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Département de mathématiques et de statistique, Université de Montréal, Canada
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Abstract. There exist perturbations of a rational function which remove zeroes and poles
from a prescribed region as well as perturbations which add zeroes and poles to a prescribed
region. We employ this to show the instability of the Riemann Hypothesis for zeta-functions
of smooth projective varieties over finite fields.1
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1. Introduction

Various examples have been given of functions sharing many properties of the
Riemann zeta-function and, in particular, satisfying a similar functional equation,
but failing to satisfy the analogue of the Riemann hypothesis (see, for example [1,
Remark 5, page 3]).
L. D. Pustil’nikov [7] innovated in two ways by showing the existence of such functions
which satisfy the same functional equation as ζ(s) and moreover approximate ζ(s)
arbitrarily well. The initiative of Pustil’nikov was refined by others and extended
to other zeta functions. In [3], it is shown that zeta functions of curves over finite
fields can be approximated by functions satisfying the same functional equation but
failing to satisfy the analogue of the Riemann hypothesis. In the present paper, for
zeta-functions of varieties over finite fields, we show that such approximations can
even be obtained as continuous perturbations of the zeta-functions.
Deligne obtained the Fields Medal for proving the Riemann Hypothesis for zeta
functions of varieties over finite fields. In the direction opposite to that of the previous
paragraph, we show the existence of small perturbations of these zeta-functions which
satisfy the same functional equation and continue to satisfy the analogue of the
Riemann hypothesis.

1Supported by the Engineering Research Council of Canada
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This paper contains no new results in number theory. Number theorists have worked
hard to show that zeta-functions over finite fields are merely rational functions of a
very explicit form. In the next section, we present this explicit form and thereafter
study meromorphic functions having a similar form, with no subsequent reference to
number theory. Our approach is rather from the viewpoint of complex approximation
theory.

2. Analytic properties and symmetries

The following results can be found, for example, in [5]. For p prime, let V = V (Fp)

be a smooth projective variety over the field Fp having p elements. The Zeta function
ζV (s) associated to V was defined by Weil by the equations

ζV (s) = ZV (p
−s), ZV (u) = exp

∑
m≥1

Nm
um

m

 ,(2.1)

where Nm is the number of points of V (Fpm).

Of course, this definition a priori only makes sense for u in the disc of convergence
of the power series or, equivalently, for s in the half-plane of convergence of the
corresponding Dirichlet series, and it is a nontrivial result that ZV is a rational
function and hence ζV extends meromorphically to all of C. More precisely,

ZV (u) =
P1(u) · · ·P2d−1(u)

P0(u) . . . P2d(u)
,(2.2)

where d = dimV and Pj(u) ∈ Z[u]. Moreover, we have the functional equations

ZV (u) = ZV (u), ZV

(
1

pdu

)
= ±uχpdχ/2ZV (u),(2.3)

where χ is the self-intersection number of the diagonal in V × V. The Riemann
hypothesis for all smooth projective varieties over finite fields was proven in full
generality by Deligne, and it amounts to the equations

Pj(u) =
∏

(1− αjku), |αjk| = pj/2.(2.4)

Hence the zeroes of the zeta-function ζ(V, s) lie on the lines

ℜ(s) = 1

2
,
3

2
, · · · , 2d− 1

2

and the poles on the lines

ℜ(s) = 0, 1, 2, · · · , d.

Let Zj denote the divisor of the zeroes of the polynomial Pj . It follows from (2.4)
that the support of Zj is contained in the circle Cj of radius p

−j
2 . We call Cd the
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central circle and for j odd, we call the circles Cj critical circles. The second equation
in (2.3) implies that

Zj =
1

pdZ2d−j
.(2.5)

Therefore, the zeroes of Pj are the reflection of the zeroes of P2d−j with respect to
the central circle Cd. More precisely, from (2.4) we obtain the equations

1

α(2j−d)k
=
αjk

pd
.(2.6)

It follows that the polynomials that make up the factors of the zeta functions satisfy
the functional equation

P2d−j(u) = (−1)NjA−1
j pNjduNjPj(

1

pdu
),(2.7)

where Aj =
∏

k αjk, and Nj is the number of zeroes of Pj , counting multiplicity.

