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THE POLYA SUM PROCESS: A COX REPRESENTATION
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Abstract. In [1], Zessin constructed the so-called Pélya sum process via partial
integration. Here we use the technique of integration by parts to the Pélya sum
process to derive representations of the Pélya sum process as an infinitely divisible
point process and a Cox process directed by an infinitely divisible random measure.
This result is related to the question of the infinite divisibilty of a Cox process and
the infinite divisibility of its directing measure. Finally we consider a scaling limit
of the Pélya sum process and show that the limit satisfies an integration by parts

formula, which we use to determine basic properties of this limit.
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1. INTRODUCTION

A huge class of point processes admit an integration by parts formula of their
Campbell measure, that is for a point process P on a polish space X,

Colh) = [ [ e itde) Plaw) = [ [ bl 8.3t ) Pla)

for nonnegative, measurable functions h : X x M(X) — R. In such a case, 7 is
named conditional intensity or Papangelou kernel. They were introduced and studied
systematically by Papangelou [2] in connection with point processes on spaces of lines
and flats, Kallenberg [3}], Nguyen and Zessin {4] in connection with Gibbs processes
and Matthes, Warmuth and Mecke [5].

Recently, Zessin [1} gave a construction method for point processes by specifying a
Papangelou kernel. As a fundamental example he introduced the Pélya sum process,
which is the point process given by the Papangelou kernel

(1.1) (g da) = 2(p + p) (dz),

where z € (0,1) and p is a fixed Radon measure on X. Furthermore he showed
that in that way constructed point process has independent increments and that the
number of points inside some bounded, measurable set follows a negative binomial
distribution.
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A point process with the last two properties is already mentioned in [6]. Here we
want to demonstrate only by using the integration by parts technique that the Pdélya
sum process can be represented as a Cox process, where the underlying random
intensity measure is a random measure with again independent increments, but
with gamma distributed mass inside each bounded, measurable set. This particular
directing random measure is given e.g. in Nehring and Zessin {7} as an example for a
random measure which is given as the solution of a certain functional equation.

That point of view on the Pélya sum process is in spirit very close to the construction
of the negative binomial process in Barndorff-Nielsen and Yeo {8] as a Cox process
with some Gamma process as underlying random measure, but however, the latter
Gamma processes properties differ to a large extend from those of the former directing
measure.

In section 2 we briefly give the setting, review the characterisation of random
measures by a functional equation as in [7]. The main theorem, the Cox representation
of the Pélya sum process is stated and proven in section 3. In section 4 we demonstrate
the more general principle behind that representation. Finally we turn in section 5
to a question of H. Zessin about the behaviour of the Pélya sum process as the
parameter z tends to 1 and show that after a suitable scaling, the limit is an infinitely
divisible random measure and show that the total mass in bounded regions is gamma
distributed.

2. PRELIMINARIES

Here and in the following sections let X be a polish space and denote by B = B(X)
its Borel sets as well as by By = B(X) the ring of bounded Borel sets of X.
Furthermore let M(X) and M (X) be the space of locally finite measures and locally
finite point measures on X, respectively, each of which is known to be vaguely Polish
with the o-algebras generated by the mappings (g(p) = p(B), B € Bg. We call
a probability measure P on M(X) a random measure and if P is concentrated on
M (X) a point process. Finally let F(X) be the set of bounded, non-negative and
continuous functions on X and Fi(X) C F'(X) the subset of those functions in F(X)
with bounded support.

For a detailed construction of random measures solving the functional equation (X )
below see [7]. Let o € M(X) be a locally finite measure and denote by a(f) == [ fdo
for any f € F. Let L be a measure on M(X) \ {0} satisfying

(2.1) / {1 - e*'f(fﬂ L{dv) < 400, feF.

We are interested in solution of the functional equation

>r.a) Cp=CpxP+axP,
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where * i8 a kind of convolution,
(CLxP)(h) = // Mz, p +v)Cr(x, dv)P(dp) for he F(X x M(X)).

Theorem 2.1. (Integration by parts [7}). Let o € M(X) and L € M(M(X)\ {0})
satisfy condition (2.1). Then the functional equation (X1 o) has a unigue solution
which we denote by Dr . The random measure Dy o is infinitely divisible with

canonical pair (o, L).

