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1. Introduction

Let Γ be a Jordan arc in complex plane C. We consider boundary value problem

on evaluation of holomorphic in C \ Γ matrix

Y (z) =

(
Y11(z) Y12(z)
Y21(z) Y22(z)

)
such that

(1.1) Y +(t) = Y −(t)G(t), t ∈ Γ \ {a1, a2},

where Y +(t) and Y −(t) stand for boundary values of matrix Y at a point t ∈ Γ \
{a1, a2} from the left and from the right correspondingly, a1 and a2 are starting and

end points of Γ, and G(t) is de�ned on Γ triangular matrix

G(t) =

(
1 w(t)
0 1

)
.

In addition, the matrix Y must satisfy certain restrictions

(1.2) Y (z) = O(|z − aj |−γ), γ = γ(Y ) < 1, z → aj , j = 1, 2,
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on its growth near points a1, a2, and condition

(1.3) Y (z) =
(
I +O(z−1)

)(zn 0
0 z−n

)
, z → ∞,

where I stands for unit matrix and n is �xed positive integer.

This version of the matrix Riemann�Hilbert boundary value problem was studied

�rst by A. Fokas, A. Its and A.Kitaev [1]. It has numerous applications in theory

of orthogonal polynomials, theory of rational approximations and other branches of

analysis (see, for instance, [2], [3]). But all known results on this problem concern

the cases of very smooth arc Γ. In the present paper we solve it on certain class of

non-smooth arcs.

In the next two sections we prove auxiliary results concerning the jump problem.

Then in the last section we establish a su�cient condition for solvability of the

problem (1.1) on non-smooth arcs.

2. The jump problem on countable set of disjoint closed curves

Let D be �nite measurable domain of the complex plane with boundary Γ.

De�nition 2.1. The value

Sα(D) =

∫∫
D

dxdy

(dist(z,Γ))α
, z = x+ iy,

is called α-size of the domain D.

Obviously, S0(D) is area of D.

Lemma 2.1. If boundary Γ of domain D is recti�able Jordan curve, then for 0 ≤
α < 1 the α−size of D is �nite, and Sα(D) 6 Cλ(Γ)ω1−α(Γ), where λ(Γ) is length

of Γ, ω(Γ) is diameter of the most disk lying inside D, and the constant C depends

only on α.

Proof. We consider the Whitney decomposition W (D) of domain D (see, for

instance, [4]). It consists of mutually disjoint dyadic squares Q ⊂ D such that

diamQ ≤ dist(Q,Γ) ≤ 4diamQ.

We denote by mn the number of squares from W (D) with side 2−n. Then

Sα(D) =
∑

Q∈W (D)

∫∫
Q

dxdy

(dist(z,Γ))α
≤ C

∑
2−n≤ω(D)

2−n(2−α)mn.
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Clearly, mn ≤ λ(D)2n. Let n0 be the least n satisfying inequality 2−n ≤ ω(D). Then

Sα(D) ≤ Cλ(D)

∞∑
n=n0

(2−n)1−α ≤ Cλ(D)2−n0(1−α) ≤ Cλ(D)ω1−α(D),

where C stands for various constants depending only on α. �
We consider contours Γ =

∪∞
j=1 Γj consisting of mutually disjoint recti�able Jordan

closed curves Γj , j = 1, 2, 3, . . . , which are boundaries of �nite domains Dj : Γj = ∂Dj ,

Dj ∩Dk = ∅ for j ̸= k. Let L(Γ) be the set of limit points of the contour Γ, i.e.,

L(Γ) = {a ∈ C : a = lim
j→∞

zj , zj ∈ Γj}.

Thus D− := C \
∪∞

j=1 Dj .

De�nition 2.2. The class F consists of all contours Γ =
∪∞

j=1 Γj such that their

limit sets L(Γ) contain only �nite number of points, and all these points are �nite.

For Γ ∈ F we introduce α−size by equality

Sα(Γ) =
∞∑
j=1

Sα(Dj).

As we have shown,

(2.1) Sα(Γ) ≤ C
∞∑
j=1

λ(Dj)ω
1−α(Dj).

Below we denote Hν(A) the set of all functions satisfying the H�older condition

with exponent ν on a set A ⊂ C. This condition consists of the �niteness of value

(2.2) hν(g,A) := sup{ |g(t
′)− g(t′′)|
|t′ − t′′|ν

: t′, t′′ ∈ A, t′ ̸= t′′} < ∞.

