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Abstract. We study the class of Finsler metrics whose Douglas curvature is constant
along any Finslerian geodesics. This class of Finsler metrics is a subclass of the class
of generalized Douglas-Weyl metrics and contains the class of Douglas metrics as a
special case. We find a condition under which this class of Finsler metrics reduces to

the class of Landsberg metrics. Then we show this class of Landsberg metrics contains

the class of R-quadratic metrics.
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1. INTRODUCTION

In Finsler geometry, every Finsler metric F' on a manifold M induces a spray
G =y
called the spray coefficients of G. A Finsler metric F is called a Berwald metric if
G' = %F;’-k(x)yjyk are quadratic in y € T, M for any x € M (see [17], [18], [11]). Let

, o3 ; 1 0G™ |
D=2 (g - i),
TR 9yd Dyk oyt (G n+1 oy™ Y >

agi — 2G*(x, y)aiyi which determines the geodesics, where G* = G*(z,y) are

It is easy to verify that D := Dijkl&- ® dr? @ dx* ® da' is a well-defined tensor
on slit tangent bundle TMy. We call D the Douglas tensor. The Douglas tensor
D is a non-Riemannian projective invariant, namely, if two Finsler metrics F' and
F are projectively equivalent, G* = G + Py’, where P = P(z,y) is positively
y-homogeneous of degree one, then the Douglas tensor of F' is the same as that
of F (see [9]). Finsler metrics with vanishing Douglas tensor are called Douglas
metrics. The notion of Douglas curvature was proposed by Bdcsé and Matsumoto

as a generalization of Berwald curvature [3].
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On the other hand, there is another projective invariant in Finsler geometry, namely
Dijkl‘mym = jklyi that is hold for some tensor Tjj;, where Dijkl|m denotes the
horizontal covariant derivatives of Dzjkl with respect to the Berwald connection
of Finsler metric F. This equation implies that the rate of change of the Douglas
curvature along a geodesic is tangent to the geodesic [7]. It is known that this class
is closed under projective change and all metrics with vanishing Douglas curvature
or vanishing Weyl curvature belong to it. Thus Finsler metrics in this class are called
generalized Douglas-Weyl metrics [4].

In this paper, we study the class of Finsler metrics whose Douglas curvature satisfies
(1.1) D jsy° = 0.

The geometric meaning of (1.1) is that on this new class of Finsler spaces, the Douglas
tensor is constant along any geodesics. It is easy to see that, this class of Finsler
metrics is a subclass of the class of generalized Douglas-Weyl metrics. Here, we show
that this condition is not projectively invariant. To prove this let two Finsler metrics F’
and F are projectively equivalent, i.e. G* = G*+ Py’, where P = P(x,y) is positively
y-homogeneous of degree one. Then we have

(1.2) G’ = G+ Py’ + P&,

J

(1.3) e = G+ Py’ + Pjsj, + Pudl.

Let Dijkl‘sys = 0. Then, we have
(1.4)

aDijkl aDij’fl m i m m i m i m i s
oxs - aym Gs + Gsm gkl — GS]D mkl — skD jml — Gsl jkm | Y = 0.
Putting (1.2) and (1.3) in (1.4) imply that
aDijkl aDijkl ~m s m i % 7 % m
o~ gy (G Py PO (Gl + Pant' + Pab, + Prdl) Dy

— (GZ + Pyy™ + PO} + P60 D',

- (G?}c + Pay™ + Psdy' + Pk(s;n)Dijml

(1.5) — (G + Pay™ + P + P07 ) D’
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. . . . . . . . . l _ B l
Since the Douglas tensor is invariant under any projective relation, i.e., D it =D x0s

then (1.5) reduces to the following equality:
(1.6) D'j1s9° + P Dy’ = 0.

Thus by (1.6), we conclude that the class of Finsler metrics satisfies (1.1) is not closed
under projective relations.

