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Abstract. We study the class of Finsler metrics whose Douglas curvature is constant
along any Finslerian geodesics. This class of Finsler metrics is a subclass of the class
of generalized Douglas-Weyl metrics and contains the class of Douglas metrics as a

special case. We find a condition under which this class of Finsler metrics reduces to
the class of Landsberg metrics. Then we show this class of Landsberg metrics contains

the class of R-quadratic metrics.
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1. Introduction

In Finsler geometry, every Finsler metric F on a manifold M induces a spray

G = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi which determines the geodesics, where Gi = Gi(x, y) are

called the spray coefficients of G. A Finsler metric F is called a Berwald metric if

Gi = 1
2Γ

i
jk(x)y

jyk are quadratic in y ∈ TxM for any x ∈ M (see [17], [18], [11]). Let

Di
jkl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
.

It is easy to verify that D := Di
jkl∂i ⊗ dxj ⊗ dxk ⊗ dxl is a well-defined tensor

on slit tangent bundle TM0. We call D the Douglas tensor. The Douglas tensor

D is a non-Riemannian projective invariant, namely, if two Finsler metrics F and

F̄ are projectively equivalent, Gi = Ḡi + Pyi, where P = P (x, y) is positively

y-homogeneous of degree one, then the Douglas tensor of F is the same as that

of F̄ (see [9]). Finsler metrics with vanishing Douglas tensor are called Douglas

metrics. The notion of Douglas curvature was proposed by Bácsó and Matsumoto

as a generalization of Berwald curvature [3].
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On the other hand, there is another projective invariant in Finsler geometry, namely

Di
jkl|mym = Tjkly

i that is hold for some tensor Tjkl, where Di
jkl|m denotes the

horizontal covariant derivatives of Di
jkl with respect to the Berwald connection

of Finsler metric F . This equation implies that the rate of change of the Douglas

curvature along a geodesic is tangent to the geodesic [7]. It is known that this class

is closed under projective change and all metrics with vanishing Douglas curvature

or vanishing Weyl curvature belong to it. Thus Finsler metrics in this class are called

generalized Douglas-Weyl metrics [4].

In this paper, we study the class of Finsler metrics whose Douglas curvature satisfies

(1.1) Di
jkl|sy

s = 0.

The geometric meaning of (1.1) is that on this new class of Finsler spaces, the Douglas

tensor is constant along any geodesics. It is easy to see that, this class of Finsler

metrics is a subclass of the class of generalized Douglas-Weyl metrics. Here, we show

that this condition is not projectively invariant. To prove this let two Finsler metrics F

and F̄ are projectively equivalent, i.e. Gi = Ḡi+Pyi, where P = P (x, y) is positively

y-homogeneous of degree one. Then we have

Gi
j = Ḡi

j + Pjy
i + Pδij ,(1.2)

Gi
jk = Ḡi

jk + Pjky
i + Pjδ

i
k + Pkδ

i
j .(1.3)

Let Di
jkl|sy

s = 0. Then, we have

(1.4)[
∂Di

jkl

∂xs
−

∂Di
jkl

∂ym
Gm

s +Gi
smDm

jkl −Gm
sjD

i
mkl −Gm

skD
i
jml −Gm

slD
i
jkm

]
ys= 0.

Putting (1.2) and (1.3) in (1.4) imply that

[∂Di
jkl

∂xs
−

∂Di
jkl

∂ym
(Ḡm

s + Pmys + Pδms ) + (Ḡi
sm + Psmyi + Psδ

i
m + Pmδis)D

m
jkl

− (Ḡm
sj + Psjy

m + Psδ
m
j + Pjδ

m
s )Di

mkl

− (Ḡm
sk + Psky

m + Psδ
m
k + Pkδ

m
s )Di

jml

− (Ḡm
sl + Psly

m + Psδ
m
l + Plδ

m
s )Di

jkm

]
ys = 0.(1.5)
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Since the Douglas tensor is invariant under any projective relation, i.e., Di
jkl = D̄i

jkl,

then (1.5) reduces to the following equality:

(1.6) D̄i
jkl|sy

s + PmD̄m
jkly

i = 0.

