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1. CLASSES OF FUNCTIONS OF BOUNDED (GENERALIZED VARIATION

In 1881 Jordan [13] introduced the class of functions of bounded variation and
applied it to the theory of Fourier series. Hereafter this notion was generalized by
many authors (quadratic variation, ®-variation, A-variation ets., see [13, 22, 21, 14]).
In two dimensional case the class BV of functions of bounded variation was introduced
by Hardy [12].

Let I :=[0,1) and

JF = (a*, ") C 1, k=1,2,...d.

Consider a measurable function f (z) defined on R? and 1-periodic with respect to

each variable. For d = 1 we set
fF(IY) =1 (b") = fla').

If for a function of d—1 variables the expression f (J1 X oo X J’i_l) is already defined,

then for a function of d variables the mized difference is defined as follows:
FI ) I = (T ) JENRY) = f (T x e x JT e

Let E = {J} be a collection of nonoverlapping intervals from I ordered in arbitrary

way and let 2 be the set of all such collections E.
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For sequences of positive numbers A7 = {\,}22,, j = 1,2,...,d, the (A',... A%)-
variation of f with respect to the index sel
D:={1,2,..,d}

is defined as follows:

1
V/g,...,Ad(f) = sup Z }f( 1

{J2},2.€Q i1,..50a

For an index set a = {4j1,...,jp} C D and any z = (21,...,24) € R? we set & := D\«

and denote by z, the vector of RP consisting of components z;,j € a, i.e.

To = (x_m...,xjp) € RP.

By Vi, . a (f,za) and f (Jilj1 X e X Jf;_p,a:a) we denote respectively the (AJ, ..., AJr)-
variation and the mixed difference of f as a function of variables z;,, ..., zj, over the p-

dimensional cube I? with fixed values za of other variables. The (A7, ..., A7) —variation
of [ with respect to index set « is defined as follows:
ijl....,AJ‘P (f) = sup V/€1'17.‘_,A.7'p (fal'&)v
' rgyeld—p

where I? := [0, 1)P.

Definition 1.1. We say that the function f has Bounded total (Al7 ...,Ad) -variation
on 1% and write

f€BVyi pa =BV za(T%,

yeeey

aCD

Definition 1.2. We say that the function f is continuous in (A',...,A?)-variation
on I and write
f€CVar__ pa=CVyr  pa(T?,
if
: @
nh—{go VAjl,-

for any o C D, a:={j1,...,jp}, where AJr := {)\gk}

e (=0 E=120

Definition 1.3. We say that the function f has Bounded Partial (Al, e Ad)—variation
and write
f € PBVj1, pa:=PBVyi  pa(TY),
22
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if
d
PV aa(f) = VP (f) < o0
i=1
In the case Al = --- = A% = A we denote
BVA = BVAI,...,Ada CVA = CVA17_“7Ad,
and

PBVp := PBVj1,  pa.
A, =1(rif0<ec< A, <C <oo, n=12,...) the classes BV, and PBV,
coincide with the Hardy class BV and PBV respectively. Hence it is reasonable
to assume that A\, — oo, and since the intervals in the collection £ = {J;} are
ordered arbitrarily, we suppose, without loss of generality, that the sequence {\,} is

increasing. Thus,

n—oo
When A, =n for all n = 1,2... we say Harmonic Variation instead of A-variation
and write H instead of A (BVy, PBVy, CVy, ets).

Remark 1.1. The notion of A-variation was introduced by Waterman [21] in one
dimensional case, by Sahakian [19] in two dimensional case and by Sablin [18] in
the case of higher dimensions. The notion of bounded partial variation (class PBV')
was introduced by Goginava in [7]. These classes of functions of generalized bounded
variation play an important role in the theory Fourier series.

Observe, that the number of variations in Definition 1.1 of total variation is 2% —1,

while the number of variations in Definition 1.8 of partial variation is only d.

The statements of the following theorem are known.
Theorem A. 1) (Dragoshanski [5]) If d = 2, then BVy = CVjy.
2) (Bakhvalov [1]) For any d > 2,

CVy = JBWr,
T

where the union is taken over all sequences I' = {7, }°2; with v, = o(n) as n — oc.

The main result of this section is the following theorem.