Other than Douglas curvature, there are several important non-Riemannian quantities:
the Cartan torsion C, the Berwald curvature B, the mean Berwald curvature E and
the Landsberg curvature L, etc (see [12], [14] — [16], [19]). The study shows that
the above mentioned non-Riemannian quantities are closely related to the Douglas
metrics, namely Bacs6-Matsumoto proved that every Douglas metric with vanishing
Landsberg curvature is a Berwald metric [2]|. Is there any other interesting non-
Riemannian quantity with such property?

In [12], Shen find a new non-Riemannian quantity for Finsler metrics that is closely
related to the E-curvature and call it E-curvature. Recall that E is obtained from the
mean Berwald curvature by the covariant horizontal differentiation along geodesics.
In this paper, we prove that every complete Finsler space satisfies (1.1) with bounded
mean Cartan tensor and vanishing E-curvature is a Landsberg metric. More precisely,

we prove the following statement.

Theorem 1.1. Let (M, F) be a complete Finsler space satisfying (1.1) with bounded
Cartan tensor. If E-curvature of F is vanishing, then F is a Landsberg metric. In
particular, every compact Finsler space satisfying (1.1) with E = 0 is a Landsberg

space.
The converse of Theorem 1.1 is not true. See the following example.

Example 1. Consider the following Finsler metric on the unit ball B C R™,

F(y) := \/|y|2 — (lzPylP— <2,y >?)  <z,y>
. 1_|x|2 1_|$|2’

y €T, B" =R"

where |.| and <,> denote the Fuclidean norm and inner product in R™, respectively.
F is called the Funk metric which is a positively complete Finsler metric on B™ with
bounded Cartan tensor [12]. The Funk metric is a Douglas metric with vanishing

E-curvature while is not Landsbergian.
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For every weakly Berwald metric, the E-curvature is vanishing. Then by Theorem

1.1, we have the following result.

Corollary 1.1. Let (M, F) be a compact Finsler space satisfying (1.1). Suppose that

F is a weakly Berwald metric. Then F is a Landsberg metric.

For a Randers metric F' = a + 3, the Cartan tensor is bounded ||C|| < % (see
[12]). In [6], Matsumoto showed that F' = o + 8 is a Landsberg metric if and only if
B is parallel. In [5], M. Hashiguchi and I. Ichijyo showed that for a Randers metric
F = a+ 3, if B is parallel, then F' is a Berwald metric. Then by Theorem 1.1, we

obtain the following corollary.

Corollary 1.2. Let (M, F) be a Finsler space satisfying (1.1). Suppose that F' is a
complete Randers metric on M. Then F is a Berwald metric if and only if it is a

weakly Berwald metric.

It is known that on a Douglas manifold (M, F'), the Finsler metric F' is a Landsberg
metric if and only if it is a Berwald metric (see [1], [2]). Hence, by Theorem 1.1, we

get the following assertion.

Corollary 1.3. Every compact Douglas metric with vanishing E-curvature is a Berwald

metric.

For a vector y € T, My, the Riemann curvature R, : T,M — T,M is defined by
Ry(u) :== R (y)u* 52, where
aG" %Gt - 02G1 oG 0GY
R =2— — ——— ) +2G7 — -
x(v) Oxk 8z36yky Oyidyk Oyl OyF
The family R := {R,}yernm, is called the Riemann curvature [10], [12]. A Finsler

metric F' is said to be R-quadratic if R, is quadratic in y € T, M at each point

x € M. In this paper, we prove the following theorem.
Theorem 1.2. Every R-quadratic Finsler metric satisfies (1.1).

