Известия НАН Армении. Математика, том 47, н. 1, 2012, стр. 31-50.

СРАВНЕНИЕ МНОГОЧЛЕНОВ И ПОЧТИ ГИПОЭЛЛИПТИЧНОСТЬ

В. Н. МАРГАРЯН

Российско-Армянский (Славянский) университет E-mail: vachagan.margaryan@yahoo.com

Аннотация. Исследуется почти гипоэллиптичность многочленов путем сравнений.

MSC2010 number: 12E10, 26C05

Ключевые слова: Почти гипоэллиптичность; гипоэллиптичность; сравнение многочленов.

1. ВВЕДЕНИЕ

Пусть \mathbb{N} – множество натуральных чисел, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, \mathbb{N}_0^n – множество n-мерных мультииндексов, т.е. точек $\alpha = (\alpha_1, ..., \alpha_n)$, $\alpha_j \in \mathbb{N}_0$, j = 0, ..., n, \mathbb{R}^n – n-мерное вещественное евклидово пространство точек $\xi = (\xi_1, ..., \xi_n)$, а $\mathbb{C}^n = \mathbb{R}^n \times i\mathbb{R}^n$ ($i^2 = -1$) n-мерное комплексное пространство.

Для $\xi \in \mathbb{R}^n$ ($\xi \in \mathbb{C}^n$) и $\alpha \in \mathbb{N}_0^n$ обозначим

$$|\xi| = (|\xi_1|^2 + \dots + |\xi_n|^2)^{1/2}, \quad \xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_n^{\alpha_n}, \quad |\alpha| = \alpha_1 + \dots + \alpha_n$$

И

$$D^{lpha}=D_1^{lpha_1}...D_n^{lpha_n},$$
 где $D_j=rac{\partial}{\partial \xi_{
m i}}$ $j=1,...,n.$

Пусть

$$P(\xi) = P(\xi_1, ..., \xi_n) = \sum_{\alpha} \gamma_{\alpha} \xi^{\alpha}, \quad \gamma_{\alpha} \in C, \quad \alpha \in \mathbb{N}_0^n$$

многочлен, где сумма распространяется по конечному набору

$$(P) = \{\alpha, \alpha \in \mathbb{N}_0^n, \gamma_\alpha \neq 0\}.$$

Для многочлена P введем следующие обозначения:

 $\Re(P)$ (характеристический многогранник многочлена P) — минимальный выпуклый многогранник содержащий множество $(P) \cup \{0\}$, $\Gamma(P)$ — множество точек лежащих на главных гранях $\Re(P)$ (т.е. на тех гранях $\Re(P)$, для которых существуют индекс $j:1\leq j\leq n$ и внешняя (относительно $\Re(P)$) нормаль $\lambda=(\lambda_1,...,\lambda_n)$ этой грани, для которых $\lambda_j>0$). Далее пусть

$$ord P \equiv \max_{\alpha \in (P)} |\alpha|, \quad ord_j P \equiv \max_{\alpha \in (P)} \alpha_j, \quad j = 1, \dots, n,$$

$$D(P, n) \equiv \{ \zeta \in \mathbb{C}^n : P(\zeta) = 0 \}, \quad d_P(\xi, n) \equiv \inf_{\zeta \in D(P, n)} |\xi - \zeta|, \quad \xi \in \mathbb{R}^n,$$

$$\rho_P(n) \equiv \liminf_{t \to \infty} \inf_{|\zeta| = t} d_P(\xi, n).$$

Характеристический многогранник $\Re(P)$ многочлена P называется полным (правильным, вполне правильным) в \mathbb{R}^n , если $\Re(P)$ имеет вершину на каждой оси координат, отличную от начала координат, (компоненты внешних (относительно $\Re(P)$) нормалей (n-1)-мерных не координатных граней не отрицательны, положительны).

Определение 1.1. Будем говорить, что многочлен P от n-переменных существенно зависит только от переменных $\xi_j \colon j \leq k \ (k \leq n, \ k \in \mathbb{N}_0)$, если $ord_j P \geq 1$ $j \leq k \ u \ ord_j P = 0, \ j = k+1,...,n, \ m.e. когда$

$$P(\xi) = P(\xi_1, \dots, \xi_k, 0, \dots, 0), \quad \xi \in \mathbb{R}^n, \quad u \quad \prod_{j=1}^k D_j P \neq 0.$$

Нетрудно заметить, что если многочлен P от n-переменных существенно зависит только от переменных $\xi_j: 1 \leq j \leq k \pmod k$ то

(1.1)
$$D(P,n) = D(P,k) \times \mathbb{C}^{n-k},$$

$$d_P(\xi,n) = d_P(\xi',n), \quad \xi \in \mathbb{R}^n, \quad \text{где} \quad \xi' = (\xi_1, \dots, \xi_k),$$

$$\rho_P(n) = \min \left\{ \rho_P(k), \quad \inf_{\xi' \in \mathbb{R}^k} d_P(\xi,n) \right\} \quad \text{при} \quad k < n.$$

Через L(n) обозначим множество многочленов P рассматриваемых как многочлен от n-переменных, а через $L(n,k),\ 0 \le k \le n$ — множество многочленов $P \in L(n)$ существенно зависящих только от переменных $\xi_j;\ j \le k$.

Определение 1.2. (см. [1], определение 11.1.2 и теорему 11.1.3). Многочлен $P \in L(n)$ называется гипоэллиптическим в \mathbb{R}^n , если для любого $0 \neq \alpha \in \mathbb{N}_0^n$

$$P^{(\alpha)}(\xi)/P(\xi) \equiv D^{\alpha}P(\xi)/P(\xi) \to 0 \quad npu \quad |\xi| \to \infty, \quad \xi \in \mathbb{R}^n.$$

Из определения 1.2 следует, что если многочлен $P \in L(n)$ гипоэллиптичен в \mathbb{R}^n , to $P \in L(n,n)$.

Определение 1.3. (см. [2]). Многочлен $P \in L(n)$ называется почти гипоэллиптическим в \mathbb{R}^n , если существует постоянная c>0 для которого

$$\sum_{\alpha \in N_0^n} |P^{(\alpha)}(\xi)| \leq c(|P(\xi)|+1) \quad \text{ для любого} \quad \xi \in \mathbb{R}^n.$$

Из определения 1.3 следует, что если многочлен $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n , то оно, рассматриваемый как многочлен из L(n+k), почти гипоэллиптичен в \mathbb{R}^{n+k} , k = 0, 1,

Пример 1.1. Многочлен $\xi_1^2 + \xi_2^2$ гипоэллптичен и почти гипоэллиптичен в \mathbb{R}^2 . Oднако этот многочлен рассматриваемый как многочлен от $n \geq 3$ переменных не является гипоэллиптическим в \mathbb{R}^n , но является почти гипоэллиптическим $e \mathbb{R}^n$.