Theorem 1.1. Let A = {\,}02, and d > 2. If

An 2 A log?2n
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then there exists a sequence I' = {7, }°2; with
(1.3) T =o0(n) as n— oo,
such that PBV, C BVr.

Proof of Theorem 1.1. Choosing the sequence {A, }22; such that

AnAp > An log@™2nAd

14 ApToo, =10, e R— :
(1.4) T oo - + nz:; — < 00
we set

(1.5) ’yn:Aﬂn, n=12,...

We prove that there is a constant C' > 0 such that
‘f(Jil1 X e X Jf;,ma)
(1.6) > < C- PVA(f),

il 9 ;ip 77{1 rYZp

for any f € PBVj,, {J]} 1 €Qj=12,....d and a:= {i1,...i,} CD.
To prove (1.6) observe, that

‘f (Jil1 X - X Jf;,xa)
(1.7) Z S
e

IS o <%

Yiy "Ylp

0 ig(1) S Sio(p)

where the sum is taken over all rearrangements o = {o(k)},_; of the set {1,2,...

Denoting M = PV, (f) and using (1.5), (1.4) and (1.2) we obtain:

5 lf(.]}lx--~><Jf;,x&)

i1§i2§~--§ip ,V’Ll ’YZP

J} ><-~-><Jf’,ma)
P

_ § : ALl Alp 1 2 : ‘f( 2t /\z,,ALp
810 Ty A )
i1 <ig<<ip_1 L P >i K p
AP\ 1
ip—17"tp—1
<M Y e
i1<ip<<ip_1 p— p
ip—1 ip_2 i2
Sy B 7 LS Ly
Tp— bpy_s )
ip_1=1 iy ip_a=1 P72 =1 P73 11
= () < AP, log? 2
i1 Mp—1 og" " n
< M E —t g - gC’-ME S <.
2 1 n
ip_1=1 p—l i1 n=1

24
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Similarly we can prove that all other summands in the right hind side of (1.7) are

finite. Theorem 1.1 is proved. O

2. WALSH FUNCTIONS

We denote the set of all non-negative integers by N, the set of all integers by Z
and the set of dyadic rational numbers in the unit interval I := [0,1) by Q. Each

element of Q has the form % for some p,n € N, 0 <p < 2",
By a dyadic interval in I we mean an interval I := [I27V (1 +1)27") for some

€N, 0<1<2N. Given N € N and = € I, we denote by Iy () the dyadic interval
of length 2= that contains x. We denote Iy := [0,27).
Let 7¢ () be the function defined on the real line by

[ 1, ifze(0,1/2) B
ro (z) = { 1 ifzell/21) ro(z+1)=r(x), z € R.
The Rademacher system is defined by

ro () =19 (2"2), x€l, n=0,1,....

Let wp, wy, ... represent the Walsh functions, i.e. wo () =1 and if n =2"1+..-+

2™ is a positive integer with n; > ng > --- > ng then
Wy (T) =Ty (T) 10, (T), zel
The Walsh-Dirichlet kernel is defined by
n—1
D, (z) = Z wy, () .
k=0
Recall that (see [20, 11]):
(2.1) Dy, () = wy (t) > 8;was (t) Doy (1),
j=0

where n = 3722 6,27, §; =0 or 1.

[ 2mifzelo,27m),
(2:2) Dy (2) _{ 0, ifze 27, 1)
1
(2.3 D ()] < min (n m) Cze(),
1 —2A-1
(2.4) | Dy ()] > o’ 2 <z <1,
X
where
(2.5) ma = 22472 4 9244 o4 92 4 90
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Given z € I, the expansion
(oo}

(2.6) w= z2 k),
k=0

where z; = 0 or 1, is called the dyadic expansion of z. If € I\Q, then (2.6) is
uniquely determined. For the dyadic expansion of x € Q we choose the one with

ede el
The dyadic sum of x,y € I in terms of the dyadic expansion of = and y is defined
by
rty= Z |2k — g 27 FFD,
k=0
We consider the multiple Walsh system

Wy, (1) X -+ X Wy, (24), n, €N, =12 ..,d
on the d-dimensional unit cube 1% = [0,1) x --- x [0,1).
If feL'(I?), then
f (n1,...,n /f Tlyeny Td) Wpy (T1) - Why, (Tg) dxy -+ - dag

is the (nq, ..., nq)-th Walsh-Fourier coefficient of f.
The rectangular partial sums of d-dimensional Fourier series with respect to the