De�nition 2.3. The class Hν(Γ) consists of functions f(t) de�ned on Γ ∈ F such

that fj := f |Γj ∈ Hν(Γj) for j = 1, 2, . . . , and

hν(f,Γ) := sup{hν(fj ,Γj) : j = 1, 2, . . . }, ∥f∥C(Γ) := sup{|f(t)| : t ∈ Γ}

are �nite.

Theorem 2.1. Let Γ ∈ F, f ∈ Hν(Γ) and ν > 1
2 . If S1−ν(Γ) < ∞ then the series

(2.3) Φ(z) =

∞∑
j=1

1

2πi

∫
Γj

f(t)dt

t− z

converges in C \ Γ to holomorphic function Φ(z). This function vanishes at ∞, and

at any point t ∈ Γj , j = 1, 2, . . . it has limit values Φ+(t) := limDj∋z→t Φ(z) and
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Φ−(t) := limD−∋z→t Φ(z) related by equality

(2.4) Φ+(t)− Φ−(t) = f(t), t ∈ Γ.

In addition, if Sp(1−ν)(Γ) < ∞ for some p > 2, then Φ is bounded in the whole

complex plane.

Proof. We consider the Whitney continuation fw
j of function fj from the curve Γj

into the whole complex plane (see [4]). Let ϕ(z) =
∑∞

j=1 χj(z)f
w
j (z), where χj(z) is

characteristic function of the set Dj . According well known properties of the Whitney

extension, ϕ is di�erentiable in C \ Γ and |∇ϕ(z)| ≤ hν(f,Γ)dist
ν−1(z,Γ). Hence,

|∇ϕ|p is integrable in C if p(1− ν)−size of Γ is �nite. We apply to each term of the

series (2.3) the Borel�Pompeju formula (see [5]). We obtain

1

2πi

∫
Γj

f(t)dt

t− z
= χj(z)f

w
j (z) +

1

π

∫∫
Dj

∂ϕ

∂ζ

dξdη

ζ − z
, ζ = ξ + iη,

and

(2.5) Φ(z) = ϕ(z) +
1

π

∫∫
D

∂ϕ

∂ζ

dξdη

ζ − z
.

If S1−ν(Γ) < ∞, then ∂ϕ

∂ζ
is integrable, i.e., the series converges to holomorphic in

C\Γ function. The existence of boundary values Φ±(t) and relation (2.4) follow from

Dynkin�Salimov theorem of continuity of the Cauchy type integral over recti�able

curve for ν > 1
2 (see [6], [7]). The equality Φ(∞) = 0 is obvious. Finally, if Sp(1−ν)(Γ) <

∞ for p > 2, then ∂ϕ

∂ζ
is integrable with power p > 2, and the last term of (2.5) is

continuous in the whole complex plane (see [5]). Thus, under this restriction the

function Φ is bounded. �
This theorem gives a su�cient condition for solvability of jump boundary value

problem (2.4) on countable set of closed recti�able curves. Another su�cient conditions

for its solvability can be found in [8] (see also bibliography in this book) and [9].

The inequality (2.1) immediately implies

Corollary 2.1. Let Γ ∈ F, f ∈ Hν(Γ) and ν > 1
2 . If the series

(2.6)

∞∑
j=1

λ(Dj)ω
β(Dj)

converges for β = ν, then the jump problem (2.4) is solvable, and if this series

converges for some β < 2ν − 1, then the jump problem (2.4) has a bounded solution.

For ν = 1 the sizes S1−ν(Γ) = Sp(1−ν)(Γ) = S0(Γ) are equal to the sum of areas of

domains Dj , and, consequently, are �nite.
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We come to the following corollary.

Corollary 2.2. If Γ ∈ F and f ∈ H1(Γ), then the series (2.3) converges to a bounded

solution of the jump problem (2.4).

If all curves Γj are piecewise smooth, then the Cauchy type integral over this curve

has continuous boundary values for any positive exponent ν (see [10], [11]).

Corollary 2.3. Let Γ ∈ F consist of piecewise�smooth curves Γj , j = 1, 2, . . . , and

f ∈ Hν(Γ). Then Theorem 2.1 keeps validity for any positive exponent ν.