В дальнейшем нам понадобятся следующие известные (см. [1], лемма 11.1.4, лемма 10.4.1 и теорема 10.4.3) результаты.

Для любых $n, m \in N$ включение $P \in L(n)$ и неравенство $ord P \leq m$ выполняются. А если $P(\xi) \neq 0$, то существуют постоянные $\chi_j = \chi_j(n,m) > 0$, (j = 1,2,3,4), для которых

(1.2)
$$\chi_1 \le d_P(\xi, n) \sum_{\alpha \in \mathbb{N}_0^n} \left| P^{(\alpha)}(\xi) / P(\xi) \right|^{1/|\alpha|} \le \chi_2, \quad \xi \in \mathbb{R}^n,$$

(1.3)
$$\chi_3 \widetilde{P}(\xi, t) \le \sup_{|\eta| \le t} |P(\xi + \eta)| \le \chi_4 \widetilde{P}(\xi, t), \quad \xi \in \mathbb{R}^n, \quad t \ge 0,$$

если для многочлена $Q \in L(n)$ с некоторой постоянной $\chi > 0$ выполняется неравенство

(1.4)
$$\widetilde{Q}(\xi,1) \leq \chi \widetilde{P}(\xi,1), \quad \xi \in \mathbb{R}^n,$$

то существует постоянная $\chi_5 = \chi_5(n,m,\chi) > 0$ для которой

(1.5)
$$\widetilde{Q}(\xi, t) \le \chi_5 \widetilde{P}(\xi, t), \quad \xi \in \mathbb{R}^n, \quad t \ge 1,$$

где для данного многочлена $S \in L(n)$

$$\widetilde{S}(\xi,t) \equiv \left[\sum_{\alpha \in \mathbb{N}_0^n} \left| S^{(\alpha)}(\xi) \right|^2 t^{2|\alpha|} \right]^{1/2}, \quad \xi \in \mathbb{R}^n, \quad t \ge 0.$$

Нетрудно заметить, что если для многочленов $P,Q\in L(n)$ выполняется оценка (1.4), то $ord_iQ=0$ при $ord_iP=0,\ 1\leq j\leq n.$

Из оценки (1.2) и определения $\rho_P(n)$, непосредственно следует, что

- а
1. многочлен $P \in L(n)$ гипоэллиптичен в \mathbb{R}^n тогда и только тогда, когда
 $\rho_P(n) = +\infty.$
- а2. если для многочлена $P \in L(n)$ $\rho_P(n) > 0$, то многочлен P почти гипоэллиптичен в \mathbb{R}^n . При этом, если $P \in L(n,k)$ k < n, то (см. (1.1)) существует постоянная c > 0 для которой

$$|P(\xi)| \ge c \quad \xi \in \mathbb{R}^n,$$

а
3. если для почти гипоэллиптического в \mathbb{R}^n многочлен
а $P\in L(n)$ с некоторыми постоянными C,M>0

(1.6)
$$|P(\xi)| \geq c, \quad \xi \in \mathbb{R}^n \quad \mathbf{c} \quad |\xi| \geq M,$$

$$\text{TO } \rho_P(n) > 0.$$

Заметим, что если для многочлена $P \in L(n) \setminus L(n,n)$ выполняется оценка (1.6), то

$$|P(\xi)| \ge c \quad \forall \xi \in \mathbb{R}^n.$$

Замечание 1.1. Несмотря на то, что из почти гипоэллиптичности в \mathbb{R}^n многочлена $P \in L(n)$ следует его почти гипоэллиптичность в \mathbb{R}^{n+k} , если его рассмотреть как многочлен от (n+k)-переменного k=0,1,..., однако, при $\rho_P(n)>0$ $\rho_P(n+k)$ может обращаться в нуль при k=1,2,... (см. a1).

Пример 1.2. Многочлен $P = \xi_1^2 + \xi_2^2 - 1$ почти гипоэллиптичен в \mathbb{R}^n , $n \ge 2$ и (см. a1) $\rho_P(2) = +\infty$, т.к. многочлен P гипоэллиптичен в \mathbb{R}^2 . Однако, $\rho_P(n) = 0$ при $n \ge 3$.

Определение 1.4. (см. определения 10.3.4 и 10.4.4 из [1] и [3]). Многочлен $P \in L(n)$ сильнее (доминирует, мощнее) многочлена $Q \in L(n)$ и записывают $Q \prec P$ ($Q \prec \prec P; Q < P$), если с некоторой постоянной $\chi > 0$ выполняется оценка (1.4) $\left(\sup_{\xi \in \mathbb{R}^n} \widetilde{Q}(\xi,t)/\widetilde{P}(\xi,t) \to 0 \text{ при } t \to \infty; \text{ с некоторой } nocmoянной c > 0 |Q(\xi)| \le (|P(s)|+1), для любого <math>\xi \in \mathbb{R}^n$).

Из определения 1.4 и оценки (1.3) следует, что если $Q \prec \prec P \quad (Q < P)$, то $Q \prec P$, если $Q \prec P$, то $D_j Q \prec \prec P$, j=1,...,n.

Замечание 1.2. Если $Q < P, Q \prec P, Q \prec P$ $P, Q \in L(n)$ mo $ord_j Q = 0$ npu $ord_j P = 0$ $1 \leq j \leq n$.

В работе [4] В. П. Михайловым и в [5] в других терминах, Л. Р. Волевичем, С. Г. Гиндикином введено понятие регулярного многочлена и доказано, что многочлен $P \in L(n)$ регулярен тогда и только тогда, когда с некоторой постоянной c>0

$$|\xi_1|^{\nu_1}\dots|\xi_n|^{\nu_n} \le c(|P(\xi)|+1), \quad \xi \in \mathbb{R}^n, \quad \text{где} \quad \nu = (\nu_1,\dots,\nu_n) \in \Re(P).$$

Известно (см. [3] – [5]), что

- b1. если многочлен $P \in L(n)$ регулярен, то Q < P для многочлена $Q \in L(n)$ тогда и только тогда, когда $\Re(Q) \subset \Re(P)$.
- b2. если характеристический многогранник $\Re(P)$ регулярного многочлена $P \in L(n)$ полный, то $P(\xi) \to \infty$ при $|\xi| \to \infty$, $\xi \in \mathbb{R}^n$,
- b3. если характеристический многогранник $\Re(P)$ регулярного многочлена $P \in L(n)$ полный, $Q \in L(n)$ то $Q(\xi)/P(\xi) \to 0$ при $Q(\xi) \to \infty$ тогда и только тогда, когда $\Re(Q) \subset \Re(P) \setminus \Gamma(P)$,
- b4. если характеристический многогранник $\Re(P)$ регулярного многочлена $P\in L(n)$ правильный, то $Q\prec P$ для многочлена $Q\in L(n)$ тогда и только тогда, когда $\Re(Q)\subset\Re(P)$

b5. если характеристический многогранник $\Re(P)$ регулярного многочлена $P \in L(n)$ вполне правильный, то $Q \prec \prec P$ для многочлена $Q \in L(n)$ тогда и только тогда, когда $\Re(Q) \subset \Re(P) \setminus \Gamma(P)$.