Remark 2.1. If we compare the relations (2.3) and (2.7) we obtain the interesting
formula:

χ = N0 −N1 +N2 − · · ·+N2d.

In fact the number χ has the interpretation as the Euler characteristic of a complex
variety associated to V (see [4], Appendix C).

For a positive number x and a positive integer j, the expression xj/2 represents
the positive determination of the square root of xj . For a function f : E → C defined
on a set E ⊂ C, we set

∥f∥E = sup
z∈E

|f(z)|,

if f omits the value ∞ on E. Otherwise, we put ∥f∥E = +∞. Moreover, we denote
by M and O respectively the spaces of meromorphic and holomorphic functions on C,
and by O(E) the space of holomorphic functions defined on some open neighborhood
of E. The following construction provides a metric d on M whose topology coincides
with the topology of uniform convergence on compacta. Given an exhaustion of C by
closed disks Dn, define

d(f, g) =

∞∑
n=0

2−n min(1, ∥f − g∥Dn).

We observe in particular that O is a locally convex space.

3. Approximation by Zeta functions

The first theorem does not rely on the functional equations of a zeta function ZV ,
but on the fact [5, p.159] that s = 0 is a simple pole of ζV .
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Theorem 3.1. For a compact K, let f ∈ O(K). Then for any positive ϵ, there exist
numbers ak, bk, λk, k = 1, 2, . . . n, such that

|f(s)−
n∑

k=1

λkζV (aks+ bk)| < ϵ ∀s ∈ K.

Proof. Let O be a bounded open set containing K such that f is holomorphic on O.
After replacing f by χ1f , where χ1 is a smooth function supported in O such that
χ1(s) = 1 on an open subset of O that contains K, we can assume that f extends
smoothly on C.
Let O′′ be a bounded open set containing the closure of the set O′ = O ∪ (O − O).
Choose ro so small that ζV (z) has no poles, other than 0, in the disc Do = (|z| < ro)

and choose to so small that the closure of O′′ is contained in the disc D1 = (|s| <
ro/to). Fix t with 0 < t < to. Then the poles of ζV (ts) other than zero lie outside
the disc D1 and hence outside the set O′′. Since the pole at 0 of ζV is simple, setting
ao = π · res(ζV , 0) and a = aoπ/t, all the poles of the meromorphic function

h(s) = ζV (ts)−
a

πs

lie outside the closure of O′.

Let χ2 be a smooth function with support in O′′ such that χ2(s) = 1 on a
neighborhood of O′: then h̃ = χ2h is a smooth function on C with compact support,
and we can treat

ζ̃(s) =
a

πs
+ h̃(s)

as a distribution. Since ψ(s) = 1
πs is a fundamental solution for the ∂-operator, and

f is locally integrable and continuous, we have the following equalities:

f(s) = (f ∗ δ)(s) = (f ∗ ∂ψ)(s) = (∂f ∗ ψ)(s) =
∫ ∫

(∂f)(z)ψ(s− z)dxdy =

a−1

∫ ∫
(∂f)(z)ζ̃(s− z)dxdy − a−1

∫ ∫
(∂f(z))h̃(s− z)dxdy.