Our main interest in the following section lies in measures L which are concentrated
on measures of the form r§,, r > 0, x € X. L will even be given as the image of a
product measure p®7 on X xR, under the mapping x : (z,7) — rd,. We only assume
p € M(X) and [r7(r) < oo, in particular 7 does not need to be a finite measure.
This result is caused by the Pdlya sum process itself, but the structure stays the same
if we drop this restriction in section 4.

Given a kernel

n:MX)x X - R,
Zessin [1] gave sufficient conditions on 7 such that a point process P exists which
satisfies the partial integration formula for its Campbell measure Cp,

Colh) = [ [ bt 8. nios o)), he

Such point processes are called Papangelou processes according to Zessin. One fundamental
example he stated is the point process with conditional intensity (1.1).

Definition 2.1. (Pdlya Sum Process). Let p € M(X) be a locally finite measure and
z € (0,1) a real number. Then the Pélya sum process S, , is the Papangelou process
for the Papangelou kernel

n:M(X)x X =R, n(p, dz) = z(p + p)(dx).

Zessin showed by using partial integration that for B € Bo(X), the number of
points inside B obeys a negative binomial distribution,
k
S.(Ce = k) = (1= 2P 2 p(B),
where a™ = a(a + 1)---(a + m — 1), and furthermore for each finite collection of
disjoint, bounded, measurable sets Bi,..., By, (B,,..., (s, is a family independent
random variables.

3. THE COX REPRESENTATION

We begin with the main theorem of this section, which shows in which way the
Lévy measure, the basic component of the random measure, transforms under the
mapping to the corresponding Cox process.
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Theorem 3.1. Let p € M(X), z € (0,1) and L = xv be the image of v under the
mapping x : X x Ry — M(X), (z,7) — rdy, where

1—

zz 1(0700)(7”) d?”

—-r

1
yi=p®T,  T(r)i= e

and define the Cox process

P Z:/PkDLp(dli).
Then P =8, ,.

Note that since

/rT(dr):/ efrljdrzlz < 00,
0 — Z

L is of first order, hence Dy o is well defined. The theorem follows directly from
lemma 3.1 and proposition 3.1 below, in which we show that both processes satisfy the
functional equation (X1, o) for the same Lévy measure L. A second direct consequence
of either theorem 3.1 or lemma 3.1 below is that the superposition of realizations
of two independent Pdélya sum processes is distributed according to a Poélya sum
processes,

Corollary 3.1. Let z € (0,1) and p,0 € M(X). Then 8; p10 = Sz 5% Sz 0.

A third consequence of lemma 3.1 is a characterization of the Palm distribution
S , of the Pélya sum processes. By integrating with respect to the Campbell measure
functions h which depend on its first component only, one recovers the intensity
measure vg_ , of the Pélya sum process S, , to be

z
S

From equation (3.1) below we get immediately that S7 ) is 8. , with a geometrically

1453 P

distributed number of points added at the site z.
Corollary 3.2. Let z € (0,1) and p € M(X). Then
Si, = 8.,x ) (1—2)27 'AY,

j=1

where A, is the point process which realizes exactly one point ot .
The first step to prove theorem 3.1 is a successive integration by parts.

Lemma 3.1. Let p e M(X), 2 € (0,1) and L' = xv/, where
J
vi=pT, 7’ ::Zz—,éj.
i>1 7
Then S, , = Dy o.
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Proof. Assume 0 < h < clp ® 1, then by applying the integration by parts formula
repeatedly and bounded convergence,

(3.1) Co., (1) = [ 32 htass g0 ptda)S. ().

j=1

On the other hand, Dy o is characterized by
Cp,, ,(h) = // h(@, p+v)Cr (de, dv)D r o(dp)
= // h(z, p+ x(z, 7)) (dz,dr)D s o(dp)
— [[Z bt g0 D o).

j=1

Therefore S, , and Dy, o agree. O

Proposition 3.1. Let P be the Cox process defined in theorem 3.1. Then P = Dy, o,

where Dy o is the point process defined in lemma 3.1.

Proof. Let i € F'. We divide the proof into four steps:

I. At first we apply the partial integration to the inner Poisson process, which in
fact is a partial integration formula for the Cox process, and observe that we get the
Campbell measure Cp, , of Dp o,

Colh) = [ s+ 8, )P, )
— [[[ s s2)s(adoP Do),

Let g(z,x) == [ h(z, u+ 0,)P«(dp) to get that on the rhs. we obtained Cp, ,(g).
II. Applying partial integration to Cp, , yields

(3.2) Coyulo) = [[ [ st + viwian o @)D o)
(3.3) — [[[ st x4 r8,rtarsotayD o).