Заметим, что если P многочлен из пунктов b2 - b4, то $P \in L(n,n)$, если из пункта b5, то P гипоэллиптичен в \mathbb{R}^n .

Из теоремы 11.1.9, определения гипоэллиптичности и следствия 10.4.8 работы [1] следует, что

- (i) если $Q \prec P \prec Q, \quad Q \in L(n)$ и многочлен P гипоэллиптичен в \mathbb{R}^n , то многочлен Q также гипоэллиптичен в \mathbb{R}^n ,
- (ii) если $P,Q\in L(n)$ гипоэллиптичны в \mathbb{R}^n , то $P\cdot Q$ также гипоэллиптичен в \mathbb{R}^n ,
- (ііі) если $P\in L(n)$ гипоэллиптичен в \mathbb{R}^n и $Q\prec\prec P$ $(Q\in L(n)),$ то для любого $a\in C$ многочлен P+aQ также гипоэллиптичен в $\mathbb{R}^n.$

На примерах покажем, что в общем случае, эти утверждения перестают быть справедливыми для почти гипоэллиптических в \mathbb{R}^n многочленов.

Пример 1.3. Пусть n=2, $P(\xi)=\xi_1^2+\xi_1^2\cdot\xi_2^2+\xi_2^4$, $Q(\xi)=\xi_1^2\cdot\xi_2^2+\xi_2^4$. Прямой проверкой можно убедиться, что многочлен P почти гипоэллиптичен в \mathbb{R}^2 , Q не является почти гипоэллиптическим в \mathbb{R}^2 хотя c некоторыми постоянными $c_1,c_2>0$

$$c_1^{-1}(|P(\xi)|+1) \le \widetilde{P}(\xi,1) \le c_1(|P(\xi)|+1), \quad \xi \in \mathbb{R}^2,$$

$$c_2^{-1}(|P(\xi)|+1) \le \widetilde{Q}(\xi,1) \le c_2(|P(\xi)|+1), \quad \xi \in \mathbb{R}^2,$$

 $m.e.\ Q \prec P \prec Q.$

Пример 1.4. Пусть $n=2,\ P(\xi)=\xi_1^2+\xi_2^2,\ Q(\xi)=\xi_1-\xi_2.$ Нетрудно проверить, что оба многочлена почти гипоэлгиптичны в \mathbb{R}^2 . Однако при $\xi_1=\xi_2\to\infty$

$$|D_1(P \cdot Q)(\xi)|/[|(P \cdot Q)(\xi)|+1] \to \infty,$$

m.e. многочлен $P\cdot Q$ не является почти гипоэллиптическим в $\mathbb{R}^2.$

СРАВНЕНИЕ МНОГОЧЛЕНОВ И ПОЧТИ ГИПОЭЛЛИПТИЧНОСТЬ

Пример 1.5. Пусть n=2, $P(\xi)=\xi_1^2+\xi_1^2\cdot\xi_2^2+\xi_2^2$, $Q(\xi)=\xi_1^2+\xi_2^2$. Так как при всех $\xi\in\mathbb{R}^2$, $|(D_1^2+D_2^2)P(\xi)|\geq 2|Q(\xi)|$, то $Q\prec\prec P$. C другой стороны непосредственной проверкой можно убедиться, что многочлен P-Q не является почти гипоэллиптическим в \mathbb{R}^2 хотя многочлен P почти гипоэллиптичен в \mathbb{R}^2 .

Цель настоящей работы — исследовать условия, при которых утверждения (i), (ii) и (iii) останутся в силе, если заменить гипоэллиптичность на почти гипоэллиптичность.

2. Почти гипоэллиптические многочлены с комплексными коэффициентами

Теорема 2.1. Пусть для многочленов $P,Q \in L(n)$ с некоторой постоянной c>0

$$(2.1) c^{-1}\widetilde{Q}(\xi,1) \leq \widetilde{P}(\xi,1) \leq c\,\widetilde{Q}(\xi,1), \quad \xi \in \mathbb{R}^n,$$

т.е. $Q \prec P \prec Q$. Тогда существует число $\rho_0 = \rho_0(c, \chi_2, \chi_5) > 0 \ (\chi_2, \chi_5 - nocmo-$ янные из оценок (1.2) и (1.5)), такие, что если $\rho_P(n) > \rho_0$, то многочлен Q почти гипоэллиптичен в \mathbb{R}^n .

Доказательство. Пусть $\rho_1 \in (0, \rho_P)$ любое фиксированное число. Тогда из оценки (1.2) имеем, что существует постоянная $M(\rho_1) > 0$ для которого

(2.2)
$$d_P(\xi, n) > \rho_1/2, \quad \xi \in \mathbb{R}^n, \quad |\xi| > M(\rho_1),$$

И

(2.3)
$$|P^{(\alpha)}(\xi)| d_P^{(\alpha)}(\xi, n) \le \chi_2^{|\alpha|} |P(\xi)|, \quad \xi \in \mathbb{R}^n, \quad |\xi| \ge M(\rho_1), \quad \alpha \in \mathbb{N}_0^n.$$

Из условия $Q \prec P$ теоремы, в силу оценок (2.2), (1.5) и (2.3) с некоторой постоянной $c_1=c_1(\chi_2,\chi_5)>0$ при $\xi\in\mathbb{R}^n,\,|\xi|\geq M(\rho_1)$ когда $\rho_1\geq 2$ имеем, что

$$(2.4) \widetilde{Q}(\xi, \rho_1/2) \leq \widetilde{Q}(\xi, d_P(\xi, n)) \leq \chi_5 \widetilde{P}(\xi, d_P(\xi, n))$$

$$= \chi_5 \left[\sum_{\alpha \in \mathbb{N}_0^n} \left| P^{(\alpha)}(\xi) \right|^2 d_P^{2|\alpha|}(\xi, n) \right]^{1/2}$$

$$\leq \chi_5 |P(\xi)| \left(\sum_{\alpha \in \mathbb{N}_0^n, |\alpha| \leq ord P} \chi_2^{2|\alpha|} \right)^{1/2} \leq c_1 |P(\xi)|.$$