Since f = 0 off O, s ∈ K ⊂ O and ∂zh̃(s − z) = 0 on O × O, integration by parts
shows that ∫ ∫

(∂f)(z)h̃(s− z)dxdy = −
∫ ∫

f(z)∂zh̃(s− z)dxdy =

−
∫ ∫

O

f(z)∂zh̃(s− z)dxdy = 0.(3.1)
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Therefore if s ∈ O,

f(s) = a−1

∫ ∫
(∂f)(z)ζ̃(s− z)dxdy = a−1

∫ ∫
supp(∂f)

(∂f)(z)ζ̃(s− z)dxdy =

a−1

∫ ∫
supp(∂f)

(∂f)(z)ζV (t(s− z))dxdy,

(3.2)

where the last equality holds since ζV (ts) = ζ̃(s) for s ∈ O′. Since the integrand
in (3.2) is smooth and uniformly continuous, we can approximate it uniformly by
Riemann sums, and the result follows. �

4. Instability theorems

In this section we shall show two instability properties of the Riemann hypothesis.
First, we prove that the functional equations (2.3) are not sufficient to characterize
the zeta function of a variety. Indeed, we approximate the zeta function by functions
which satisfy the same functional equation but fail to satisfy the analogue of the
Riemann hypothesis, in that they have nontrivial zeroes off the critical axes. It is
interesting to compare this with Hamburger’s theorem which asserts more or less that
the Riemann zeta function is characterized by its functional equation. Secondly, we
shall construct functions, close (but not equal) to a given zeta function that satisfy
the same functional equations (1) and have the same zeroes. Thus, among small
perturbations of the zeta function satisfying the same functional equation, some do
not and some do satisfy the analogue of the Riemann hypothesis. In this sense, the
Riemann hypothesis is unstable.

Definition 4.1. Let V be a smooth projective variety over Fp and ZV (u) = ζV (s)

the corresponding zeta function (where u = p−s). Let MV ⊂ M be the subset of the
meromorphic functions that can be written as

f(s) = Zf (u) =
Q1(u)Q3(u) . . . Q2d−1(u)

Q0(u)Q2(u) . . . Q2d(u)
,(4.1)

where Qj are holomorphic functions C \ {0} that satisfy the following properties:

(1) for j even, Qj = Pj; for i− j odd, Qi and Qj have no common zeroes;
(2) if û is a pole of Zf of order m, then û is a zero of order at least m for Qk−Pk,

for all k;
(3) Qj satisfy the same functional equations as the Zeta-function ZV :

Qj(u) = Qj(u), Q2d−j(u) = (−1)NjA−1
j pNjduNjQj(

1

pdu
),(4.2)

where as in Section 1, Aj is the product of the inverses of the zeroes of Pj,
and Nj denotes the number of zeroes of Pj.

We denote by RV the class of rational functions in MV .
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Remark 4.1. With Definition 4.1 we have selected a class of functions that resemble
the zeta-function ζV , since:

(1) if f ∈ MV , then Zf satisfies the same functional equation (2.3) as the zeta-
function ZV ;

(2) if f ∈ MV , then Zf and ZV have the same poles and moreover, at each pole
they have the same principal part in the Laurent expansion; in particular,
ZV − Zf is holomorphic on C \ {0};

The following theorem shows that every function in MV has continuous perturbations
which fail to satisfy the analog of the Riemann hypothesis.

Theorem 4.1. The class M−
V of functions in MV which fail the “Riemann hypothesis"is

an open dense subset of MV (MV endowed with the induced topology from M).
Moreover, for each f ∈ MV , there is a continuous curve ft ∈ M−

V , t ∈ (0, 1], such that
ft → f in MV , as t→ 0. If f ∈ RV , we may suppose ft ∈ R−

V , t ∈ (0, 1].

In particular, we can approximate the zeta function ζV by continuous perturbations
thereof which strongly resemble ζV but fail to satisfy the analogue of the Riemann
hypothesis. The proof of Theorem 4.1 will be given after the introduction of the
following technical lemma.

Lemma 4.1. Let f ∈ MV . For j odd, 0 < j < 2d, consider functions µj holomorphic
on C \ {0} such that: (a) µj(u) = µj(u), (b) µ2d−j(u) = µj(

1
pdu

), (c) if û is a pole of
ZV of order m, then µj − 1 vanishes at û with order at least m. Then the functions
Q̃j(u) = µj(u)Qj(u) are holomorphic for all u ̸= 0 and satisfy the functional equations
(4.2). Hence the function f̃ , which is defined by

f̃(s) = Z̃(u) =
Q̃1(u)Q̃3(u) . . . Q̃2d−1(u)

Q0(u)Q2(u) . . . Q2d(u)
,(4.3)

belongs to MV . If µ is rational and f ∈ RV , then f̃ ∈ RV .