Walsh system are defined by

Srgsemaf (X150 @ Z Z f (N1, .oy g) Wpy (1) + - Wpy, (T4) -

Denoting
hiy = (0,...,0, ;,0,...,0) € RY
and
O (f,z,hy) = f (z+hy) — f(z), 2R
the symbols © (f,#,h{q,.....a,}) will stand for the expression which can be obtained
by consecutive applying of © to the arguments with indices {a1, ..., ap}.
We denote by C (I?) the space of continuous, 1-periodic with respect to each
variable functions defined on R? with the norm
1fllc = sup |f (2)].
zeld
For f e C (Id) the expressions
War,..oap (Oars s 0ars o o= sup H@ (f7 hiag,..., ap})Hc
|Pa; | <0ays i=1,...p
26
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are called moduli of continuity of function f.

3. CONVERGENCE OF d-DIMENSIONAL WALSH-FOURIER SERIES

In this paper we consider convergence of only rectangular partial sums (convergence
in the sense of Pringsheim) of d-dimensional Walsh-Fourier series.

We say that f (x1,...,xq) is continuous at (x1,...,xq) if

(3.1) lim flxr+he,eyzg+ ha) = f (21,0, 24) -

i
hi—0+, i=1,...,d

The well known Dirichlet-Jordan theorem (see [23]) states that the Fourier series
of a function f(z), x € T of bounded variation converges at every point = to the
value [f (x +0)+ f (z — 0)] /2.

Hardy [12] generalized the Dirichlet-Jordan theorem to the double Fourier series.
He proved that if function f(z,y) has bounded variation in the sense of Hardy (f €
BV), then S [f] converges at any point (z,y) to the value > f (z £ 0,y £ 0).

Convergence of d-dimensional trigonometric Fourier series of functions of bounded
A-variation was investigated in details by Sahakian [19], Dyachenko [2, 3, 4], Bakhvalov
[1], Sablin [18], Goginava, Sahakian [10].

For the d-dimensional Walsh-Fourier series the convergence of partial sums of
functions Harmonic bounded fluctuation and other bounded generalized variation
were studied by Moricz [15, 16], Onnewer, Waterman [17], Goginava [8, 9].

For two-dimensional functions of bounded Harmonic variation Sargsyan [24] has
proved the following

Theorem S. [Sargsyan [24]] If f € BVy(I?), then the 2-dimensional Walsh-
Fourier series of f converges to f(w1,z2) at any point (v1,72) € I?, where f is
continuous.

Now we formulate the main results of this paper.

Theorem 3.1. Let f € CVy(I?), d > 2. Then the d-dimensional Walsh-Fourier

series of f converges to f (x) at any point x € I, where the function f is continuous.
The next theorem shows that Theorem S is not true for d > 2.

Theorem 3.2. Let d > 2. Then there exists a continuous function f € BVg(I%)
such that the d-dimensional Walsh-Fourier cubic partial sums of f diverge at some
point.
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Note that similar results for the trigonometric system were proved by Bakhvalov

[1].
In the next theorem we consider the behavior of the multidimensional Walsh-

Fourier series of functions of bounded partial A-variation.

Theorem 3.3. Let A = {\,}>2, and d > 2.
a) If

2\, log?™%n
n=1

then the d-dimensional Walsh-Fourier series of a function f € PBV(I?) converges

to f (x) at any point x € I, where f is continuous.

b) If

2 o)

for some § > 1, and

=\ logdﬂn
n=1

then there exists a continuous function f € PBV(I?) such that the d-dimensional

cubic partial sums of its Walsh-Fourier series diverge at some point.
Theorem 3.3 implies

Corollary 3.1. a) If A = {\,},2_, with

n
ARZW7 71:2,3,..., d22,

for some € > 0, then the d-dimensional Walsh-Fourier series of a funclion f €

PBV(I?) converges to f(x) at any point x, where f is continuous.

b) IFA = {\,}°, with

then there exists a continuous function f € PBV,(I?) such that the d-dimensional
cubic partial sums of its Walsh-Fourier series diverge at some point.

28



ON THE CONVERGENCE OF MULTIPLE WALSH-FOURIER SERIES ...