Так как, в силу оценки (2.1),

$$|P(\xi)| \le c \cdot \tilde{Q}(\xi, 1) \quad \xi \in \mathbb{R}^n,$$

то из оценки (2.4) и отсюда при $\rho_1 \geq 2, \, \xi \in \mathbb{R}^n, \, |\xi| \geq M(\rho_1)$ имеем, что

$$|Q(\xi)|^2 + \left(\frac{\rho_1}{2}\right)^2 \sum_{\alpha \neq 0} \left| Q^{(\alpha)}(\xi) \right|^2 \le \left(\widetilde{Q}(\xi, \rho_1/2) \right)^2 \le c_1^2 |P(\xi)|^2$$

$$\le c_1^2 c^2 \left(\widetilde{Q}(\xi, 1) \right)^2 \le c_1^2 c^2 \left(|Q(\xi)|^2 + \sum_{\alpha \neq 0} \left| Q^{(\alpha)}(\xi) \right|^2 \right).$$

Пусть $\rho_0 \equiv \max\{2,2\sqrt{2}\cdot c_1\cdot c\}$ и $\rho_P>\rho_0.$ Тогда при $\rho_1\in(\rho_0,\rho_P),\ \xi\in\mathbb{R}^n,$ $|\xi|\geq M(\rho_1)$

(2.5)
$$|Q(\xi)|^2 + c_1^2 c^2 \sum_{\alpha \neq 0} |Q^{(\alpha)}(\xi)|^2 \le c_1^2 c^2 |Q(\xi)|^2.$$

Откуда, непосредственно, следует утверждение теоремы 2.1.

Следствие 2.1. При условиях теоремы 2.1 $\rho_Q(n) > 0$.

Доказательство. Непосредственно, следует из оценки (2.5) и в силу оценки (1.4) для многочлена Q.

Теорема 2.2. Пусть $P, Q \in L(n)$. Если Q < P < Q и многочлен P почти гипоэллиптичен в \mathbb{R}^n , то многочлен Q также почти гипоэллиптичен в \mathbb{R}^n .

Доказательство. Из оценки (1.3), в силу условия Q < P и почти гипоэллиптичности многочлена P в \mathbb{R}^n , с некоторыми постоянными $c_j > 0$, (j=1,2,3,4)

имеем, что

$$\begin{split} \widetilde{Q}(\xi,1) &\leq c_1 \sup_{|\eta| \leq 1} |Q(\xi+\eta)| \leq c_2 \sup_{|\eta| \leq 1} (|P(\xi+\eta)| + 1) \leq c_3 \widetilde{P}(\xi,1) \\ &\leq c_4 (|P(\xi)| + 1), \quad \xi \in \mathbb{R}^n. \end{split}$$

Отсюда, в силу условия P < Q, с некоторой постоянной $c_5 > 0$ имеем, что

$$\widetilde{Q}(\xi,1) \le c_5(|Q(\xi)|+1), \quad \xi \in \mathbb{R}^n,$$

т.е. многочлен Q почти гипоэллиптичен в \mathbb{R}^n . Теорема доказана.

Заметим, что в теореме 2.2 не требовалось условие $\rho_P(n) > 0$.

Пример 2.1. Пусть n=2 $P(\xi)=(\xi_1-\xi_2)^2$, $Q_a(\xi)=(\xi_1-\xi_2)^2+(\xi_1-\xi_2)+a$, $a\in R$. Очевидно, оба многочлена почти гипоэллиптичны в \mathbb{R}^2 и $Q\prec P\prec Q$. Однако $\rho_P(2)=0$, $\rho_{Q_a}(2)=0$ при $a\leq \frac{1}{4}$ и $\rho_{Q_a}(2)>0$ при $a>\frac{1}{4}$.

Теорема 2.3. Если для многочленов $P,Q \in L(n)$ $\rho_P(n) > 0$, $\rho_Q(n) > 0$, то $\rho_{P,Q}(n) > 0$ т.е. (см. пункт a2) многочлен $P \cdot Q$ почти гипоэллиптичен в \mathbb{R}^n .

Доказательство. Так как, очевидно, $D(P \cdot Q, n) = D(P, n) \cup D(Q, n)$, то

$$d_{P\cdot Q}(\xi, n) = \min\{d_P(\xi, n), d_Q(\xi, n)\} \quad \xi \in \mathbb{R}^n.$$

Откуда $\rho_{P\cdot Q}(n)=\min\{\rho_P(n),\rho_Q(n)\}>0$. Следовательно, в силу пункта а2, многочлен $P\cdot Q$ почти гипоэллиптичен в \mathbb{R}^n .

Следствие 2.2. Пусть $1 \le k < n, \ 1 < l \le n, \ P \in L(n,k), \ Q \in L(n), \ ord_j Q = 0,$ $j = 1, ..., l - 1, \ ord_j Q \ge 1, \ j = l, ..., n.$ Если многочлен P почти гипоэллиптичен в \mathbb{R}^k , Q почти гипоэллиптичен в \mathbb{R}^{n-l} и c некоторой постоянной c > 0

(2.6)
$$|P(\xi)| \ge c, \quad \xi' = (\xi_1, \dots, \xi_k) \in \mathbb{R}^k,$$
$$|Q(\xi)| \ge c, \quad \xi'' = (\xi_l, \dots, \xi_n) \in \mathbb{R}^{n-l}.$$

то многочлен $P \cdot Q$ почти гипоэллиптичен в \mathbb{R}^n .

Доказательство. Из оценки (2.6) в силу пункта а3 имеем, что $\rho_P(k)>0,$ $\rho_Q(n-l)>0.$ Из оценок (2.6), (1.3) и почти гипоэллиптичности в \mathbb{R}^k многочлена P и в 39

 \mathbb{R}^{n-l} многочлена Q имеем, что с некоторой постоянной $c_1>0$

$$d_P(\xi',k) \ge c_1, \quad \xi' \in \mathbb{R}^k \quad \text{if} \quad d_O(\xi'',n-l) \ge c_1, \quad \xi'' \in \mathbb{R}^{n-l}.$$

Следовательно, в силу (1.1)

$$\rho_P(n) \ge \min\{c_1, \rho_P(k)\} > 0 \quad \text{if} \quad \rho_Q(n) \ge \min\{c_1, \rho_Q(n-l)\} > 0.$$

Отсюда, в силу теоремы 2.3 получаем, что многочлен $P \cdot Q$ почти гипоэллиптичен в \mathbb{R}^n .

На примере покажем, что, при условиях следствия 2.2, выполнение оценки (2.6) существенно для почти гипоэллиптичности многочлена $P \cdot Q$.

Пример 2.2. Пусть $P(\xi) = \xi_1^2 + \xi_2^2 + 1$, $Q(\xi) = \xi_2^2 + \xi_3^2 - 1$, $\xi \in \mathbb{R}^3$. Нетрудно заметить, что многочлены P, Q почти гипоэллиптичны в \mathbb{R}^2 . Однако $P \cdot Q$ не является почти гипоэллиптическим в \mathbb{R}^3 .