Proof. It is simple to check that Z̃ satisfies the functional equations (4.2). Then
condition (c) guarantees that Q̃k −Pk vanishes of order at least m at û, if û is a pole
of order m. �

We may now prove Theorem 4.1.
Proof. The fact that M−

V is open follows immediately from Rouché’s theorem . We
give a proof of the Theorem for varieties of dimension d ≥ 2, leaving to the reader to
adjust the proof to the one-dimensional case. Given f ∈ MV , write as usual

f(s) = Zf (u) =
Q1(u)Q3(u) . . . Q2d−1(u)

Q0(u)Q2(u) . . . Q2d(u)
.

Let P be the set of poles of Zf (u) and ma be the order of a pole a of Zf . From the
functional equations (4.2) we deduce that, for all a ∈ P , ma = m1/a = ma. Consider
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the functions

µ1,t(u) = 1 + t
∏
a∈P

(u− a)2ma and µ2d−1,t(u) = µ1,t(1/p
du).

Since P = P , the pair {µ2d−1, µ1} satisfies condition (a) of Lemma 4.1, while (b) and
(c) of the same lemma follow by definition. Hence, we set

Q1,t(u) = µ1,t(u)Q1(u) and Q2d−1,t(u) = µ2d−1,t(u)Q1(u)

and consider the family of function ft ∈ MV

ft(s) = Zf (u) =
Q1,t(u)Q3(u) . . . Q2d−3(u)Q2d−1,t(u)

Q0(u)Q2(u) . . . Q2d(u)
.

Now we show that there exists a positive ϵ such that if t ∈ (0, ϵ], then ft has non-
trivial zeroes outside the critical circles. Given M > 0, there exists ϵ > 0 such that if
|t| < ϵ and u is a zero of µ1,t, then |u| > M : in fact, since µ1,t converges uniformly to
1 on compacta, the zero locus is pushed to infinity as t approaches zero. This shows
in particular that for t sufficiently small the zeroes of µ1,t do not belong to any of
the critical circles. We are left to prove that µ1,t has non-real zeroes for t sufficiently
small. Denote by P+ the set of poles of Zf with positive imaginary part, by P ′ the
set of real poles with absolute value greater than p−d/2 and by P d the set of real
poles with absolute value equal to p−d/2. Then,

µ1,t(u) = 1+t
∏

a∈P+

(u−a)2ma(u−a)2ma

∏
a∈P ′

(u−a)2ma(u−1/pda)2ma

∏
a∈Pd

(u−a)2ma .

From this expression for µ1,t it is easy to see that if t is positive and real, µ1,t can
not have a real zero. Therefore, if t ∈ (0, ϵ], then ft ∈ M−

V , and ft ∈ R−
V whenever

f0 = f ∈ RV . The fact that ft, t ∈ [0, ϵ], depends continuously on t (that is, ft is
a continuous curve in MV ) follows from the fact that µ1,t and µ2d−1,t converge to 1

uniformly on compacta and assume the value 1 at poles of Zf . Of course, the curve
ft, t ∈ (0, ϵ] can be parameterized on the interval (0, 1] rather than (0, ϵ]. � The
next theorem is in the opposite direction of Theorem 4.1, namely we show that we
can perturb elements in MV while eliminating non-real zeroes off the critical circles.

Theorem 4.2. Let f ∈ MV . Then, there exists an exhaustion of C by closed subsets
E1 ⊂ E2 · · · ⊂ En ⊂ . . . and a sequence of functions fn ∈ MV different from f

satisfying the following properties:
(1) fn have the same zeroes as f on the critical axes (with the same multiplicity)

and on the real axis and no other zeroes;
(2) lim ||fn − f ||En = 0; in particular the sequence fn converges to f pointwise.