Note that the factor » cancels the —! in the definition of the measure 7.
111. Consider the integrand g with its new arguments. We have to integrate w.r.t. a
Poisson process with intensity measure x +74d,, but that is only a convolution of two

Poisson processes with intensity measures s and rd,, respectively.

oy, + 18,) = / By, pt 6, P, (A1)

= // h(y, pp+ v+ 6y)Prs, (dv)P . (dp).
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IV. We go back to equation (3.3) and observe that the Poisson process P, and Dy o
form the Cox process P. The remaining Poisson process P,s, is mixed with respect
to 7 and can be evaluated explicitly,

// Ry, p+ v+ 8y )Prs, (dv)e Lo, coodr =

1 e —=
=S et (o 08) [ e = 3 bl s,
n>0 n! 0 n>1

For the integrals we have I,, := [r"e 7/?dr = z"*1n!, which can easily be shown by
observing that they satisfy the recursion

I, =znl, 4, Iy = z. O

4. GENERAL CANONICAL PAIRS

In the previous section we focussed on Lévy measures which were concentrated
on the set of measures {rd, : r > 0,z € X}, which caused the Cox process to have
independent increments. However, we may drop this restriction on the Lévy measure
and nevertheless obtain an infinitely divisible point process.

Theorem 4.1. Let P(du) = [ P(dp)Dy, o(dr) for a € M(X) and a first-order
measure L on M(X)\ {0}. Then P satisfies the integration by parts formula

Cp(h) = // h(z, pp+ v)Cs (dx, dv)P(dp).
In particular P = Dj ,, where L is the image under the mapping
M) x MW\ {03) = MO0V 0], (o) = xlawd) + [ PaLian.

Proof. Assume o = 0 for the moment. We adapt the proof of proposition 3.1 and
outline the changes occurring in the different parts of that proof.
II. We do not make use of the particular form of L in equation (3.2), therefore

(4.1) Cpp,(9) = /// gla, & + M)A (dz) LD o(dr).

IT1. Consider now the integration of g wrt. A, then by the partial integration of the
Poisson process,

/g(xﬂﬁ + M A(dz) = // h(@, 1+ 02)P i x (dp)A(da)
— /// h(z, p+ v+ 6,)A(dz)P(dv) P (dp)
— /// h(z, p+ v)v(de)PA(dv)P . (du).
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Putting all together we obtain

Cp(h) = /// hz, p+ v)v(de)Pa(dv) L{dN)P(du).

V. Now we drop the restriction o = 0. Because of the additive structure of the
partial integration we only consider the additional summand to be introduced in
equation (4.1),

[ stamatedia = [[[ bt sataaP Dy (dx)
. // B, 11 v)x (@ ® 61) (dv)P(dp). 0

Remark 4.1. Consider again the measure L as the image of a measure v on X xR
under the mapping (x,7) — 1., in which case P has independent increments. If
v=p&T, we oblain L= &+ x7v, where y = p® T and

. I; <L,
T:Z(j—jl)!(sj Ij:/o rle” T (dr).

i>1

Theorem 4.1 states that if the directing measure of a Cox process is infinitely
divisible, then this holds for the Cox process and furthermore its Lévy measure is
known. This can be reversed directly: If we knew that the Cox process is infinetely
divisible and its Lévy measure can be decomposed in a suitable way, then the directing
measure is infinitely divisible itself.

Proposition 4.1. Let P be an infinitely divisible Cox process with directing measure
P and Lévy measure L. If there exist o € M(X) and a measure L on M(X)\ {0}
such that L = a + [ PAL(d)), then P = Dy, ,.

Proof. Reversing the calculations in the proof of theorem 4.1 with Dy, replaced by
P, we get that P satisfies the integration by parts formula

Cp(h) = / / (@, Kk + N Cp(da, AN P(dk) + / / gz, k)a(dz)P(dr),

where g(z, p) = [ h(z, p+ 6,)P,(dp). If A, B € Bo, then at least for h = 14 ® e <2
we have
gz, p) = La(z)e 1BEe (e en0)

and the set of these functions generates B ® o((p : B € By). O

5. ASYMPTOTIC OF THE POLYA SUM PROCESS

We already identified the intensity measure vg_ , of the Pdlya sum process S, , as
- z
11—z
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Hence as z — 1, the intensity measure of S, , explodes. But what happens if we
1—2

—* and consider then the

weight each (including multiple) point configuration by
limit as z — 17

Definition 5.1. Let z € (0,1) and p € M(X). Then denote by P, the image of S ,
under the mapping
1—2
z

M(X) — M(X), W

.