3. Non-smooths arcs with smooth skeleton

Let us consider the following example. We put Y (x) = x sin π
x for 0 < x ≤ 1,

Y (0) = 0, Γ = {z = x + iy : 0 ≤ x ≤ 1, y = Y (x)}. The arc Γ begins at the point

0 and ends at the point 1; it loses smoothness at its starting and has in�nite length.

Let I be segment [0, 1] with the same beginning and end points. We can represent

the union Γ ∪ I in the form Γ ∪ I = ∪∞
j=1Γj , where Γj = ∂Dj and

Dj = {z = x+ iy : (j + 1)−1 < x < j−1, 0 < (−1)jy < (−1)jx sin
π

x
},

j = 1, 2, 3, . . .. The even curves Γ2j are situated in upper half of the plane, and their

intrinsic orientation is opposite to orientation of Γ. The odd curves Γ2j−1 are situated

in lower half of the plane and directed along Γ. Obviously,∫
Γ

−
∫
I

=
∞∑
j=1

∫
Γ2j−1

−
∞∑
j=1

∫
Γ2j

,

and both contours Γodd := {Γ1,Γ3,Γ5, . . . } and Γeven := {Γ2,Γ4,Γ6, . . . } belong to

the class F. Let us give general description of this phenomenon.

De�nition 3.1. Let Γ be a Jordan arc beginning at point a1 and ending at point

a2. We say that arc γ with the same starting and end points is its skeleton if Γ△γ =

Γ+∪Γ−, where Γ+ (correspondingly, Γ−) is a contour of class F consisting of mutually

disjoint closed curves oriented positively (correspondingly, negatively) with respect to

their interior domains, and L(Γ±) ⊂ {a1, a2}. We denote by S the class of all arcs

with smooth skeletons.

We introduce α−size of arc Γ ∈ S by equality Sα(Γ) = Sα(Γ
+)+Sα(Γ

−). Generally

speaking, an arc Γ ∈ S has in�nite length.

77



B. A. KATS, S. R. MIRONOVA AND A. YU. POGODINA

We consider the jump problem on arc Γ, i.e., the problem on evaluation of holomorphic

function Φ(z) in C \ Γ such that Φ(∞) = 0, and

(3.1) Φ+(t)− Φ−(t) = f(t), t ∈ Γ \ {a1, a2},

(3.2) Φ(z) = O(|z − aj |−γ), z → aj , j = 1, 2, γ = γ(Φ) ∈ [0, 1).

Here Φ+(t) and Φ−(t) stand for limit values of desired function Φ on Γ from the left

and from the right correspondingly.

Let Γ ∈ S, γ is its smooth skeleton, f ∈ Hν(Γ). As above, we denote by fw the

Whitney extension of f from Γ onto the whole complex plane. Obviously, fw|Γ∪γ ∈
Hν(Γ ∪ γ). Then

1

2πi

∫
Γ

f(t)dt

t− z
=

1

2πi

∫
γ

fw(t)dt

t− z
+

1

2πi

∫
Γ+

fw(t)dt

t− z
− 1

2πi

∫
Γ−

fw(t)dt

t− z
.

The �rst term in the right-hand side is the Cauchy type integral over smooth arc

γ with density from the H�older class Hν(γ). It has jump fw on γ \ {a1, a2} and

logarithmic singularities at the points a1,2 (see [10], [11]). The second and third

terms are series of the Cauchy type integrals over sets of closed curves of the class F.

If Sp(1−ν)(Γ) < ∞ for some p > 2, then both series converge to bounded functions

with jump fw on these curves by virtue of Theorem 2.1. Thus, we proved the following

assertion.

Theorem 3.1. Let Γ ∈ S, f ∈ Hν(Γ), ν > 1
2 and Sp(1−ν)(Γ) < ∞ for some p > 2.

Then the Cauchy type integral in the right-hand side of equality

(3.3) Φ(z) =
1

2πi

∫
Γ

f(t)dt

t− z

converges, and the function Φ(z) is solution of the jump problem (3.1) satisfying

condition (3.2).

Analogs of Corollaries 2.1, 2.2, 2.3 are valid, too. We cite an analog of Corollary 2.2.

Corollary 3.1. Let Γ ∈ S and f ∈ H1(Γ). Then the Cauchy type integral in the

right-hand side of equality (3.3) converges and gives a solution of the jump problem

(3.1) satisfying condition (3.2).