There are many connections in Finsler geometry [13]. In this paper, we set the
Berwald connection on Finsler manifolds. The h- and v- covariant derivatives of a

Finsler tensor field are denoted by ¢ | "and ¥, "respectively.
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2. PRELIMINARIES

Let M be a n-dimensional C*° manifold. Denote by T, M the tangent space at z € M,
by TM = UzenmT, M the tangent bundle of M, and by TMy = TM \ {0} the slit
tangent bundle on M. A Finsler metric on M is a function F' : TM — [0, co) which has
the following properties: (i) F is C* on T'My; (ii) F is positively 1-homogeneous on
the fibers of tangent bundle T'M, and (iii) for each y € T,, M, the following quadratic
form g, on T, M is positive definite,

1 02
gy(u,v) := 3 5s61 [FQ(y+ su+t)] |s=0, u,v € Ty M.

Let x € M and F, := F|r, . To measure the non-Euclidean feature of F,, define
C,: I,MT,MT,M—R by

1d
Cy(u,v,w) := 3% [gy+tw (W, V)] |t=0, w,v,w € T, M.

The family C := {C,},ernm, is called Cartan torsion. It is well known that C = 0 if
and only if F' is Riemannian.
For y € T, My, define Ly : T, M @ T, M @ T, M — R by

Ly(u,v,w) := Lijk(y)uivjwk,

where Liji := Cyjpsy®. The family L := {Ly},ern, is called Landsberg curvature.
F' is called Landsberg metric if L = 0.
Given a Finsler manifold (M, F), a global vector field G is induced by F on T My,

which in a standard coordinate (2%, y?) for T My is given by G = 823:1 —2G(x, y)a%i,

where G(y) are local functions on TM given by

i Loy OPIF?) . O[F?
Gi=19 {axkayly T ol } y € Tul.

G is called associated spray to (M, F'). The projection of an integral curve of G is

called geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its
coordinates (c'(t)) satisfy ¢ + 2G%(¢) = 0 (see [14]).
For y € T, My, define B, : T,M T, M @ T, M — T, M and E, : T, M @ T, M — R
by

k1 0

B, (u,v,w) := ;kl(y)ujv W

ey By(u,0) = Ej(y)u’ o
where
i 3Gt 1.
B jkl(y) = W@% Ejr(y) == ) jkm(y)7
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»and w = wi% «- B and E are called the Berwald curvature

u:ui% x,v:vi%
and mean Berwald curvature respectively. A Finsler metric is called a Berwald metric
and weakly Berwald metric if B = 0 and E = 0, respectively [12].

The quantity H, = H;;dz’ ® dz? is defined as the covariant derivative of E along
geodesics [8]. More precisely

Hi‘ = z]\mym

The Riemann curvature R, = R kdxk ® % e TpyM — T, M is a family of linear

maps on tangent spaces, defined by
i 2 2 i oY
For a flag P = span{y,u} C T,,M with flagpole y, the flag curvature K = K(P,y) is
defined by
gy (u, Ry(u))
gy(y, y)gy(uv u) - gy(yv u)2 ’
where g, = g;;(z, y)dz* ® dz?. We say that a Finsler metric F is of scalar curvature

K(P? y) =

if for any y € T, M, the flag curvature K = K(x,y) is a scalar function on the slit
tangent bundle T'M,. If K = constant, then F' is said to be of constant flag curvature.
A Finsler metric F' is said to be R-quadratic if R, is quadratic in y € T, M at each
point z € M. Let

. 10 (OR, OR]
R jkl($7y) T 38y] { 8yl 8yk }v

where R’ jki 18 the Riemann curvature of Berwald connection. Then we have R =
R (x,y)y’ y'. Therefore R} is quadratic in y € T, M if and only if R! }, are functions
of position alone. Indeed a Finsler metric is R-quadratic if and only if the h-curvature
of Berwald connection depends on position only in the sense of Bdcsé-Matsumoto [3].
By means of E-curvature, we can define E, : T,M ® T,M ® T, M — R by

Ey(u7 v, w) = _jk:l(y)uivjwk7

where Eijk = Eyjjr- We call it E-curvature. From a Bianchi identity, we have

i i _
B jmllk — B jkm|l — R

i

Jjkl.m

where R; 4 18 the Riemannian curvature of Berwald connection [12]. This implies that
Ejix—Eji = 2R™,, .. Then Ejj;, is not totally symmetric in all three of its indices. It

is easy to see that, on R-quadratic Finsler metrics, Eijk = Eikj holds. By definition,
64



ON A SUBCLASS OF THE CLASS OF GENERALIZED ...
if E = 0, then E-curvature is covariantly constant along all horizontal directions on
T M.
3. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we need to prove that every complete Finsler metric with
Lijkimy™ = 0 and bounded Cartan torsion must be a Landsberg metric. First, we

remark the following.