In particular, we can take as f the zeta function ζV itself. Each fn resembles
the zeta function ζV (because it is in MV ) and fn does satisfy the analogue of the
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Riemann hypothesis, since it has no non-trivial zeroes off the critical axes. Let us
start once again with the preparatory material.

Definition 4.2. By a hole of a set A ⊂ C, we mean any bounded component of
C\A. A closed subset E without holes is said to be an Arakelian set if, for any closed
disk D, the union of the holes of D ∪ E is a bounded set or, equivalently, if Ĉ \ E is
connected and locally connected, where Ĉ denotes the Riemann sphere containing C.

Arakelian sets are extremely important in complex approximation. Given a function
f : E → C on a set E ⊂ C, suppose we wish to approximate f uniformly by entire
functions. Then, f must be continuous on E and holomorphic on the interior of E.
Moreover, if a sequence fn of entire functions converges uniformly to f on E, then
this sequence is uniformly Cauchy on E and hence also on E, so there is no loss
of generality in assuming that E is closed. A famous theorem of N. U. Arakelian
(see [8]) states that a necessary and sufficient condition on a closed set E, in order
that each function continuous on E and holomorphic on the interior of E can be
uniformly approximated by entire functions, is that Ĉ \ E be connected and locally
connected. This theorem completely solves the problem of uniform approximation by
entire functions.

For a divisor D =
∑
nP (P ) we define the conjugate divisor D =

∑
nP (P ). Also,

we denote the support of D by [D]. Let f ∈ MV be given. For all k odd, let W+
k

(resp. W−
k ) denote the divisor of the zeroes of Qk off the critical circles, outside (resp.

inside) the central circle Cd and above the real axis, and let

W+ =
∑
k

W+
k , W− =

∑
k

W−
k

Wk =W+
k +W+

k +W−
k +W−

k .

The divisor W of non-trivial zeroes of Zf off the critical circles is given by

W =
∑
k

Wk =W+ +W+ +W− +W−

and the set of non-trivial zeroes of Zf off the critical circles is [W ].

Remark 4.2. There is no relation between W+
k and W−

k (unless k = d), but the
functional equations (4.2) imply that

1

pdW+
2d−k

=W−
k and

1

pdW−
2d−k

=W+
k .(4.4)

Lemma 4.2. For each u ∈ [W+] and each n = 1, 2, . . ., there exists an unbounded
domain (open connected set) Un,u whose boundary consists of two disjoint arcs, each
of which goes monotonically from 0 to ∞, having the following properties:

(1) for each u ∈ [W+] and each n, we have u ∈ Un,u;
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(2) for each fixed n, the sets cl(Un,u), with u ∈ [W+], are disjoint;
(3) for each u ∈ [W+] and each n, we have Un,u = 1/pdUn,u;

(4) for each u ∈ [W+], the sets Un,u are decreasing and
∞∩

n=1

Un,u = {u, 1/pdu};

(5) for each u ∈ [W+], the sets Un,u are in the upper half-plane and uniformly
bounded away from the polar set of Zf .

(6) for each n,

meas
∪

u∈[W+]

Un,u < 1/n.

For each odd value of k, we consider the following sets:

Un,k =
∪

u∈[W+
k ]

Un,u(4.5)

An,k = C \
(
Un,k ∪ Un,k

)
.(4.6)

Remark 4.3. (1) If u ∈Wk for some k, then u is not a pole of Zf .
(2) It follows from condition (4) of Lemma 4.2 that

∞∩
n=1

∪
u∈[W+

k ]

Uu,n =
∪

u∈[W+
k ]

∞∩
n=1

Uu,n = [W+
k ] ∪ [W−

2d−k].

The proof of Theorem 4.2 relies on an approximation-interpolation lemma, which
is similar to Theorem 40 in [2], but the statement we provide here is stronger.

