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Abstract. In [1], Zessin constructed the so-called Polya sum process via partial 
integration. Here we use the technique of integration by parts to the Polya sum 

process to derive representations of the Polya sum process as an infinitely divisible 
point process and a Cox process directed by an infinitely divisible random measure. 
This result is related to the question of the infinite divisibilty of a Cox process and 
the infinite divisibility of its directing measure. Finally we consider a scaling limit 
of the Polya sum process and show that the limit satisfies an integration by parts 

formula, which we use to determine basic properties of this limit. 

MSC2010 number: 60G55; 60G57; 60D05 
Keywords: Point process; Campbell measure; integration by parts; infinite divisibility; 
Cox process. 

A huge class of point processes admit an integration by parts formula of their 
Campbell measure, that is for a point process P on a polish space X , 

for nonnegative, measurable functions h : X x M(X) ^ R. In such a case, n is 
named conditional intensity or Papangelou kernel. They were introduced and studied 
systematically by Papangelou [2] in connection with point processes on spaces of lines 
and flats, Kallenberg [3], Nguyen and Zessin [4] in connection with Gibbs processes 
and Matthes, Warmuth and Mecke [5]. 

Recently, Zessin [lj gave a construction method for point processes by specifying a 
Papangelou kernel. As a fundamental example he introduced the Polya sum process, 
which is the point process given by the Papangelou kernel 

(1.1) n(^,dx) = z(p + p) (dx), 

where z e (0,1) and p is a fixed Radon measure on X. Furthermore he showed 
that in that way constructed point process has independent increments and that the 
number of points inside some bounded, measurable set follows a negative binomial 
distribution. 

1. INTRODUCTION 

Cp(h) = h(x, p)p(dx)P(dp) = h(x, p + Sx) Վբ, dx)P(dp) 
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A point process with the last two properties is already mentioned in [6]. Here we 
want to demonstrate only by using the integration by parts technique that the Polya 
sum process can be represented as a Cox process, where the underlying random 
intensity measure is a random measure with again independent increments, but 
with gamma distributed mass inside each bounded, measurable set. This particular 
directing random measure is given e.g. in Nehring and Zessin [7] as an example for a 
random measure which is given as the solution of a certain functional equation. 

That point of view on the Polya sum process is in spirit very close to the construction 
of the negative binomial process in Barndorff-Nielsen and Yeo [8] as a Cox process 
with some Gamma process as underlying random measure, but however, the latter 
Gamma processes properties differ to a large extend from those of the former directing 
measure. 

In section 2 we briefly give the setting, review the characterisation of random 
measures by a functional equation as in [7]. The main theorem, the Cox representation 
of the Polya sum process is stated and proven in section 3. In section 4 we demonstrate 
the more general principle behind that representation. Finally we turn in section 5 
to a question of H. Zessin about the behaviour of the Polya sum process as the 
parameter z tends to 1 and show that after a suitable scaling, the limit is an infinitely 
divisible random measure and show that the total mass in bounded regions is gamma 
distributed. 

2. PRELIMINARIES 

Here and in the following sections let X be a polish space and denote by B = B(X) 
its Borel sets as well as by B 0 = B0(X) the ring of bounded Bore 1 sets of X. 
Furthermore let M(X) and M" (X ) be the space of locally finite measures and locally 

X 
with the ст-algebras generated by the mappings ( B ( բ ) = բ(Տ), B e B0. We call 
a probability measure P on M(X) a random measure and if P is concentrated on 
M" (X ) a point process. Finally let F(X) be the set of bounded, non-negative and 
continuous functions on X and Fb(X) с F ( X ) the subset of those functions in F ( X ) 
with bounded support. 
For a detailed construction of random measures solving the functional equation (՝SL,a) 
below see [7j. Let a e M(X) be a locally finite measure and denote by a ( f ) := f fda 
for any f e F. Let L be a measure on M(X) \ {0} satisfying 

(2.1) J 1 - e - v ( f ) L(dv) < +<x>, f e F. 

We are interested in solution of the functional equation 

(ZL,a) Cp = CL * P + a ® P, 
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where * is a kind of convolution, 

(CL * P)(h) = j j h(x,p + V)CL(X,dv)P(dp) fox h e F(X x M(X ) ) . 

Theorem 2.1. (Integration by parts [7\). Let a e M(X) and L e M(M(X) \ {0}) 
satisfy condition ( 2 . 1 ) . Then the functional equation (՝EL,a) has a unique solution 
which we denote by DLa. The random measure DL,a is infinitely divisible with 

(a, L) 

L 
on measures of the form rSx, r > 0 x e X L will even be given as the image of a 
product measure p®r on X xR+ under the map ping x : (x, r) ^ rSx. We only assume 
p e M(X) and f r r (r) < in particular т does not need to be a finite measure. 
This result is caused by the Polya sum process itself, but the structure stays the same 
if we drop this restriction in section 4. 