Remark 1. Let (M, F) be a Finsler space and ¢ : [a,b] — M be a geodesic. For a
parallel vector field V(t) along c,

(3.1) 9e(V (), V(t)) = constant.
Now, we consider the Finsler metrics with Landsberg curvatures satistying L x|my™ = 0.

Lemma 3.1. Let (M, F) be a complete Finsler space with bounded Cartan tensor.

Suppose that the Landsberg curvature of F' satisfies

Then F is a Landsberg space.

Proof. Take an arbitrary unit vector y € T, M and an arbitrary vector v € T, M. Let
¢(t) be the geodesic with ¢(0) = y and V() be the parallel vector field along ¢ with
V(0) = v. Define C(t) and L(t) as following

C(t) = Ce(V(1), V(1) V(1), L) = Le(V (1), V (1), V().

By definition of L,, we get:

L(t)=C (1)
It follows from (3.2) that:
(3.3) L'(t) = 0.
The equation (3.3) implies:

L(t) = L(0)

Then we have
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Suppose that C, is bounded, i.e., there is a constant () < oo such that
C
IC[|z ;= sup  sup Oy(v,v,v) <Q.

YET: Mo veT: M [gy (v, v)]2

By (3.1), T := g:(V(t), V(t)) = constant is positive constant. Thus
C() < QT < oo,

and C(t) is a bounded function on [0, 00). This implies

L, (v,v,v) = L(0) = 0.
Therefore L = 0 and F is a Landsberg metric. O
Lemma 3.2. Let (M, F) be a Finsler space satisfies (1.1) with E = 0. Then the
Landsberg curvature of F satisfies (3.2).

Proof.
A 4 2 , . , ,
Dzjkl = szkl — m{Ejk(sll + Eklézj + Elj(Vk + Ejkylyl}.
Then
% m % m 2 % i i m, i
B4) D' jpmy™ = B jrapmy™ — m{HJM 1+ Hiad'y + Hijo's + Ejpymy™y' -
On the other hand, the following Ricci identity for E;; holds:
(3.5) Ejeie = Eijikg = Epi By + Eip By
It follows from (3.5) that:
Eikijmy™ = Ejkjmay™ = [Ejeim¥y™ 1 — Ejkpi-

This yield that:

(3.6) Ejk,umym = Hjr1 — Ejur-
By (3.4) and (3.6), we get:

, 2 . , , S
B Bumy™ = ﬁ{ijéll + Hid'; + Hij6" + Hikay' — Ejray'}-

From the assumption, we have:

(3.8) B jjmy™ = 0.
(3.8) with y; implies that F' satisfies (3.2). O
Proof of Theorem 1.1: By the Lemmas 3.1 and 3.2, we get the proof. O
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Corollary 3.1. Let (M, F) be a compact Finsler space satisfying (1.1). Then E =0
if and only if L =0 and H=0.

Proof. By definition, if E = 0 then H = 0 and by Theorem 1.1, every compact
Finsler metric satisfying (1.1) with E = 0 is a Landsberg metric. Conversely, let F
be a Finsler metric satisfying (1.1) with H =0 and L = 0. By (3.7), we have

A 2 , A . o
B my™ = m{ijdll + Hyd'; + Hié'y + Hik1y' — Ejry'},

which implies

9 _

(3.9) B jpapmy™ = o Eimy'

Contacting (3.9) with y; and using ¥;|,,, = 0 and yiBijkl = —2Ljjy yields

2

Ljrijmy™ = mEjkl-

Since L = 0 then E =0. a
4. PROOF OF THEOREM 1.2
In this section, we prove that every R-quadratic metric is a Finsler metric satisfies

(1.1). To prove this, we need the following.