Lemma 4.3. Let X be an Arakelian set, ϵ > 0,m ∈ Z+ and the following data be
given:

(1) a possibly finite sequence Λ in C \X without limit points in C and for each
λ ∈ Λ an integer ν(λ) > 0 and a non-zero complex number βλ;

(2) a finite sequence {b1, b2, · · · , bk ∈ Xo}.

Then there exists an entire function H such that ||1 −H||X < ϵ, H has zeroes only
at the λ′s with order ν(λ), H(ν(λ)(λ) = βλ, and H − 1 has a zero of order at least m
at bj , j = 1, · · · , k.

Proof. Let F be an entire function whose zeroes are precisely the points of λ ∈ Λ,

with order ν(λ) and with F (ν(λ))(λ) = βλ. Then, on X we may write F = e−f , with
f ∈ O(X). Set E = X ∪ Λ and put f = 0 on Λ. Then, E is again an Arakelian
set and f ∈ A(E). It follows from [6] that there is an entire function g such that
|f −g| < min{1, ϵ/e} on E, and g(λ) = 0, for each λ ∈ Λ. Moreover, we may stipulate
that g(ν)(bj) = f (ν)(bj), ν = 0, 1, · · · ,m, for each j = 1, 2, · · · , k.

63



F. DONZELLI AND P. M. GAUTHIER

Set G = eg and H = GF. Then, on X we have

|H − 1| = |eg−f − 1| ≤ |g − f |
∞∑

n=1

|g − f |n−1

n!
≤ |g − f |

∞∑
n=0

1

n!
≤ ϵ.

The only zeros of H are those of F, that is, the points λ ∈ Λ. Near such a λ, we
have

H(z) = G(z)F (z) =

1 +
∞∑
j=1

aj(z − λ)j

(
βλ
ν(λ)!

(z − λ)ν(λ) + · · ·
)
.

Hence, these zeros are still of order ν(λ) and H(ν(λ)(λ) = βλ.

At each bj , j = 1, 2, · · · , k, the function g − f has a zero of order at least m and,
since the exponential function is a local homeomorphism, at each such bj , the function
H = eg−f assumes the value 1 with multiplicity at least m. �
Proof of Theorem 4.2. Let

An =
∩
k

An,k = C \
∪
k

(Un,k ∪ Un,k),

where k runs over odd values. Choose an unbounded increasing sequence {rn} of
positive numbers, with r1 > p−d such that all poles in C \ {0} are in the annulus
{1/(r1pd) < |u| < r1}. Then, there are no poles on the boundaries of the compact
subsets

Kn = {1/(pdrn) ≤ |u| ≤ rn} ∩An.

We define the finite set

Wn = {1/(pdrn) ≤ |u| ≤ rn} ∩ [W ]

and set
Yn,k = An ∪ (Wn \ [W+

k ]).

Let δn > 0; for each odd k we can apply Lemma 4.3, with X = Yn,k to construct a
non-constant entire function hn,k such that

a) the zero divisor of hn,k equals W+
k and

Qk(u)

hn,k(u)
= δn, ∀u ∈ [W+

k ];(4.7)

(4.8) hn,k(u) = 1, ∀u ∈ Wn \ [W+
k ];

b) ||hn,k − 1||Yn,k
< δn;

c) if u is a pole of multiplicity m, then hn,k(u)− 1 vanishes to order at least m at
u.

For each k let

Fn,k(u) = hn,k(u)hn,k(u)hn,2d−k(1/p
du)hn,2d−k(1/pdu).(4.9)
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Then the zero divisor of Fn,k clearly coincides with Wk; moreover, since the polar
divisor of Zf is symmetric with respect to the real axis and the central circle Cd, the
functions Fn,k satisfy condition c) above. Hence, if we set

Q̃n,k =
Qk

Fn,k
(4.10)

and

Zfn =
Q̃n,1Q̃n,3 . . . Q̃n,2d−1

Q0Q2 . . . Q2d
,(4.11)

then the function fn defined by fn(s) = Zfn(u) belongs to the class MV and satisfies
condition (1) of Theorem 4.2.