Given a kernel 
Ո : M ( X ) x X ^ R, 

Zessin [lj gave sufficient conditions on n such that a point process P exists which 
C p 

Cp(h) = J J h(x, բ + 6x) n(p, dx)P(dp), h e F. 

Such point processes are called Papangelou processes according to Zessin. One fundamental 
example he stated is the point process with conditional intensity (1.1). 

Definition 2.1. (Polya Sum Process). Let p e M(X) be a locally finite measure and 
z e (0,1) a real number. Then the Polya sum process Sz,p is the Papangelou process 
for the Papangelou kernel 

Ո : M" (X) x X ^ R, n(p, dx) := z(p + p) (dx). 

Zessin showed by using partial integration that for B e B 0 ( X ) , the number of 
B 

SZACB = k) = (1 - z ) p ( B ) ֊ p ( B ) [ k , 

where a [m = a(a + 1 ) • • • (a + m — 1), and furthermore for each finite collection of 
disjoint, bounded, measurable sets B\,..., Bn, ( B l , . . . , QBn is a family independent 
random variables. 

3. T H E C O X REPRESENTATION 

We begin with the main theorem of this section, which shows in which way the 
Levy measure, the basic component of the random measure, transforms under the 
mapping to the corresponding Cox process. 
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Theorem 3.1. Let p G M(X ) , z G (0,1) and L = XY be the image of Y under the 
mapping X • X x R+ ^ M(X ) , (x, г) ^ r5x, where 

1 1-z 
Y •= p ® т, т(г) •= -e r  z 1(0,то)(г) dr 

г 
and define the Cox process 

P 

Then P = Sz n. 

J PkDLfi(dK). 

Note that since 
րՕՕ 

' -r гт (dr) = e  r  z dr = < ж, 
. о 1 - z 

L is of first order, hence DL ,0 is well defined. The theorem follows directly from 
lemma 3.1 and proposition 3.1 below, in which we show that both processes satisfy the 
functional equation (EL,0) for the same Levy measure L. A second direct consequence 
of either theorem 3.1 or lemma 3.1 below is that the superposition of realizations 
of two independent Polya sum processes is distributed according to a Polya sum 
processes, 

Corollary 3.1. Let z G (0,1) and p,a G M(X ) . Then Sz, p+a = &z,p * bz,a-

A third consequence of lemma 3.1 is a characterization of the Palm distribution 
SX,p of the Polya sum processes. By integrating with respect to the Campbell measure 
functions h which depend on its first component only, one recovers the intensity 
measure ^ o f the Polya sum process Sz,p to be 

z 
V z- p = 1 - zP' 

From equation (3.1) below we get immediately that SX,p is Sz,p with a geometrically 
x 

Corollary 3.2. Let z G (0,1) and p G M(X) . Then 

SX,P =  Sz,p * E ( 1 - z )z j - 1 AX j , 
j>1 

where Ax is the point process which realizes exactly one point at x. 

The first step to prove theorem 3.1 is a successive integration by parts. 

Lemma 3.1. Let p G M(X) , z G (0,1) and L' = XYwhere 

j>i j 
Y՛ •= p ® т', т' —Sj. 

Then Sz,p = DL>,0-
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Proof. Assume 0 < h < c1B ® 1, then by applying the integration by parts formula 
repeatedly and bounded convergence, 

(3.1) CSz։P(h)= J J J2z jh(x,p + jSx)p(dx)Sz,p(dp). z J } 

j > i 

On the other hand, DL ' ,0 is characterized by 

CoL,0 (h) = J J h(x, p + v)CL (dx, dv)Dլ>,օ (dp) 

= J J h(x, p + x(x, r))j'(dx, dr)DL>,o(dp) 

= h(x,p + jSx)p(dx)B L',o(dp). 
J J j>i 

Therefore Sz,p and D L j 0 agree. • 

Proposition 3.1. Let P be the Cox process defined in theorem, 3.1. Then P = DL>,0, 
where DL>,0 is the point process defined in lemma 3.1. 

heF 
I. At first we apply the partial integration to the inner Poisson process, which in 
fact is a partial integration formula for the Cox process, and observe that we get the 
Campbell measure C D of D L j 0 , 

Cp (h) = J J h(x,p + 5x)n(dx)P(dp, dK) 

h(x, p + 5x)K(dx)J iK(dp)DL,0(dK). 