Lemma 4.1. Let (M,F) be a Finsler manifold and F is R-quadratic. Then the
Berwald curvature of F' is constant along any geodesics.
Proof. The curvature form of Berwald connection is:
. 4 4 1. 4
(4.1) Q' =dw'; — wkj AW’y = §leklwk Awl — szklwk Aw™
For the Berwald connection, we have the following structure equation:
(42) dgz'j — gijki — gikaj = —2Lijkwk + QCijkwn+k.
Differentiating (4.2) yields the following Ricci identity:
‘QP__ ‘QP':_ 2L k l_2L k "+l—20-- k n+l
Gpjit; — Ipi j ijk|lW Aw ijk,lW Aw ijl| kW Aw
(43) - ZCijl7kwn+k N w”“ — QCiijplyl.
Differentiating of (4.1) yields:

(4.4) A —wFAQ) +w Ak =0.
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Define B! ki|m and Bl jim DY

(4.5) dBjy,; — Byyqwi" — Bjuwi' = Bjnwi™ + Bjuwr, = Bigym@™ + Bl o™
Similarly, we define Rijkl|m and Rijkl;rn by:

(4.6) dR;kl — R, i — B;‘mlwlgl - ;’kmwlm + R;‘kzwfn = j’kl\mwm + R;’kl,mwner'

From (4.3) — (4.6) we obtain
Rijkl\m + Rijlm\k + Rijmk|l = BijkuRulm + Bijlu Yem T BikluRujmv
(4.7) Bijml\k - Bijkm|l = Rijkl,mv

B =B

i %
Jjklm jkm,l-

By assumption and (4.7) we have:
Bljkl|m = Bljmk|l’
which contacting with ¢y, we conclude that:
Bmy™ = 0.
This means that the Berwald curvature of F' is constant along any geodesics. |
By Lemma 4.1, we have the following result.

Corollary 4.1. Let (M, F) be a Finsler manifold. If F' is R-quadratic then H = 0.

Proof of Theorem 1.2:
A 4 2 , . , ,
Dzjkl = B’ijl — m{Ejk(sll + Eklézj + Elj(Vk + Ejkylyl}.
Then
. ) 2 . . ) .
D' ymy™ = szkl|mym_m{Ejk|myméll+Ekl\mym51j+Elj|mym61k+Ejk,l|mymyl}-
It follows from (4.7) that
Bijkl\mym = Rijml,kym~
Then we have
Ejnmy™ = B 9™
Therefore, we get
« m (67 m 2 m S
D™ = Ry’ — m{Rpjmp,ky 69+ RY,
68
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quadratic, then we have:

This implies that F' satisfies (1.1). O

Hence,

on R-quadratic metrics, for any linearly parallel vector fields U = U(¢), V =

V(t) and W = W (¢) along a geodesic ¢(t), we have

d
£[Dc'(U7 V,W)] = 0.

The geometric meaning of the above identity is that on R-quadratic metrics the

Douglas curvature along a geodesic is constant.

Corollary 4.2. Let (M, F) be a R-quadratic manifold. Then E = 0.

Proof.

Then

, , 2 . , , .
D'y =B — m{Ejka’l + Epid'; + E6° + Ejkay'}

D jpjm¥™ = B jrym¥™ — m{ijfsz + Hyd; + Hijop, + Ejg yjmy™y'}-

It follows from Lemma 4.1 and Theorem 1.2 that

Ejmy™y’ =0,

and contracting with y; yields Ejj, ;,,y™ = 0. By considering (3.6), we conclude that

By =

(1]
2]
(3]
[4]
(5]
[6]
(7]
(8]
(9]

0. This completes the proof. O
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