4. PROOFS OF MAIN RESULTS

Proof of Theorem 8.1. Let n; := 2Nt +nl, 0<nl <2V i=1,2 ..,d. Since
D2N13+n/‘ = D2N73 + wyn; Dn;
we can write

(41) S"17___7"df($1,...,xd) —f(acl,...,a:d)

d
= / [f (1 + 51,y xa +5q) — f (21,0, 24)] H Dy, (sj)dsy---dsq

Id Jj=1
= Z /[f (1 + 81,y xa+ 8a) — f (21,0, 24)]
aCDId
< [ Dene (s0) [Jwom (s1) Doy (s1)dsy - -dsa =: Y Aa.
reéD\« lea aCD

If o = @, then from (2.2) we have
(4.2) Ay =0(1), as min{ng,...,ng} — 0.

If « = D, then we can write

2N1_1 2Na 1

Ap = Z Z / f (14 51,y a4+ sq) — f(z1,...,2q)]
n=0 ta=0 I ><...><Iid
N Ny

d
x szNz (81) Dy (1) dsy - dsq
=1

oNi—1 oGNg-1 4 ;
T
ST Y T ()
i1=0 ig=0 r=1

X / [f (1 + 51,y xa + 84) — f (1,0, 24)]

Il x..xJld
N1y Ng

d
X HU/QNL (s1)dsy - --dsq.
=1
29
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Since
/ [f(xl+sla~~~;$d‘i’5d)*f(l’l,...,l'd)}
I;Glx-»-xlﬁd
d
X szNz (s1)dsy -+~ dsqg.
=1
d
= / / AN1+1f(£L'1—i—sl,...,l‘d-i-sd)szNl (Sl)dsl"'de
INL, 13, < T, =2
= / ANd+1 (ANd,1+1 . AN1+1
112\]i11+1><,,,><112\7i;+1
f @481, 2q+84), ) dst e dsa,
where
N . —_—
A f(x17"'7xd)j L= f(ﬂ?h...,aj‘d)

i o—N
—f (5617...71‘j_1,$j+2 ,13j+1,...,$d).

From (2.3) we have

d 2N1_1 2Na—1 4 1
N,.
RS | CEO S oS o | =
r=1 1N1+1><“'><1Nd+1 i1=0 iqg=0 r=1
% |ANd+1 ( . 'AN1+1
f($1+51+2]\1;17---71'd+5d+2]$d)1"’>d dsy -+ dsq
Set
7 (N1, oy Ng) = [min{N1 — 9, Ng—2,(8 (Nl,...,Nd))_lH ,
where

Q(Nla“'aNd)

= sup If (1 + 51,y xg + 54) — f(z1, .00y Ta)] -
0<s;<N;27Ni, i=1,....d

30
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Then we can write

d 7(N1,...,Nq) d
|Ap| < ol
bl = ¢ 1 —|—1
— T
r=1 Ing41x-XIng 41 1,..,0q=0 r=1
X |AN{1+1 (. . AN1+1
. .1 . . ig
f($1+31+2N17~--733d+5d+2Nd) ) dsy---dsq
1 d
d d 2Mi_1 2Mi-1g
ERIIED S D SRS
r=1 =1 ,, i i1=0 i1_1=0
I]\,11_¢_1><~~-><I]\,:+1
2N 2Mi411 2Na_1 4
43 > > 21
(4.3) ZT+1
1;=7(N1,...,Ng) %+1=0 ig=0 r=1

% |ANd+l ('.'AN1+1
f(x14-81—i—; xd+5d+2N) )
1 d

1
Ny, ... log" ey
cf (N, ..., Ng) log (Q(Nl,...,Nd)>
d

e VR i e N i b i) (F) = 0 (1),
=1

dsy---dsq

IN

as min (nqg, ..., ng) — o0.

IfaCD, a#9, a# D, then we can prove similarly, that
(4.4) Ay =0(1) as min (ny,...,ng) = 0.