Let g(x, к) := f h(x, p + Jx)PK (dp) to get that on the rhs. we obtained C&L 0 (g). 
II. Applying partial integration to C D yields 

(3.2)  CDL O  ( g ) = J J J g ( x к + v ) v ( d x ) x Y ( d v ) ^ > L , 0 ( d K ) 

(3.3) = g(y,K + rSy )ГТ (dr)p(dy)B L,0(dK). 

Note that the factor r cancels the r " 1 in the definition of the measure т. 
g 

Poisson process with intensity measure к + rSy, but that is only a convolution of two 
Poisson processes with intensity measures к and rSy, respectively. 

g(y,K + rSy) = J h(y,p + Sy)PK+rSy (dp) 

= J J h(y,p + V + Sy)PrSy (dv)Yк (dp). 
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IV. We go back to equation (3.3) and observe that the Poisson process PK and D^o 
form the Cox process P. The remaining Poisson process Pr^H is mixed with respect 
to т and can be evaluated explicitly, 

h(y, բ + v + Sy)Prsy (dv)e - a r 1o<r<TOdr = 

1 ր ^ 1 рж 
= Ys Ոh(y,p +(n +1)Sy) r ne - r^e - rdr = ^ z n h ( y + nSy). 

n>0  Ո•  J o n>1 

For the integrals we have In := f rne  r / zdr = zn + 1nl, which can easily be shown by 
observing that they satisfy the recursion 

In = znIn-1, Io = z. • 

4. GENERAL CANONICAL PAIRS 

In the previous section we focussed on Levy measures which were concentrated 
on the set of measures {rSx : г > 0,x e X}, which caused the Cox process to have 
independent increments. However, we may drop this restriction on the Levy measure 
and nevertheless obtain an infinitely divisible point process. 

Theorem 4.1. Let P(dp) = J PK(dp)DL,a(dK) for a e M(X) and a first-order 
measure L on M(X) \ {0}. Then P satisfies the integration by parts formula 

Cp(h) = J J h ( x + v)Cլ(dx, dv)P(dp). 

In particular P = Dլ 0, where L is the image under the mapping 

M(X) x M(M(X) \ {0}) —> M(M(X ) \ {0}) , (a, L) — x(a ® S1) + / P\L(dX). 

a=0 
outline the changes occurring in the different parts of that proof. 

L 

(4.1) CDь>о (g) = j j I g(x, к + X)X(dx)L(dX)DL,o(dn). 

III. Consider now the integration of g wrt. X, then by the partial integration of the 
Poisson process, 

j g(x,K + X)X(dx) = J J h(x, p + S x )P K + \ ( d ^ ) X ( d x ) 

h(x, բ + v + Sx)X(dx)Pл(dv)PK(dp) 

h(x, p + v)v(dx)T >л(dv)PK(dp). 
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Putting all together we obtain 

Cp(h) = III h(x,p + v)v(dx)Fx(dv)L(dX)P(dp). 

V. Now we drop the restriction a = 0. Because of the additive structure of the 
partial integration we only consider the additional summand to be introduced in 
equation (4.1), 

J J g(x,K)a(dx)DL,a = J J J h(x,p + Sx)a(dx)I'K(dp)DL,a(dK) 

= J J h(x,p + v)x(a ® 51)(dv)P(dp). • 

Remark 4.1. Consider again the measure L as the image of a measure Y on X x R+ 
under the mapping (x, r) ^ rSx, in which case P has independent increments. If 
Y = p ® т, we obtain L = a + xY> where Y = P ® т and 

I j 
րՕՕ 

y = z j - щ j =Լ  г'<-' т ( d r>. 

Theorem 4.1 states that if the directing measure of a Cox process is infinitely 
divisible, then this holds for the Cox process and furthermore its Levy measure is 
known. This can be reversed directly: If we knew that the Cox process is infinetely 
divisible and its Levy measure can be decomposed in a suitable way, then the directing 
measure is infinitely divisible itself. 

P 
P and Levy measure L. If there exist a G M(X) and a measure L on M(X ) \ {0} 
such that L = a + j P\L(dX), then P = DL,a. 

Proof. Reversing the calculations in the proof of theorem 4.1 with D L , a replaced by 
P P 

Cp (h) = JJ g(x,K + ^)Cl (dx,d\)P(dn)+JJ g(x,K)a(dx)P(dn), 

where g(x, p) = f h(x, p + J x ) P p ( d p ) . If A,B G B0 , then at least for h = 1A ® 
we have 

g(x,p) = lA(x)e - l B  ( x )e- ( 1- e - 1 ) Z B  ( p ), 

and the set of these functions generates B ® &((в • B G B0). • 

5. A S Y M P T O T I C OF THE P O L Y A SUM PROCESS 

We already identified the intensity measure v s p r o c e s s SZjP as 
z 

1 — z1 

8 3 
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Hence as z — 1, the intensity measure of Sz,p explodes. But what happens if we 
weight each (including multiple) point configuration by -1— and consider then the 

z — 1 

Definition 5.1. Let z e (0,1) and p e M(X ) . Then denote by Pz the image of Sz,p 

under the mapping 

1 z 
M(X) — M(X), p — — p . 

z z,p 

Levy measure may be obtained directly from that of the Polya sum process by a 
proper scaling. 