Thus by (1.6), we conclude that the class of Finsler metrics satisfies (1.1) is not closed

under projective relations.

Other than Douglas curvature, there are several important non-Riemannian quantities:

the Cartan torsion C, the Berwald curvature B, the mean Berwald curvature E and

the Landsberg curvature L, etc (see [12], [14] – [16], [19]). The study shows that

the above mentioned non-Riemannian quantities are closely related to the Douglas

metrics, namely Bácsó-Matsumoto proved that every Douglas metric with vanishing

Landsberg curvature is a Berwald metric [2]. Is there any other interesting non-

Riemannian quantity with such property?

In [12], Shen find a new non-Riemannian quantity for Finsler metrics that is closely

related to the E-curvature and call it Ē-curvature. Recall that Ē is obtained from the

mean Berwald curvature by the covariant horizontal differentiation along geodesics.

In this paper, we prove that every complete Finsler space satisfies (1.1) with bounded

mean Cartan tensor and vanishing Ē-curvature is a Landsberg metric. More precisely,

we prove the following statement.

Theorem 1.1. Let (M,F ) be a complete Finsler space satisfying (1.1) with bounded

Cartan tensor. If Ē-curvature of F is vanishing, then F is a Landsberg metric. In

particular, every compact Finsler space satisfying (1.1) with Ē = 0 is a Landsberg

space.

The converse of Theorem 1.1 is not true. See the following example.

Example 1. Consider the following Finsler metric on the unit ball Bn ⊂ Rn,

F (y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2
+

< x, y >

1− |x|2
, y ∈ TxBn = Rn

where |.| and <,> denote the Euclidean norm and inner product in Rn, respectively.

F is called the Funk metric which is a positively complete Finsler metric on Bn with

bounded Cartan tensor [12]. The Funk metric is a Douglas metric with vanishing

Ē-curvature while is not Landsbergian.
61



A. TAYEBI, E. PEYGHAN

For every weakly Berwald metric, the Ē-curvature is vanishing. Then by Theorem

1.1, we have the following result.

Corollary 1.1. Let (M,F ) be a compact Finsler space satisfying (1.1). Suppose that

F is a weakly Berwald metric. Then F is a Landsberg metric.

For a Randers metric F = α + β, the Cartan tensor is bounded ∥C∥ ≤ 3√
2

(see

[12]). In [6], Matsumoto showed that F = α+ β is a Landsberg metric if and only if

β is parallel. In [5], M. Hashiguchi and I. Ichijyō showed that for a Randers metric

F = α + β, if β is parallel, then F is a Berwald metric. Then by Theorem 1.1, we

obtain the following corollary.

Corollary 1.2. Let (M,F ) be a Finsler space satisfying (1.1). Suppose that F is a

complete Randers metric on M . Then F is a Berwald metric if and only if it is a

weakly Berwald metric.

It is known that on a Douglas manifold (M,F ), the Finsler metric F is a Landsberg

metric if and only if it is a Berwald metric (see [1], [2]). Hence, by Theorem 1.1, we

get the following assertion.

Corollary 1.3. Every compact Douglas metric with vanishing Ē-curvature is a Berwald

metric.

For a vector y ∈ TxM0, the Riemann curvature Ry : TxM → TxM is defined by

Ry(u) := Ri
k(y)u

k ∂
∂xi , where

Ri
k(y) = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0 is called the Riemann curvature [10], [12]. A Finsler

metric F is said to be R-quadratic if Ry is quadratic in y ∈ TxM at each point

x ∈ M . In this paper, we prove the following theorem.

Theorem 1.2. Every R-quadratic Finsler metric satisfies (1.1).

There are many connections in Finsler geometry [13]. In this paper, we set the

Berwald connection on Finsler manifolds. The h- and v- covariant derivatives of a

Finsler tensor field are denoted by “ | "and “, "respectively.
62



ON A SUBCLASS OF THE CLASS OF GENERALIZED ...