Теорема 2.4. Многочлен $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n тогда и только тогда, когда почти гипоэллиптичен в \mathbb{R}^n многочлен $|P|^2 = P \cdot \overline{P}$.

Доказательство. Пусть многочлен $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n . Тогда в силу конечности множества $\{\alpha;\ \alpha\in N_0^n,\ D^\alpha|P|^2\neq 0\},$ оценки (1.3) и формулы Тейлора с некоторыми постоянными $c_j>0,\ j=1,...,4$ имеем, что

$$\sum_{\alpha} D^{\alpha} |P|^{2}(\xi) \leq c_{1} \left(\sum_{\alpha} (D^{\alpha} |P|^{2}(\xi))^{2} \right)^{1/2}$$

$$\leq c_{2} \sup_{|\eta| \leq 1} |P|^{2}(\xi + \eta) = c_{2} \left(\sup_{|\eta| \leq 1} |P(\xi + \eta)| \right)^{2}$$

$$\leq c_{2} \left(\sup_{|\eta| \leq 1} \left| \sum_{\beta} \frac{P^{\beta}(\xi) \eta^{\beta}}{\alpha!} \right| \right)^{2} \leq c_{2} \left(\sum_{\beta} \left| \frac{P^{\beta}(\xi)}{\beta!} \right| \right)^{2}$$

$$\leq c_{3} (|P(\xi)| + 1)^{2} \leq c_{4} (|P(\xi)|^{2} + 1), \quad \xi \in \mathbb{R}^{n},$$

Отсюда следует, что многочлен $|P|^2$ почти гипоэллиптичен в \mathbb{R}^n .

СРАВНЕНИЕ МНОГОЧЛЕНОВ И ПОЧТИ ГИПОЭЛЛИПТИЧНОСТЬ

Обратно, пусть для многочлена $P \in L(n)$ многочлен $|P|^2$ почти гипоэллиптичен в \mathbb{R}^n , т.е. с некоторой постоянной $c_5 > 0$

$$\sum_{\alpha} (D^{\alpha} |P|^{2}(\xi)) \le c_{5}(|P|^{2}(\xi) + 1) \quad \xi \in \mathbb{R}^{n}.$$

Так как, в силу конечности множества $\{\alpha;\ \alpha\in N_0^n,\ P^{(\alpha)}\neq 0\},\ c$ некоторой постоянной $c_6>0$

$$\sum_{\alpha} \left| P^{(\alpha)}(\xi) \right| \le c_6 \left(\sum_{\alpha} |P^{(\alpha)}(\xi)|^2 \right)^{1/2}, \quad \xi \in \mathbb{R}^n,$$

то отсюда, в силу оценки (1.3) и формулы Тейлора, с некоторой постоянной $c_7>0$ имеем, что

$$\sum_{\alpha} |P^{(\alpha)}(\xi)|^{2} \leq c_{7} \left(\sup_{|\eta| \leq 1} |P(\alpha + \eta)| \right)^{2} = c_{7} \sup_{|\eta| \leq 1} |P|^{2} (\alpha + \eta)$$

$$= c_{7} \sup_{|\eta| \leq 1} \left| \sum_{\beta} \frac{D^{\beta} |P|^{2}(\xi) \eta^{\beta}}{\beta!} \right| \leq c_{7} \sum_{\beta} \left| \frac{D^{\beta} |P|^{2}(\xi)}{\beta!} \right|$$

$$\leq c_{7} c_{5} (|P|^{2}(\xi) + 1) \leq c_{7} c_{5} (|P(\xi)| + 1)^{2}, \quad \xi \in \mathbb{R}^{n},$$

Откуда, непосредственно, следует почти гипоэллиптичность многочлена P в \mathbb{R}^n . Теорема доказана.

Заметим, что в отличии от теоремы 2.3 здесь не требовалось условие $\rho_P(n) > 0$. Аналогично теореме 2.4 можно доказать следующую теорему.

Теорема 2.5. Многочлен $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n тогда и только тогда, когда почти гипоэллиптичен в \mathbb{R}^n многочлен P^2 .

Теорема 2.6. Пусть $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n . Если для многочлена $Q \in L(n)$

$$(2.7) |Q(\xi)|/[|P(\xi)|+1] \to \infty \quad npu \quad Q(\xi) \to \infty, \quad \xi \in \mathbb{R}^n,$$

то для любого $0 \neq a \in C$ многочлен P + aQ также почти гипоэллиптичен в $\mathbb{R}^n.$

Доказательство. Для любого t>0 через A(Q,t) обозначим множество $\xi\in\mathbb{R}^n$ для которых $|Q(\xi)|\geq t$. Пусть $0\neq a\in C$ любое фиксированное число. Из соотношения (2.7) следует, что существует число $t_a>0$ для которого

$$|Q(\xi)|/(|P(\xi)|+1) \le \frac{|a|}{2}, \quad \xi \in A(Q, t_a),$$

Для любого $\xi \in A(Q,t_a)$ имеем

$$1 + |P(\xi) + aQ(\xi) \ge 1 + |P(\xi)| - |a||Q(\xi)| \ge \frac{1}{2}(1 + |P(\xi)|).$$

Так как при $\xi \in \mathbb{R}^n \setminus A(Q, t_a)$,

$$|P(\xi) + aQ(\xi)| \ge |P(\xi)| - |a|t_a,$$

то отсюда получаем, что P < P + aQ.

Так как из соотношения (2.7) следует, что с некоторой постоянной c>0

$$|P(\xi) + aQ(\xi)| \le |P(\xi) + |a||Q(\xi)| \le |P(\xi)| + |a|c(|P(\xi)| + 1)$$

$$\le (|a|c+1)(|P(\xi)| + 1), \quad \xi \in \mathbb{R}^n,$$

Следовательно, при выполнении соотношения (2.7) для любого $a \in C$ P < P + aQ < P. Отсюда по теореме 2.2, в силу почти гипоэллиптичности в \mathbb{R}^n многочлена P получаем утверждение теоремы.

3. Почти гипоэллиптические многочлены с вещественными коэффициентами

Определение 3.1. Скажем, что многочлен $P \in L(n)$ устойчив в \mathbb{R}^n , если для любого линейного обратимого отображения $T : \mathbb{R}^n \to \mathbb{R}^n$ многочлен $Q(\eta) \equiv \mathbb{R}^n$ принадлежит L(n,n).