Lemma 5.1. Pz = DK,o, where K = xi"  a nd 

j 
S 1 - z -

о Ez֊> 

— S — 
j>1  J  

Proof. Let h e F, then by lemma 3.1, 

Cp z (h) =11 h(^x,  ——Zp(dx)S z,p(dp) 

1 z 1 z 1 z 

z j>1 

1 z 1 z 
y^z jh yx, —z—p + j—z—SxJ p(dx)sz,p(dp) 

J J h(x, p + v )v (dx)K (dv )P z (dp), 

where K = xi" ŝ given by (5.1). • 
One can show that Tz converges for a certain class of bounded and continuous 

function with a growth condition at the origin. We do not need these considerations 
if we use the Cox representation. 

z — 1 z 

functional equation 

VK,o) Cp = C k * P , 

where K = x(p ® T) and, f(dr) =  1 e - r 1(o,x)dr. 

Since the unique solution of the functional equation (T<k o) is D K ' , o , we deduce 
that Pz — D K ՛ , o weakly as z — 1. Proof. Let h e F, then the Cox representation in 
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theorem 3.1 and the argument in the previous proof show that 

Cpz {h) = j h(x,v {p + Sx)^ ՝Px{dp) 1— - ZX{dx)L{d\) Pz{dv) 

= J h(^x,v + —՜ -— {p + Sx^j PrSx { d p ) e - 1 - - Z d r p { d x ) Pz {dv) 
z 

= j h(^x,v + {p + S x P j i ֊ ֊ tsx {dp)e - t dtp{dx) Pz {dv). 

Thus it suffices to show that the inner integrals converge to the Campbell measure of 
a random measure K [9]. Due to the substitution t = -1—r, the mixing measure of the 
inner Poisson process does not depend on z any more. Notice that, as z ^ 1, P t g x 

x 
h 

J h(^x,v +  — ֊ {p + Sx tsx {dp) ^ h{x, v + tSx) 

as z ^ 1. Furthermore note that 

j j h{x,v + tSx)e - tdtp{dx) = J h{x,v + {dx,d\), 

where K is given in the theorem. Using [10, thm lj, one immediately sees that C^ is 
indeed the Campbell measure of a random measure. Therefore Prz has a weak limit 
P as z ^ 1 and P is a solution of the functional equation 

CP{h) = J J h{x,v +  X)CR{dx,d\)P{dv). • 

Finally we address the distribution of the random variable ( B under P for B e 
B0 , which can be derived from the integration by parts formula (S^ 0). Whenever 
p{B) > 0 P{(B = 0) = 0 since т is an infinite measure and therefore P{(B = 0) = 
exp ^—K{ZB > 0)^. Furthermore, since K is concentrated on the set of measures 
of the form rSx, any family ( B l , . . . ZBn of pairwise disjoint Borel sets B1,...Bn is 
independent. 

Next we apply (S^ 0 ) to the function h := 1B ® 1{t<zB<t+e} for t,e > 0 to get 
information about the distribution of ( B : 

P(ZB e {t,t + e]) = J I  1 — 1 { t < ^ ( B ) < t + e } p ^ ) P { d p ) 

= p { B ) I I - + — 1 { s + r e ( t , t + s ] } e - r d r P Z B 1 { d s )  

J JR+  s +  r  

ր t+e /• t + e ֊ s 1 

= p { B ) - — 1 { s + r e { t , t + E ] } e - r  d r P Z B 1 { d s )  

J 0 J t ֊ s  s +  r  

f t+e /• t+e 1 
„ s i „—u 

t + e  t + e 1 
p{B) e s —e - u duPZ - 1{ds). 

J 0 Jt u 
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The last line shows that ZB is a continuous random variable, therefore, if we denote 
by f B the density of ZB, dividing by e and e ^ 0 yields that f B satisfies 

' Л Ր 1 
fB (t)= p(B)e s - t-fB (s)(ds) 

Jo  t  

which is a Volterra integral equation. By substituting g(t) = e  t f B (t), we see th at g 
satisfies 

g(t) = !\(s)ds, 
t o 

whose solutions are multiples of t p ( B ) - 1 . Using the fact that P(ZB = 0) = 0 f B is 
the density of the gamma distribution 

tP(B)-1 

is the desired solution. 
f B  ( t ) = Щ Щ e - ' 
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