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M ,

by TM = ∪x∈MTxM the tangent bundle of M , and by TM0 = TM \ {0} the slit

tangent bundle on M . A Finsler metric on M is a function F : TM → [0,∞) which has

the following properties: (i) F is C∞ on TM0; (ii) F is positively 1-homogeneous on

the fibers of tangent bundle TM , and (iii) for each y ∈ TxM , the following quadratic

form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define

Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called Cartan torsion. It is well known that C = 0 if

and only if F is Riemannian.

For y ∈ TxM0, define Ly : TxM ⊗ TxM ⊗ TxM → R by

Ly(u, v, w) := Lijk(y)u
ivjwk,

where Lijk := Cijk|sy
s. The family L := {Ly}y∈TM0 is called Landsberg curvature.

F is called Landsberg metric if L = 0.

Given a Finsler manifold (M,F ), a global vector field G is induced by F on TM0,

which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂
∂xi −2Gi(x, y) ∂

∂yi ,

where Gi(y) are local functions on TM given by

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called associated spray to (M,F ). The projection of an integral curve of G is

called geodesic in M . In local coordinates, a curve c(t) is a geodesic if and only if its

coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0 (see [14]).

For y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗ TxM → R

by

By(u, v, w) := Bi
j kl(y)u

jvkwl ∂

∂xi
|x, Ey(u, v) := Ejk(y)u

jvk

where

Bi
jkl(y) :=

∂3Gi

∂yj∂yk∂yl
(y), Ejk(y) :=

1

2
Bm

jkm(y),
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u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. B and E are called the Berwald curvature

and mean Berwald curvature respectively. A Finsler metric is called a Berwald metric

and weakly Berwald metric if B = 0 and E = 0, respectively [12].

The quantity Hy = Hijdx
i ⊗ dxj is defined as the covariant derivative of E along

geodesics [8]. More precisely

Hij := Eij|mym

The Riemann curvature Ry = Ri
kdx

k ⊗ ∂
∂xi |x : TxM → TxM is a family of linear

maps on tangent spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K = K(P, y) is

defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u)− gy(y, u)2
,

where gy = gij(x, y)dx
i ⊗ dxj . We say that a Finsler metric F is of scalar curvature

if for any y ∈ TxM , the flag curvature K = K(x, y) is a scalar function on the slit

tangent bundle TM0. If K = constant, then F is said to be of constant flag curvature.

A Finsler metric F is said to be R-quadratic if Ry is quadratic in y ∈ TxM at each

point x ∈ M . Let

Ri
jkl(x, y) :=

1

3

∂

∂yj

{
∂Ri

k

∂yl
− ∂Ri

l

∂yk

}
,

where Ri
jkl is the Riemann curvature of Berwald connection. Then we have Ri

k =

Ri
j kl(x, y)y

jyl. Therefore Ri
k is quadratic in y ∈ TxM if and only if Ri

j kl are functions

of position alone. Indeed a Finsler metric is R-quadratic if and only if the h-curvature

of Berwald connection depends on position only in the sense of Bácsó-Matsumoto [3].

By means of E-curvature, we can define Ēy : TxM ⊗ TxM ⊗ TxM → R by

Ēy(u, v, w) := Ējkl(y)u
ivjwk,

where Ēijk := Eij|k. We call it Ē-curvature. From a Bianchi identity, we have

Bi
jml|k −Bi

jkm|l = Ri
jkl.m

where Ri
jkl is the Riemannian curvature of Berwald connection [12]. This implies that

Ējlk−Ējkl = 2Rm
jkl,m. Then Ēijk is not totally symmetric in all three of its indices. It

is easy to see that, on R-quadratic Finsler metrics, Ēijk = Ēikj holds. By definition,
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if Ē = 0, then E-curvature is covariantly constant along all horizontal directions on

TM0.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need to prove that every complete Finsler metric with

Lijk|mym = 0 and bounded Cartan torsion must be a Landsberg metric. First, we

remark the following.