Нетрудно проверить, что гипоэллиптические в \mathbb{R}^n многочлены из L(n) устойчивы в \mathbb{R}^n . Известно (см. [6]), что

с
1. если почти гипоэллиптический в \mathbb{R}^n многочлен $P\in L(n)$ устойчив в $\mathbb{R}^n,$ то

$$P \in I_n \equiv \{Q \in L(n) : Q(\xi) \to \infty \text{ при } |\xi| \to \infty\} \subset L(n,n).$$

- с2. если многочлен $P \in L(n)$ почти гипоэллиптичен в \mathbb{R}^n , то для любого линейного обратимого отображения $T: \mathbb{R}^n \to \mathbb{R}^n$ многочлен $Q(\eta) \equiv P(T\eta)$ также почти гипоэллиптичен в \mathbb{R}^n ,
- с3. если многочлен $P\in L(n)$ почти гипоэллиптичен в \mathbb{R}^n , то многочлены $Q_j(\xi_1,...,\xi_{j-1},\xi_{j+1},...,\xi_n)\equiv P(\xi_1,...,\xi_{j-1},0,\xi_{j+1},...,\xi_n),\ j=1,...,n$ почти гипоэллиптичны в \mathbb{R}^{n-1} ,
- с4. если почти гипоэллиптический в \mathbb{R}^n многочлен $P \in L(n)$ с $ord P \geq 1$ не устойчив в \mathbb{R}^n , то существуют линейное, обратимое отображение $T: \mathbb{R}^n \to \mathbb{R}^n, \ k \in N, \ 1 \leq k < n,$ почти гипоэллиптический в \mathbb{R}^k , устойчивый в \mathbb{R}^k многочлен $q \in L(k)$ такой, что

$$Q(\eta) = q(\eta_1, \dots, \eta_k), \quad \eta \in \mathbb{R}^n,$$

где $Q(\eta) \equiv P(T\eta)$.

Лемма 3.1. Если почти гипоэллиптический в \mathbb{R}^n $(n \ge 2)$ многочлен $P \in L(n)$ с вещественными коэффициентами устойчив в \mathbb{R}^n , то существует число $a \in \mathbb{R}$ такое, что

$$P(\xi) \ge a$$
, для любого $\xi \in \mathbb{R}^n$, либо $P(\xi) \le a$, для любого $\eta \in \mathbb{R}^n$.

Доказательство. непосредственно следует из пункта 3.1 так как, если многочлен $P \in L(n), n \geq 2$ с вещественными коэффициентами принадлежит I_n , то либо $P(\xi) \to +\infty$ когда $|\xi| \to \infty$, $\xi \in \mathbb{R}^n$ либо $P(\xi) \to -\infty$ когда $|\xi| \to \infty$, $\xi \in \mathbb{R}^n$.

Лемма 3.2. Пусть $m, n \in N, m \geq 1, n \geq 2, P(\xi) = \xi_1^m + r(\xi) \in L(n), ord r < m$ многочлен c вещественными коэффициентами, для которого $ord_2r + ... + ord_nr \geq 1$. Если многочлен P почти гипоэллиптичен e \mathbb{R}^n , то для него верно утверждение леммы 3.1.

Доказательство. Предположим обратное, что существуют последовательности $\{\xi^s\}_{s=1}^{\infty},\ \{\eta^s\}_{s=1}^{\infty}\subset\mathbb{R}^n,\ |\xi^s|\to\infty,\ |\eta^s|\to\infty$ при $s\to\infty$ для которых

$$(3.1) \hspace{1cm} P(\xi^s) \to -\infty \quad \text{и} \quad P(\eta^s) \to +\infty \quad \text{при} \quad s \to \infty.$$

Отсюда, в силу вещественности P и условия $n \geq 2$, существует последовательность $\{\tau^s\}_{s=1}^\infty \subset \mathbb{R}^n$ такая, что $|\tau^s| \to \infty$ при $s \to \infty$ и $P(\tau^s) = 0$, s = 1, 2, ... Отсюда, в силу пункта с1 следует, что многочлен P не устойчив в \mathbb{R}^n . Тогда, в силу пункта с4, для некоторого линейного, обратимого отображения $T: \mathbb{R}^n \to \mathbb{R}^n$, $k \in \mathbb{N}, 1 \leq k < n$, устойчивого и почти гипоэллиптического в \mathbb{R}^k (в силу пунктов с2 и с3) многочлена $q \in L(k)$ имеем, что

(3.2)
$$P(T\eta) \equiv Q(\eta) = q(\eta'), \quad \eta \in \mathbb{R}^n, \quad \eta' = (\eta_1, \dots, \eta_k).$$

Покажем, что при условиях леммы $k \geq 2$. Предположим обратное, что k=1. Тогда из (3.2) следует, что для любого j имеем

(3.3)
$$0 \equiv \frac{\partial}{\partial \eta_j} q(\eta_1) = \frac{\partial}{\partial \eta_j} P(T\eta) = \sum_{l=1}^n \left(\frac{\partial}{\partial \xi_l} P\right) (T\eta) t_{lj}, \quad j = 2, \dots, n,$$

где $(t_{lj})_{l,j=1}^n \equiv T$.

Так как, в силу вида P

$$\sum_{l=1}^{n} \left(\frac{\partial}{\partial \xi_{l}} P \right) (T\eta) t_{lj} = \left. \frac{\partial}{\partial \xi_{l}} \left(\xi_{1}^{m} + r(\xi) \right) \right|_{\xi = T\eta} t_{1j} + \sum_{l=2}^{n} \left(\frac{\partial}{\partial \xi_{l}} r \right) (T\eta) t_{lj},$$

то отсюда и условия ordr < m получаем, что $t_{1j} = 0, j = 2, ..., n$. Следовательно из (3.3) получаем, что

$$\sum_{l=2}^{n} \left(\frac{\partial}{\partial \xi_l} r \right) (T\eta) t_{lj} \equiv 0, \quad j = 2, \dots, n.$$

Отсюда, в силу обратимости минора $(t_{lj})_{l,j=2}^n$, получаем

$$(\frac{\partial}{\partial \xi_1}r)(T\eta) \equiv 0 \quad l = 2, ..., n.$$

Это, в силу обратимости T, противоречит условию $ord_2r+...+ord_nr\geq 1$ леммы и доказывает, что в представлении (3.3) $k\geq 2$.

Так как многочлен $q \in L(k)$ устойчив, почти гипоэллиптичен в \mathbb{R}^k и $k \geq 2$, то в силу леммы 3.1 существует число $a \in R$ для которого

(3.4)
$$q(\eta') \ge a, \quad \eta' \in \mathbb{R}^k,$$

либо

(3.5)
$$q(\eta') \le a, \quad \eta' \in \mathbb{R}^k.$$

Тогда из (3.2), в силу обратимости T, имеем, что

$$P(\xi) \ge a \quad \forall \xi \in \mathbb{R}^n,$$

если имеет место (3.4) или

$$P(\xi) \le a \quad \forall \xi \in \mathbb{R}^n,$$

если имеет место (3.5).