Combining (4.1)-(4.4) we complete the proof of Theorem 3.1. O

Proof of Theorem 3.2. Let { Ay, : k > 1} be an increasing sequence of positive integers,

satisfying
(4.5) A > 241,
Ap22d4—1 ]
(4.6) T oA < 72
Al 1
4. — < .
(4.7) A
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b

9

Set
2 (224 — j), if x € [j2724 (25 + 1) 27247 1)
—2(2%g —j—1), ifwe[(2j+1)272 (j+1)2724%)
Pk ((E) = ,] — 17 27 . 22Ak—2Ak71 -1
0, otherwise
2 (2% —1),  ifxe[2724 32724
Yr (z) = =2 (2242 —2), ifae[3.272471 2724
0, otherwise
Let
gk () == ¢ (x) sgn (DmAk (J;)) , g (x+1D) =g (x), 1=0,£1,+2,...
hy, (z) = ¥, (x) sgn (DmAk (x)) . hp(z ) =he(z), 1=0,+1,%2,...
Consider the function f defined by
(4.8) f@1,omza) =Y fr(@r,nza),  £(0,..,0) =0,
k=1
where

d
gk (z1)
Fr (21, 0y 2q) = I jl:[zhk (z) -
First, we prove that f € BVy. We consider several cases:

a) If a :={a1,...,ap} C D\{1} then by the construction of f we can write

hi (100, .. 107 ‘
(4.9) V,i,“(f)SAi Z ‘k(.“’l ,“‘”> < ¢ < oo, E=1,2,...

ko Goy
b) If o :={1,9,...,p} C D and p < d — 1, then we have
1 o2 LI
(410)  VH(f) < Ai_ | > | o Ef“” ‘hk (212"'2&[“)‘ k=1,2,...
i1siag e iag »
On the other hand,
Il
(4.11) zl: W < cAy,
and
o (122,157 )|
(4.12) 2Zu . < ¢ < oo
From (4.10) — (4.12) we obtain
(4.13) Vi (f) <c¢ < 0.
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¢) Let & = D. Then by the construction of f we get

> 1 2 d
(4.14) VE(f) < CZA% |gk(Ii1)‘|hk(Iiga....,Iid)’
k=1

. . 17 ig st ld
11,225+,

924K —2A5_1

=1 1 1
C;Ikkd—l Z i

i1=1

IA

IN

— 1
CZF<OO7 d>2
k=1

Combining (4.9), (4.13) and (4.14) we conclude that f € BVjy.

Now, we prove that the d-dimensional cubic partial sums of Walsh-Fourier series

of f diverge at the point (0,...,0). By (4.8) we can write

(4.15) Srray soirin, £ (0500 0) = S, Jio (0, ..,0)
k—1 oo
+3 Sy, fi (0,00 + D Sy s, fi (0,...,0)
i=1 i=k-+1
=Ji+Jo+ Js3.
Since
CAZ

Sy Ji (0,0, 0)] < | fll Qogma,)* < <25,

by (4.5) and (4.7) for J3 we obtain

oo d
(4.16) Js < cAl Z L < cAl =o0(l) as k— o0
S AT Akn

It is well-known [6] that

HSmAk7"'7mAk fl - fz
1 1

. f. p
S c Z wal,...,ap (22Aka"'722Ak7f7,)CAk-

{a1,.;ap}CD

C

On the other hand,

1 1 224i \ P
Way,...,0p <22Ak’ L) 2214k7fz>c <c (2214k) .

Consequently, taking into account (4.6) and the equality f; (0, ...,0) = 0, we obtain

k—1
(417) J2 S Z’SmAk,...,mAkfi (0770)’
=1
CAk k—1 2dd, CAkQQdAk71
= 22Ak22 SW:O(D’ as k= oo
=1
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Finally, by (2.4) we have

(4.18) ‘SmAw...,mAkfk (0,---,0)‘

d
1
=4 /fk (1, ..., 24 H ma, (T7)dz1---dzg
7d

j=1

= A— /gk (-Tl)DmAk (.Z‘l)dl‘l
k
I
d

X /Hhk(xj)DmAk (xj)dxy---dxqg

-1 J=2

= A—k/gok (1‘1) ‘DmAk (1‘1)‘ dl‘l

7
xjf[zl/lfik (x5) ‘DmAk (fj)‘dxj

g2Ap—24, 4 (j+1)27 %4k
= — / Pk (.Z‘l)’DmAk (.Il)’d.l'l

joo—24y

<.
I
o

9—2Ap+1

X ﬁ / Yr () ‘DmAk (%)‘ dz;