The validity of condition (2) of Theorem 4.2 follows from the following fact: for
any ϵn > 0, then there exists δn > 0 such that if hn,k are defined by a) b) and c) as
above, then

||Zfn − Zf ||Kn∪Wn < ϵn.(4.12)

Indeed, consider a sequence ϵn → 0 for n→ ∞, and the collection of closed sets

En = {s : p−s ∈ Kn} ∪ {s : p−s ∈ Wn}.(4.13)

which clearly satisfies
∪

nEn = C. Then fn ̸= f, since hn,k ̸= 1, and

||f − fn||En = ||Zf − Zfn ||Kn∪Wn < ϵn

which implies that limn→∞ ||fn − f ||En = 0, which is condition (2) of Theorem 4.2.
We prove (4.12) first on Kn, then on Wn. Observe that Kn is symmetric with

respect to the central circle Cd and the real axis; moreover, Kn ⊂ Yn,k for all k.
Given a collection hn,k of functions satisfying a), b) and c), we therefore have

||hn,k − 1||Kn
≤ ||hn,k − 1||Yn,k

< δn, ∀k.(4.14)

Condition c) imposed on hn,k implies that Zf and Zfn have the same poles and the
same principal part at each pole. Therefore Zf − Zfn is holomorphic for all u ̸= 0,
and the maximum principle implies that

||Zf − Zfn ||Kn ≤ ||Zf − Zfn ||∂Kn .

Since Zf has no poles on ∂Kn, it is bounded on ∂Kn. Since Kn is a compact set,
and each Fn,k is a finite product of hn,k and its conjugates, then given ϵn > 0 there
exists δn > 0 such that

||1−ΠkF
−1
n,k||∂Kn ≤ ||1−ΠkF

−1
n,k||Kn ≤ ϵn

||Zf ||∂Kn

.

Therefore we can estimate

||Zf − Zfn ||Kn ≤ ||Zf − Zfn ||∂Kn = ||Zf ||∂Kn ||1−ΠkF
−1
n,k||Kn < ϵn.(4.15)
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Next, we want to show that (4.12) holds on Wn; since Zf = 0 on Wn, we must
show that

||Zfn ||Wn < ϵn.(4.16)

We first prove the estimate (4.16) for u ∈ Wn ∩ [W+]. The proof for the other
three cases, namely u ∈ Wn ∩ [W−], u ∈ Wn ∩ [W−], u ∈ Wn ∩ [W+] will follow from
the functional equations (4.2).

From equation (4.7), we have, with v = 1/pdu and abbreviating hn,j to hj :

Zfn(u) =
δn

h1(u)h2d−1(v)h2d−1(v)
× · · · × δn

h2d−1(u)h1(v)h1(v)
× 1

Q0(u) . . . Q2d(u)
.

If u ∈ Wn ∩ [W+], then, by (4.8), all the factors in the denominator, other than
Q0(u), · · · , Q2d(u), are equal to 1 and so, for u ∈ Wn ∩ [W+],

Zfn(u) =
δn × · · · × δn

Q0(u) . . . Q2d(u)
.

Since Q0(u), · · · , Q2d(u) are different from zero for u in the finite set Wn, it follows
that, if we choose δn sufficiently close to zero, we have |Zfn(u)| < ϵn.

Suppose now that u ∈ Wn ∩ [W−]. Then, v ∈ Wn ∩ [W+] so |Zfn(v)| < ϵn, by the
previous case. Moreover, by the functional equation, Zfn(u) = CuNZfn(v), where N
is plus or minus some Nj . Since u is restricted to the finite set Wn, we may assume
that δn is sufficiently small that |Zfn(u)| < ϵn.

The remaining cases u ∈ Wn ∩ [W+] and u ∈ Wn ∩ [W−] follow from the previous
two and the functional equation Zfn(u) = Zfn(u).

This concludes the proof of the estimate (4.16) and of Theorem 4.2. �
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