Оба случая противоречат соотношению (3.1) и доказывают утверждение леммы.

Лемма 3.3. Пусть $P,Q \in L(n)$, ordQ < ordP такие многочлены c вещественными коэффициентами, что для любого $a \in \mathbb{R}$ многочлен $R_a = P + aQ$ почти гипоэллиптичен в \mathbb{R}^n . Если для некоторого $c \in \mathbb{R}$

$$(3.6) P(\xi) \ge c, \quad \xi \in \mathbb{R}^n,$$

то для любого $a \in \mathbb{R}$ существует постоянная $c_a \in \mathbb{R}$ для которой

$$(3.7) R_a(\xi) \ge c_a, \quad \xi \in \mathbb{R}^n.$$

Доказательство. Представим многочлен P в следующем виде $P=P_0+r$, где P_0 – однородный многочлен порядка ordP и ordr < ordP. Тогда из (3.6) в силу однородности многочлена P_0 имеем, что

$$(3.8) P_0(\xi) \ge 0, \quad \xi \in \mathbb{R}^n.$$

Пусть при условиях леммы, существует число $a_0 \in \mathbb{R}$, для которого не выполняется оценка (3.7). Тогда существует последовательность $\{\xi^s\}_{s=1}^{\infty} \subset \mathbb{R}^n$, $|\xi^s| \to \infty$ при $s \to \infty$ для которой

$$(3.9) R_{a_0}(\eta^s) \to -\infty \quad \text{при} \quad s \to \infty.$$

Так как $ordP_0 = ordP > ordQ$, $ordP_0 > ordr$, то из (3.8) следует, что существует последовательность $\{\eta^s\}_{s=1}^{\infty} \subset \mathbb{R}^n, \ |\eta^s| \to \infty$ при $s \to \infty$ и для которой

$$(3.10) R_{a_0}(\eta^s) \to +\infty \quad \text{при} \quad s \to \infty.$$

Проводя рассуждения аналогичные доказательству леммы 3.2, в силу соотношений (3.9) и (3.10), получаем, что существуют линейное, обратимое отображение

 $T: \mathbb{R}^n \to \mathbb{R}^n, \ k \in N, \ 1 \leq k < n$ и устойчивый, почти гипоэллиптический в \mathbb{R}^k многочлен $q \in L(k)$ для которого

(3.11)
$$R_{a_0}(T\eta) = P_0(T\eta) + r(T\eta) + a_0 Q(T\eta)$$
$$= q(\eta') = q_0(\eta') + q_1(\eta'), \quad \eta \in \mathbb{R}^n,$$
$$\eta' = (\eta_1, \dots, \eta_k), \quad q_0(\eta') \equiv P_0(T\eta), \quad q_1(\eta') \equiv r(T\eta) + a_0 Q(T\eta),$$
$$ord \, q_0 = ord \, P_0 = ord \, P \quad \text{and} \quad ord \, q_1 = ord \, (r + a_0 Q) \le m - 1.$$

Так как, в силу оценки (3.8)

$$q_{a_0}(\eta') \ge 0, \quad \eta' \in \mathbb{R}^k,$$

и $ordq_0>ordq_1$, то существует последовательность $\{(\tau')^s\}_{s=1}^\infty\subset\mathbb{R}^l$ при $s\to\infty$ для которой

$$q((\tau')^s) \to +\infty$$
 при $s \to \infty$.

Отсюда, в силу устойчивости многочлена q в \mathbb{R}^k , имеем (см. 3.1)

$$q(\eta') \to +\infty$$
 при $|\eta'| \to \infty$, $\eta' \in \mathbb{R}^k$.

Следовательно с некоторой постоянной $c_1 \in \mathbb{R}$

$$(3.12) q(\eta') \ge c_1, \quad \eta' \in \mathbb{R}^k.$$

Из (3.11), в силу (3.12) и обратимости T, имеем

$$R_{a_0}(\xi) \geq c_1, \quad \xi \in \mathbb{R}^n.$$

Это противоречит соотношению (3.4) и доказывает справедливость утверждения леммы.

Предложение 3.1. Пусть f, g – функции, определенные на \mathbb{R}^n а $\{a_s\}_{s=1}^{\infty} \subset \mathbb{R}$, $|a_s| \to \infty$ при $s \to \infty$ – некоторая последовательность. Если для любого s с некоторой постоянной c_s

$$(3.13) |a_s g(\xi)| \le |f(\xi)| + c_s, \quad \xi \in \mathbb{R}^n,$$

 $mo |g(\xi)/f(\xi)| \to 0 \ npu \ g(\xi) \to \infty.$

Доказательство. Пусть, наоборот, существует последовательность $\{\xi^k\}_{k=1}^{\infty} \subset \mathbb{R}^n, |g(\xi^k)| \to \infty$ при $k \to \infty$ и число $\varepsilon > 0$, для которых $|g(\xi^k)/f(\xi^k)| \ge \varepsilon$, s = 1, 2, Так как $|a_s| \to \infty$ при $s \to \infty$, то существует $s_0 \in N$ для которого $|a_{s_0}| \ge 2/\varepsilon$. Тогда, из оценки (3.13) имеем, что

$$|a_{s_0}g(\xi^k)| \le |f(\xi^k)| + c_{s_0} \le \frac{|a_{s_0}|}{2} |g(\xi^k)| + c_{s_0}, \quad k = 1, 2, \dots,$$

которое противоречит условию $g(\xi^k) \to \infty$ при $k \to \infty$. Полученное противоречие доказывает справедливость утверждения предположения.

Теорема 3.1. Пусть $P,Q \in L(n)$, ordQ < ordP – многочлены с вещественными коэффициентами. Если для любого $a \in \mathbb{R}$ многочлен P + aQ почти гипоэллиптичен в \mathbb{R}^n , то

$$Q(\xi)/P(\xi) \to 0$$
 npu $Q(\xi) \to \infty$, $\xi \in \mathbb{R}^n$.

Доказательство. Так как при n=1 утверждение теоремы непосредственно следует из условия ordQ < ordP, то пусть $n \geq 2$. Тогда, в силу пунктов с1 и с4, существуют линейное, обратимое отображение $T: \mathbb{R}^n \to \mathbb{R}^n, \ k \in N, \ 1 \leq k \leq n$ и устойчивый, почти гипоэллиптический в \mathbb{R}^k многочлен $q \in L(k)$ для которого

(3.14)
$$P(T\eta) = q(\eta'), \quad \eta \in \mathbb{R}^n,$$

где $\eta' = (\eta_1, ..., \eta_k).$

Через $R_a(\eta)$ обозначим многочлен $P(T\eta) + aQ(T\eta), a \in \mathbb{R}$. В силу пункта 3.2 для любого $a \in \mathbb{R}$ многочлен $R_a(\eta)$ почти гипоэллиптичен в \mathbb{R}^n .