Firstly we remark that P, inherits the infinite divisibility from S, , and that its
Lévy measure may be obtained directly from that of the Pélya sum process by a
proper scaling.

Lemma 5.1. P, = Dgo, where K = xv" and
1" 27
(5.1) ' =p& T, 72:27(51;zj.

Proof. Let h € F, then by lemma 3.1,

Co.h) = [[ (x - Zu) L (S )

1— , 1— 1—
= // => " #h (x " +j—251> pldz)S. p(dp)
z z z

j=1

_ / / b, jo+ v)(da) K (dv)P. (dp),

where K = xv” is given by (5.1). O

One can show that 7, converges for a certain class of bounded and continuous
function with a growth condition at the origin. We do not need these considerations
if we use the Cox representation.

Theorem 5.1. As z — 1, P, has o weok limit P which is the unique solution of the

functional equation

(ERO) CPZCR*P7

’

where K = x(p® T) and 7(dr) = %677’1(0700)d7~_

Since the unique solution of the functional equation (Y ) is Dk 0, we deduce
that P, — Dy o weakly as z — 1. Proof. Let h € I, then the Cox representation in
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theorem 3.1 and the argument in the previous proof show that

Cp.(h) = /h (x v+ I%Z(u n 5z)> P,\(du)lz;ZA(dx)L(dA) P.(dv)

1—=2

z

= /h (x v+ I%Z(u + 5z)> Pn;m(du)eflgzr drp(dz) P,(dv)

1 —
= [ F 00 ) P s (e depld) )
Thus it suffices to show that the inner integrals converge to the Campbell measure of

1—2
z

arandom measure K [9]. Due to the substitution ¢ = r, the mixing measure of the

inner Poisson process does not depend on z any more. Notice that, as 2 — 1, P_=_ys_
realizes a point at x with Poisson distributed weight with increasing intensity, but
that weight is scaled in the same manner such that we have, since h is bounded,

1—
/h <x7 v+ ?Z(u + 5z)> P = 5, (dp) — hiz,v +15,)
as z — 1. Furthermore note that
// h(z,v +té,)e ‘dtp(de) = /h(xﬂ/ + N Cp(dx, dN),

where K is given in the theorem. Using [10, thm 1], one immediately sees that C'z is

indeed the Campbell measure of a random measure. Therefore Pr, has a weak limit
P as z — 1 and P is a solution of the functional equation

Cp(h) = // h(z, v+ \)Cg (dz, d\)P(dv). O

Finally we address the distribution of the random variable (g under P for B €
By, which can be derived from the integration by parts formula (X7 ;). Whenever
p(B) >0, P({gp = 0) = 0 since 7 is an infinite measure and therefore P({p = 0) =
exp (—K (¢g > 0) ). Furthermore, since K is concentrated on the set of measures
of the form rd,, any family (p,,...{p, of pairwise disjoint Borel sets Bi,... B, is
independent.

Next we apply (X ) to the function b 1= 1p ® l{ccy<iiey for t,2 > 0 to get
information about the distribution of {p:

P(CB € (1 +£]) = // llf(—g))l{t<u(3)<t+e}ﬂ(}.{)P(dﬂ)

S+

/t+5 t+e—s
= p(B
p( ) Jo /tfs s+

1 _r -
:P(B)//Rz Listreqerepe  drPCg(ds)
+

1{s+r€(t,t+5]}eirdrPC§1(ds)

t+e t+e 1
= p(B)/ es/ —e " duP(5 (ds).
0 t w
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The last line shows that (g is a continuous random variable, therefore, if we denote
by fp the density of (g, dividing by € and £ — 0 yields that fp satisfies

fo(0) = [ pB)e L a o)),

which is a Volterra integral equation. By substituting g(t) = e 7' fp(t), we see that ¢

o) =" [ atois

whose solutions are multiples of +*(®)=1 Using the fact that P(Cg = 0) = 0, fg is
the density of the gamma distribution

satisfies

tp(B)—1

I'(p(B))

eft

fB(t) =
is the desired solution.
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