots,x_{d}\right) \prod_{s=1}^{d} D_{m_{N}}\left(x_{s}\right) dx_{1} \cdots dx_{d} \\ = \sum_{(i_{1},\cdots,i_{d})\in W} t_{i_{d}} \int_{A_{i_{1},\cdots,i_{d}}} \prod_{s=1}^{d} \left|\xi N(x_{s}) D_{m_{N}}\left(x_{s}\right)\right| dx_{1} \cdots dx_{d} \\ \geq c \sum_{(i_{1},\cdots,i_{d})\in W} t_{i_{d}} \int_{A_{i_{1},\cdots,i_{d}}} \frac{dx_{1} \cdots dx_{d}}{x_{1} \cdots x_{d}} \geq c \sum_{(i_{1},\cdots,i_{d})\in W} t_{i_{d}} \frac{1}{i_{1} \cdots i_{d}} \\ \geq c \sum_{i_{d}=1}^{N_{\delta}} \frac{t_{i_{d}}}{i_{d}} \sum_{i_{1}=i_{d}}^{i_{d}+m_{i_{d}}} \cdots \sum_{i_{d-1}=i_{d}}^{i_{d}+m_{i_{d}}} \frac{1}{i_{1} \cdots i_{d-1}} \\ \geq c \sum_{i_{d}=1}^{N_{\delta}} \frac{t_{i_{d}}}{i_{d}} \log^{d-1} \left(\frac{i_{d}+m_{i_{d}}}{i_{d}}\right) \geq c\left(\delta\right) \sum_{i_{d}=1}^{N_{\delta}} \frac{t_{i_{d}} \log i_{d}}{i_{d}} \log^{d-2} i_{d} \\ \geq c\left(\delta\right) \sum_{n=1}^{N_{\delta}} \frac{\lambda_{n} \log^{d-2} n}{n^{2}} \rightarrow \infty,$$

as $N \to \infty$, according to (3.4).

Applying the Banach-Steinhaus theorem, from (4.19) and (4.20) we obtain that there exists a continuous function $f \in PBV_{\Lambda}(I^d)$ such that

$$\sup_{N} |S_{N,\dots,N} f(0,\dots,0)| = \infty.$$

Список литературы

 A. N. Bakhvalov, "Continuity in Λ-variation of functions of several variables and the convergence of multiple Fourier series Mat. Sb. 193, no. 12, 3-20 (2002).

- [2] M. I. Dyachenko, "Waterman classes and spherical partial sums of double Fourier series Anal. Math. 21, 3 - 21 (1995).
- [3] M. I. Dyachenko, "Two-dimensional Waterman classes and u-convergence of Fourier series Mat. Sb., 190, no. 7, 23-40 (1999).
- [4] M. I. Dyachenko, D. Waterman, "Convergence of double Fourier series and W-classes", Trans. Amer. Math. Soc., 357, 397 – 407 (2005).
- O. S. Dragoshanskiĭ, "Continuity in Λ-variation of functions of several variables", Mat. Sb. 194, no. 7, 57 – 82 (2003).
- [6] R. Getsadze, "On the convergence and divergence of multiple Fourier series with respect to the Walsh-Paley system in the spaces C and L", Anal. Math. 13, no. 1, 29-39 (1987).
- [7] U. Goginava, "On the uniform convergence of multiple trigonometric Fourier series", East J. Approx., 3, no. 5, 253 266 (1999).
- [8] U. Goginava, "Uniform convergence of Cesàro means of negative order of double Walsh-Fourier series", J. Approx. Theory 124, no. 1, 96-108 (2003).
- [9] U. Goginava, "On the uniform convergence of Walsh-Fourier series", Acta Math. Hungar., 93, no. 1-2, 59-70 (2001).
- [10] U. Goginava, A. A. Sahakian, "On the convergence of double Fourier series of functions of bounded partial generalized variation", East J. Approx., 16, no. 2, 109 – 121 (2010).
- [11] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, "Series and transformations of Walsh", [in Russian], Moscow (1987); English translation Kluwer Academic, Dordrecht (1991).
- [12] G. H. Hardy, "On double Fourier series and especially which represent the double zeta function with real and incommensurable parameters", Quart. J. Math. Oxford Ser., 37, 53-79 (1906).
- [13] C. Jordan, "Sur la series de Fourier", C.R. Acad. Sci. Paris, 92, 228 230 (1881).
- [14] Marcinkiewicz J., On a class of functions and their Fourier series. Compt. Rend. Soc. Sci. Warsowie, 26 (1934), 71-77.
- [15] F. Moricz, "Rate of convergence for double Walsh-Fourier series of functions of bounded fluctuation", Arch. Math. (Basel) 60, no. 3, 256-265 (1993).
- [16] F. Moricz, "On the uniform convergence and L¹-convergence of double Walsh-Fourier series", Studia Math., 102, no. 3, 225–237 (1992).
- [17] C. W. Onneweer, D. Waterman, "Fourier series of functions of harmonic bounded fluctuation on groups", J. Analyse Math., 27, 79-83 (1974).
- [18] A. I. Sablin, "Λ-variation and Fourier series", Izv. Vyssh. Uchebn. Zaved. Mat., 10, 66–68 (1987).
- [19] A. A. Sahakian, "On the convergence of double Fourier series of functions of bounded harmonic variation, Izv. Akad. Nauk Arm.SSR, Ser. Mat., 21, no. 6, 517 - 529 (1986).
- [20] F. Schipp, W. R. Wade, P. Simon and J. Pol, Walsh Series, an Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York (1990).
- [21] D. Waterman, "On convergence of Fourier series of functions of generalized bounded variation", Studia Math., 44, no. 1, 107 – 117 (1972).
- [22] Wiener N., The quadratic variation of a function and its Fourier coefficients. Massachusetts J. Math., 3 (1924), 72-94.
- [23] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge (1959).

U. GOGINAVA AND A. A. SAHAKIAN

[24] O. G. Sargsyan, "On convergence and the Gibbs phenomenon of double Fourier-Walsh series of functions of bounded harmonic variation Izv. NAN Armenii, Mat., 30, no. 5, 41–59 (1995).

Поступила 10 декабря 2011