J=2 5 %4,

924k =24k _1_ 1 (G+1)27 %% 2724+t

Y

Jj=0 j.2—2Ak Jj=2 9—24y

92AR =245 _1 _ +1)27

1 Z 2A /
.’131 d.’l?l
164, =

j-2—24y

Y

9—2Ap+1

x (2248 H / Vi (2;) dx

2 524y

92Ap—2A5_1 _

= 16Ak jgo ] +1 92A5+1 922A,+1

Combining (4.15)-(4.18) completes the proof of Theorem 3.2.
34

1 x d xj
16 A% Z / (pk$(1 1)dx1 H / ¢kx(3 )dx

9245, 9(245—1)(d—1) 1 d—1
< ) >c>0.
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Proof of Theorem 3.3. Part a) immediately follows from Theorem 1.1, Theorem 3.1
and Theorem A.

To prove part b) we denote

A . Z.1 i1+1 id Z.d+1
i = [ qan TEn ) X e )

WZ:{(il,...,id)Iid<is<id+mid, 1<s<d, 1§id§N5}7

- —1
_ =1 .
Ns = [4(1\1 1)/(6+1)} 7 t = (; /\i> 7 5j = [J1+5] ,

where [z] is the integer part of z.
It is not hard to see, that for any sequence A = {\,} satisfying (1.1) the class
C(I?) N PBV)(I%) is a Banach space with the norm

IflpBvs == [fllc + PVA(S)-

For N € N consider the following function

d
In(z1,...,2q) = Z tiglai, . (ml,...,xd)HgN (25)sgn (D y (z5))
(61,0 ia) EW s=1
where 14 (21,...,24) is the characteristic function of the set A C T?, mg is defined
by (2.5) and
Lif 2= (25 +1)2-CN+) j =12 . 22V 1
Env (@) =4 0, if 2€[0,272N), 2 =75-272N j=1,2..,22N ,
linear and continuous on [j2-CN*+D (54 1)2-CN+D] =23 22N

En (z+1) =¢n (2), l=+1,42, ...

First we show that the norms ||fx| psv, are uniformly bounded.
Let (i1,...,%k—1,%k+1,---,%q) be fixed, where k = 1,...,d — 1. Then it is easy to
show that

ig+mi,

1 Mig 1
Vi (fn) <Oty > gc.tid<zx>gc<oo,

. X 1 —1 ; Tk
ig=iq+1 kT ip=1""k

If (i1,...,44—1) is fixed, the condition (i1,...,iq) € W implies

max {ig(is): 1 <s<d—-1} <ig<min{is:1<s<d-1},
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where

14 (’LS) := min {id Tl + m;, > is}.

Consequently, by the definition of the function fy we obtain that for any s =1, ...

{d} (fn) < C 2 tlid

i) 41 Niaiatis)

ig 1
CotiuGy D 3

IN

id:id(i ) +1 )\id_id(i.e)
is—id(is) Mg (is) 1
= ity 3 oSOt Y g =C<.
ig=1 ig=1 ~'d
Hence fy € PBV, and
(4.19) lfnllpvy, <C, N=1,2,....
Observe, that by (3.3) we have
1 i 1 i1l i jlog]
[ — = —-.—< C’—l j < C——=
t i VRS W Y
=1 1=1 J
Hence
) Aj
tjlogj > c7.
Consequently,
(4.20) Srn e ma N (0, ,0)
d
= [ an @1, xa) [] Doy () dvy -+ dag
Id s=1
d
- Y / T 1N () Doy ()] s - dira
(i1, ,id)EW Ail,m,id s=1
dry---dzrg 1
> t; _— > tiy- -
= Z ! / oy Z Yy ia
(21, yig) EW Ail,---,id (i1, ,84)EW
ta+miy ta+mi,
= CZ D D S
1q=1 i1=1q td—1= td
iq +my AL log i
> zd 1 d 14 > 5 id d 1 d—2 .
e ()
ig=1 1g=1
A logd n
> c(é)z1 = o0,

,d—1



ON THE CONVERGENCE OF MULTIPLE WALSH-FOURIER SERIES ...

as N — oo, according to (3.4).
Applying the Banach-Steinhaus theorem, from (4.19) and (4.20) we obtain that

there exists a continuous function f € PBV,(I%) such that

(1]
2]
(3]
[4]
(5]
[6]

[20

[21]
[22]

[23]

SRIPLSN,W,NJC(O, o, 0)| = o0,
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