Remark 1. Let (M,F ) be a Finsler space and c : [a, b] → M be a geodesic. For a

parallel vector field V (t) along c,

(3.1) gċ(V (t), V (t)) = constant.

Now, we consider the Finsler metrics with Landsberg curvatures satisfying Lijk|mym = 0.

Lemma 3.1. Let (M,F ) be a complete Finsler space with bounded Cartan tensor.

Suppose that the Landsberg curvature of F satisfies

(3.2) Lijk|sy
s = 0.

Then F is a Landsberg space.

Proof. Take an arbitrary unit vector y ∈ TxM and an arbitrary vector v ∈ TxM . Let

c(t) be the geodesic with ċ(0) = y and V (t) be the parallel vector field along c with

V (0) = v. Define C(t) and L(t) as following

C(t) = Cċ(V (t), V (t), V (t)), L(t) = Lċ(V (t), V (t), V (t)).

By definition of Ly, we get:

L(t) = C
′
(t).

It follows from (3.2) that:

(3.3) L
′
(t) = 0.

The equation (3.3) implies:

L(t) = L(0).

Then we have

C(t) = t L(0) +C(0).
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Suppose that Cy is bounded, i.e., there is a constant Q < ∞ such that

||C||x := sup
y∈TxM0

sup
v∈TxM

Cy(v, v, v)

[gy(v, v)]
3
2

≤ Q.

By (3.1), T := gċ(V (t), V (t)) = constant is positive constant. Thus

|C(t)| ≤ QT
3
2 < ∞,

and C(t) is a bounded function on [0,∞). This implies

Ly(v, v, v) = L(0) = 0.

Therefore L = 0 and F is a Landsberg metric. �

Lemma 3.2. Let (M,F ) be a Finsler space satisfies (1.1) with Ē = 0. Then the

Landsberg curvature of F satisfies (3.2).

Proof.

Di
jkl = Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}.

Then

(3.4) Di
jkl|mym = Bi

jkl|mym − 2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k + Ejk,l|mymyi}.

On the other hand, the following Ricci identity for Eij holds:

(3.5) Ejk,l|k − Eij|k,l = EpjB
p
ikl + EipB

p
jkl.

It follows from (3.5) that:

Ejk,l|mym = Ejk|m,ly
m = [Ejk|mym],l − Ejk|l.

This yield that:

(3.6) Ejk,l|mym = Hjk,l − Ējkl.

By (3.4) and (3.6), we get:

(3.7) Bi
jkl|mym =

2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k +Hjk,ly

i − Ējkly
i}.

From the assumption, we have:

(3.8) Bi
jkl|mym = 0.

(3.8) with yi implies that F satisfies (3.2). �
Proof of Theorem 1.1: By the Lemmas 3.1 and 3.2, we get the proof. �
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Corollary 3.1. Let (M,F ) be a compact Finsler space satisfying (1.1). Then Ē = 0

if and only if L = 0 and H = 0.

Proof. By definition, if Ē = 0 then H = 0 and by Theorem 1.1, every compact

Finsler metric satisfying (1.1) with Ē = 0 is a Landsberg metric. Conversely, let F

be a Finsler metric satisfying (1.1) with H = 0 and L = 0. By (3.7), we have

Bi
jkl|mym =

2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k +Hjk,ly

i − Ējkly
i},

which implies

(3.9) Bi
jkl|mym =

−2

n+ 1
Ējkly

i.

Contacting (3.9) with yi and using yi|m = 0 and yiB
i
jkl = −2Ljkl yields

Ljkl|mym =
F 2

n+ 1
Ējkl.

Since L = 0 then Ē = 0. �

4. Proof of Theorem 1.2

In this section, we prove that every R-quadratic metric is a Finsler metric satisfies

(1.1). To prove this, we need the following.

Lemma 4.1. Let (M,F ) be a Finsler manifold and F is R-quadratic. Then the

Berwald curvature of F is constant along any geodesics.

Proof. The curvature form of Berwald connection is:

(4.1) Ωi
j = dωi

j − ωk
j ∧ ωi

k =
1

2
Ri

jklω
k ∧ ωl −Bi

jklω
k ∧ ωn+l.