Рассмотрим следующие возможные случаи:

- (A) k = 1,
- (B) $k \ge 2$.

В случае (А) возможны следующие подслучаи:

- $(A_1) \ ord_2 r + \ldots + ord_n r = 0,$
- (A_2) $ord_2 r + \ldots + ord_n r \ge 1$,

где $r(\eta) \equiv Q(T\eta)$.

Так как, в силу обратимости $T, Q(\xi) \to \infty$ тогда и только тогда, когда $r(\eta) \to \infty$, где $\xi = T\eta$, то в подслучае (A_1) утверждение теоремы непосредственно следует из условия ordQ = ordr < ordq = ordP.

Рассмотрим подслучай (A_2) . Пусть $0 \neq a_0 \in \mathbb{R}$. Тогда, в силу леммы 3.2 существует постоянная $c \in \mathbb{R}$, для которой

$$(3.15) R_{a_0}(\eta) \ge c, \quad \eta \in \mathbb{R}^n,$$

либо

$$(3.16) R_{a_0}(\eta) \le c, \quad \eta \in \mathbb{R}^n.$$

Так как утверждение теоремы при выполнении оценки (3.17) доказывается аналогично случаю, когда выполняется оценка (3.16), то пусть имеет место оценка (3.16). Тогда, в силу леммы 3.3 для любого $a \in \mathbb{R}$ существует число $c_a \in \mathbb{R}$ такое, что

$$R_a(\eta) = R_{a_0}(\eta) + (a - a_0)r(\eta) \ge c_a, \quad \eta \in \mathbb{R}^n.$$

Отсюда непосредственно получаем, что

$$|\theta r(\eta)| \le |R_{a_0}(\eta)| + \max\{|c_{\theta+a_0}|, |c_{-\theta+a_0}|\}, \quad \theta \in \mathbb{R}, \quad \eta \in \mathbb{R}^n.$$

Следовательно, в силу предложения 3.1

$$r(\eta)/R_{a_0}(\eta) \to 0$$
 при $r(\eta) \to \infty$, $\eta \in \mathbb{R}^n$,

или, что тоже самое

$$r(\eta)/P(T\eta) \to 0$$
 при $r(\eta) \to \infty$, $\eta \in \mathbb{R}^n$.

Но так как, в силу обратимости $T, Q(\xi) \to \infty$ тогда и только тогда, когда $r(\eta) \to \infty, \ \xi = T\eta$, то отсюда получаем утверждение теоремы и в подслучае (A_2)

Рассмотрим случай (B) $(k \ge 2)$. Так как $q(\eta')$ устойчивый почти гипоэллиптический в \mathbb{R}^k многочлен, то, в силу пункта 3.1 по лемме 3.1 существует число $c \in \mathbb{R}$ такое, что

(3.17)
$$q(\eta') \ge c, \quad \eta' \in \mathbb{R}^k,$$

либо

$$(3.18) q(\eta') \le c, \quad \eta' \in \mathbb{R}^k.$$

Так как утверждение теоремы при выполнении оценки (3.19) доказывается аналогично случаю, когда выполняется оценка (3.18), то пусть выполняется оценка (3.18). Из представления (3.15), в силу обратимости T, из оценки (3.18) имеем, что

$$P(\xi) \ge c, \quad \xi \in \mathbb{R}^n.$$

Отсюда, в силу леммы 3.3 при условиях теоремы имеем, что для любого $a\in\mathbb{R}$ с некоторой постоянной $c_a\in\mathbb{R}$

$$P(\xi) + aQ(\xi) \ge c_a, \quad \xi \in \mathbb{R}^n.$$

Откуда, проводя аналогичные рассуждения как в подслучае (A_2) получаем, что

$$Q(\xi)/P(\xi) \to 0$$
 при $Q(\xi) \to \infty$, $\xi \in \mathbb{R}^n$,

Этим утверждение теоремы в случае (B) и тем самым окончательно доказана.

Следствие 3.1. При условиях теоремы 3.1 для всех $j \colon 1 \le j \le n$ для которых $ord_j Q > 0$ $ord_j P > ord_j Q$.

Доказательство непосредственно следует из условия

$$Q(\xi)/P(\xi) \to 0$$
 при $Q(\xi) \to \infty$, $\xi \in \mathbb{R}^n$.

Теорема 3.1 является обратной к теореме 2.6, когда многочлены $P,Q\in L(n)$ веществозначные.

На примере покажем, что обратное утверждение теоремы 2.6 в общем случае не верна.

Пример 3.1. Пусть $n=2,\ P(\xi)=\xi_1^2,\ Q(\xi)=\xi_1+i\xi_2.$ Не трудно проверить, что при всех $a\in\mathbb{C}$ с некоторой постоянной $c_a>0$

$$|\xi_1| \le c_a (|P(\xi) + aQ(\xi)| + 1), \quad \xi \in \mathbb{R}^n.$$

 $Откуда \ c$ некоторой постоянной $c_a' > 0$

$$\sum_{\alpha} |D^{\alpha}(P(\xi) + aQ(\xi))| \le |P(\xi) + aQ(\xi)| + 2|\xi_{1}| + |a| + 2$$

$$\le c'_{a}(|P(\xi) + aQ(\xi)| + 1), \quad \xi \in \mathbb{R}^{n},$$

m.e. для любого $a \in \mathbb{C}$ многочлен P + aQ почти гипоэллиптичен в \mathbb{R}^2 . Однако $Q(\xi)/P(\xi) \not\to 0$ при $Q(\xi) \to \infty$.

Abstract. The paper investigates the hypoellipticity of polynomials in terms of comparisons.

Список литературы

- [1] Л. Хермандер, Анализ Линейных Дифференциальных Операторов с Частными Производными, Москва, Мир, 2, (1986).
- [2] G. G. Kazaryan, "On almost hypoelliptic polynomials", Doklady Poss. Acad. Nauk, 398, no. 6, 701 – 703 (2004).
- [3] Г. Г. Казарян, В. Н. Маргарян, "Критерии гипоэллиптичности в терминах мнощности и силы операторов", Тр. МИАН СССР, 150, 128 – 142 (1979).
- [4] В. П. Михайлов, "О поведений на бесконечности одного класса многочленов", Тр. МИАН СССР, 91, 59 – 81 (1961).
- [5] L. Volevich, S. Gindikin, The Method of Newtons Polyhedrons in the Theory of PDE, Kluwer Acad. Publisher (1992).
- [6] H. G. Kazaryan, V. N. Margaryan, "On increase at infinity of the almost hypoelliptic polynomials", Eurasian Math. Journal (prepared to print)

Поступила 20 мая 2011