4. The Riemann�Hilbert boundary problem for matrices

Now we solve the problem (1.1) in the class of holomorphic matrices satisfying

conditions (1.2) and (1.3). We assume that the arc Γ has smooth skeleton, i.e., belongs
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to the class S. The entries of desired matrix Y satisfy the following relations:

(4.1) Y +
11(t) = Y −

11(t), t ∈ Γ \ {a1, a2}, Y11(z) = zn +O(zn−1),

Y +
12(t) = Y −

12(t) + Y −
11(t)w(t), t ∈ Γ \ {a1, a2}, Y12(z) = O(z−n−1),

Y +
21(t) = Y −

21(t), t ∈ Γ \ {a1, a2}, Y21(z) = O(zn−1),

Y +
22(t) = Y −

22(t) + Y −
21(t)w(t), t ∈ Γ \ {a1, a2}, Y22(z) = z−n +O(z−n−1),

where the second equalities concern behavior of desired functions near in�nity, and

(4.2) Yk,m(z) = O(|z − aj |−γ), γ = γ(Y ) < 1, z → aj , j, k,m = 1, 2.

The equalities (4.1) and (4.2) imply that Y11 is polynomial of degree n with highest

term zn, i.e.,

(4.3) Y11(z) = πn(z) = zn + c1z
n−1 + · · ·+ cn−1z + cn.

Analogously, Y21 is polynomial

(4.4) Y21(z) = π̃n−1(z) = c̃0z
n−1 + c̃1z

n−2 + · · ·+ c̃n−2z + c̃n−1.

The functions Y12 and Y22 are solutions of the jump problems

Y +
12(t)− Y −

12(t) = πn(t)w(t), t ∈ Γ \ {a1, a2},

Y +
22(t)− Y −

22(t) = π̃n−1(t)w(t), t ∈ Γ \ {a1, a2},

in the class (4.2). Under assumptions of Theorem 2 these problems have unique

solutions

Y12(z) =
1

2πi

∫
Γ

πn(t)w(t)dt

t− z
, Y22(z) =

1

2πi

∫
Γ

π̃n−1(t)w(t)dt

t− z
.

But Y12(z) = O(z−n−1), Y22(z) = z−n + O(z−n−1) for z → ∞. The convergence of

the Cauchy type integrals allows us to rewrite these conditions in the form (see [2])

(4.5)

∫
Γ

πn(t)w(t)t
jdt = 0, 0 ≤ j ≤ n− 1,

(4.6)

∫
Γ

π̃n−1(t)w(t)t
jdt = 0, 0 ≤ j ≤ n− 2,

∫
Γ

π̃n−1(t)w(t)t
n−1dt = −2πi.

Thus, we come to the following result.

Theorem 4.1. Let Γ ∈ S, w ∈ Hν(Γ), ν > 1
2 and Sp(1−ν)(Γ) < ∞ for some p > 2.

Then the matrix Riemann�Hilbert boundary value problem (1.1) has a unique solution

satisfying conditions (1.2) and (1.3) if and only if there exist polynomials (4.3) and

(4.4) satisfying conditions (4.5) and (4.6) correspondingly.
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Now we describe a simple case where that polynomials exist. Assume that one of

skeletons γ of the arc Γ is a segment of real axis (we can say that it has right skeleton),

and function w(t) is restriction on Γ of a function w(z) which is holomorphic in a

simply connected domain containing Γ ∪ γ and positive on the segment γ. Then

w ∈ H1(Γ). The conditions (4.5) and (4.6) are equivalent to equalities∫
γ

πn(t)w(t) t
j dt = 0, 0 ≤ j ≤ n− 1,∫

γ

π̃n−1(t)w(t) t
j dt = 0, 0 ≤ j ≤ n− 2,

∫
γ

π̃n−1(t)w(t) t
n−1 dt = −2πi,

i.e. πn(z) = Pn(z) and π̃n−1(z) = bPn−1(z), where Pn and Pn−1 are monic orthogonal

polynomials on the segment Γ with weight w|γ of degrees n and n−1 correspondingly,

and b is certain constant.

Corollary 4.1. Let Γ ∈ S have straight skeleton γ, and let w(t) be restriction on

Γ of a function w(z) which is holomorphic in a simply connected domain containing

Γ ∪ γ and positive on the segment γ. Then the matrix Riemann�Hilbert boundary

value problem (1.1) has a unique solution satisfying conditions (1.2) and (1.3).
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