For the Berwald connection, we have the following structure equation:

(4.2) dgij − gjkΩ
k
i − gikΩ

k
j = −2Lijkω

k + 2Cijkω
n+k.

Differentiating (4.2) yields the following Ricci identity:

gpjΩ
p
i − gpiΩ

p
j = − 2Lijk|lω

k ∧ ωl − 2Lijk,lω
k ∧ ωn+l − 2Cijl|kω

k ∧ ωn+l

− 2Cijl,kω
n+k ∧ ωn+l − 2CijpΩ

p
ly

l.(4.3)

Differentiating of (4.1) yields:

(4.4) dΩ j
i − ω k

i ∧ Ω j
k + ω j

k ∧ Ω k
i = 0.
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Define Bi
j kl|m and Bi

j kl,m by:

(4.5) dBi
jkl −Bi

mklω
m
i −Bi

jmlω
m
k −Bi

jkmωm
l +Bi

jklω
i
m = Bi

jkl|mωm +Bi
jkl,mωn+m.

Similarly, we define Ri
jkl|m and Ri

jkl,m by:

(4.6) dRi
jkl −Ri

mklω
m
i −Bi

jmlω
m
k −Ri

jkmωm
l +Ri

jklω
i
m = Ri

jkl|mωm +Ri
jkl,mωn+m.

From (4.3) – (4.6) we obtain

Ri
jkl|m +Ri

jlm|k +Ri
jmk|l = Bi

jkuR
u
lm +Bi

jluR
u
km +Bi

kluR
u
jm,

Bi
jml|k −Bi

jkm|l = Ri
jkl,m,(4.7)

Bi
jkl,m = Bi

jkm,l.

By assumption and (4.7) we have:

Bi
jkl|m = Bi

jmk|l,

which contacting with ym, we conclude that:

Bi
jkl|mym = 0.

This means that the Berwald curvature of F is constant along any geodesics. �
By Lemma 4.1, we have the following result.

Corollary 4.1. Let (M,F ) be a Finsler manifold. If F is R-quadratic then H = 0.

Proof of Theorem 1.2:

Di
jkl = Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}.

Then

Di
jkl|mym = Bi

jkl|mym− 2

n+ 1
{Ejk|mymδil+Ekl|mymδij+Elj|mymδik+Ejk,l|mymyi}.

It follows from (4.7) that

Bi
jkl|mym = Ri

jml,ky
m.

Then we have

Ejk|mym = Rp
jmp,ky

m.

Therefore, we get

Dα
jkl|mym = Rα

jml,ky
m − 2

n+ 1
{Rp

jmp,ky
mδαl +Rp

lmp,jy
mδαk +Rp

kmp,ly
mδαj}.

68



ON A SUBCLASS OF THE CLASS OF GENERALIZED ...

F is R-quadratic, then we have:

Dα
jkl|mym = 0.

This implies that F satisfies (1.1). �
Hence, on R-quadratic metrics, for any linearly parallel vector fields U = U(t), V =

V (t) and W = W (t) along a geodesic c(t), we have
d

dt
[Dċ(U, V,W )] = 0.

The geometric meaning of the above identity is that on R-quadratic metrics the

Douglas curvature along a geodesic is constant.

Corollary 4.2. Let (M,F ) be a R-quadratic manifold. Then Ē = 0.

Proof.

Di
jkl = Bi

jkl −
2

n+ 1
{Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}.

Then

Di
jkl|mym = Bi

jkl|mym − 2

n+ 1
{Hjkδ

i
l +Hklδ

i
j +Hljδ

i
k + Ejk,l|mymyi}.

It follows from Lemma 4.1 and Theorem 1.2 that

Ejk,l|mymyi = 0,

and contracting with yi yields Ejk,l|mym = 0. By considering (3.6), we conclude that

Ēijk = 0. This completes the proof. �
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[4] S. Bácsó and I. Papp, “A note on a generalized Douglas space”, Period. Math. Hung., 48,
181 – 184 (2004).
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