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Abstract. This note is a revised and enlarged version of the german article [16] in a slightly

different framework. We here correct a serious mistake in the first version and generalize the
class of Polya sum processes considered there. (A corrected version of the same results can be
found already in the thesis of Mathias Rafler [12].) Moreover, the class of Polya difference pro-
cesses is constructed here for the first time. In analogy to classical statistical mechanics we pro-
pose a theory of interacting Bosons and Fermions. We consider Papangelou processes. These are
point processes specified by some kernel which represents the conditional intensity of the process.
The main result is a general construction of a large class of such processes which contains Cox,
Gibbs processes of classical statistical mechanics, but also interacting Bose and Fermi processes.
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1. INTRODUCTION AND GENERALITIES

The analysis of the ideal quantum mechanical gases of Maxwell-Boltzmann, Bose-
Einstein and Fermi-Dirac in [1] shows that the corresponding point processes are
qualitatively different; the associated random fields have different distributions.

Nevertheless they are ideal gases in the sense that they are of first order and have
independent increments. Thus it is natural for the construction of the corresponding
interacting particle systems to take as a starting point the corresponding ideal, i.e.
non-interacting processes. For the Gibbsian theory of classical statistical mechanics
this is the Poisson process. We propose here to construct interacting Bosons by means
of the ideal Bose process and interacting Fermions by means of the ideal Fermi process.
This is not done in the spirit of the DLR-approach but in the spirit of the equivalent
theory of integration by parts formulas (cf. {7]) which represent an abstract version
of the classical approach by Kirkwood-Salzburg equations. And this means that the

starting point of the whole theory is the appropriate Boltzmann kernel determined by
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the underlying interaction potential together with the appropriate ideal gas; and these
kernels differ for the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac processes.
In the language of modern point process theory the Boltzmann kernels represent
conditional intensities of the corresponding point processes, which are called Polya
sum in case of the ideal Bose process resp. Polya difference processes for the ideal
Fermi process and which have to be modified in case of interacions by an appropriate
Boltzmann factor.

Thus the main task is first to identify these conditional intensities for the three ideal
gas processes. And this has been done in [1]. We take them here as a starting point to
build up the first steps of a unifying general theory which can explain the appearance
of all three quantum mechanical gases. Conceptually this theory exists since a long
time and is the theory of Papangelou processes (cf. [3, 6, 7, 9, 13, 15]). The historical
point of departure of this theory has been described in {10, 16].

The main result is a construction theorem which was missing until now. As examples
we present the ideal Bose process, i.e. the Polya sum process, and the ideal Fermi
process, i.e. the Polya difference process, and then indicate how one can add an
interaction between the particles. All this is done in analogy to the Gibbsian theory
which can be considered as a theory for quantum particles obeying Maxwell-Boltzmann
statistics.

Before starting our approach we indicate shortly how one can use the construction
theory of the DLR-approach for the construction of Papangelou processes. This
can be done by combining the important work of Rauchenschwandtner [13] with
the fundamental work of Preston [11]: Given a kernel = one can define a socalled
specification V, such that the associated collection (V) of all abstract Gibbs states
specified by V, coincides with the collection of all Papangelou processes with kernel
w. This result can be found in [13]. Therefore, if we start with a kernel = such that
the assumptions of Preston’s general existence theorem §(V,) #£ 0 are satisfied then
we are done. Our approach here is more direct but also weaker in the sense that we
construct for a given 7 a Papangelou process for some locally modified kernel 7 which
in general does not coinside with .

We shall work in the following general setting. X denotes a Polish state space, B(X)
resp. Bop(X) its Borel resp. bounded Borel sets. M(X) is the vaguely Polish space

of locally finite measures on X (i.e. of Radon measures on X). M (X) denotes the

50



THE PAPANGELOU PROCESS. A CONCEPT FOR ...

subspace of all Radon point measures on X, and My (X), B € Bo(X), the collection
of all point measures with support in B. M4(X) is the space of all finite point
measures. We need also the space M (X) of all simple Radon point measures on
X, i.e. of all locally finite subsets of X. All these spaces are given the Borel o-
fields generated by the vague topology in M(X), and are denoted by -, J; and
Fy. For some underlying measurable space S we denote by £, (S) the collection
of all non-negative, measurable real functions defined on S. We consider random
measures in X, i.e. random elements ¢ in or, their laws P on M(X), for which we
write P € PM(X). If such a P is concentrated on the measurable subset M- (X)
then P is called a point process in X. The Campbell measure of a point process P is
defined by Cp(h) = [ [ h(z, p)p(dz)P(dp), h € F. (X x M- (X)), whereas the reduced
Campbell measure of P is given by Cp(h) = [ [ h(z, p—6,)p(dz)P(dp), h € F. (We
shall use freely these and related concepts of the theory of random measures and
point processes and refer to the standard monographies [3] and [6] for details.)

The point of departure is a kernel 7 (o, n; dz) from (M x M-, F& F) to the set of all
Radon measures on X. (Here and in the sequel we shall skip X if possible.) We are
interested in point processes P in X for which the kernel 7 is a conditional intensity.

This means that P is a solution of the following equation

Cp(h) = //h(x7u+ 8 )7 (, dz)P(dp), h € Fo (X x M- (X)).

We then call P a Papangelou process for 7. For such a Papangelou process the kernel
7 is a.s. uniquely determined; moreover, P is a Papangelou process for some kernel 7
iff the measure Cp(B x (.)) is dominated by P for any B € By(X). (All this can be
found in [5, 7, 9].) In the scholion at the end we develop the notion of a Papangelou
process in more detail in a discrete setting to relieve the understanding of the following
abstract developements.

Given a kernel 7 we define for every m € N, p € M and nn € M the following kernels

on X
7 (o, day . dwy,) = (0, day ) (0, 48y s dva) o (0G0, A, dary)
For m = 0 we denote by 7(”(g,7;.) the kernel on X° = {#} which gives mass 1 to

{0}
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2. THE FINITE PAPANGELOU PROCESS

Finite Papangelou processes can be constructed if the kernel 7 satisfies the following
integrability condition: For any given (o,7n) the following series is convergent.
(2.1) E(e,n) =Y %W(m)(@n;X"‘)
m>0
Under this condition the finite Papangelou process with kernel 7 is well defined for a
given ¢ € Iy (My) by
1

1 m
=0, moo ¢ m

We add another condition on the kernel m which plays a fundamental role in the whole

theory. We require that 7 satisfies the following cocycle condition: For all o, n,z,y

w(o,m; dx)m(e,n + 625 dy) = m(o,n; dy)m(o,n + dy; dz)

This condition implies the symmetry of the kernels 7(") (o, 7;.). The next result plays

the role of a main lemma. A proof can be found in [16].

Lemma 2.1. If 7 is an integrable kernel satisfying the cocycle condition then every

P#Q’n) is a solution P € TM} of the following integration by parts formula.
Coth) = [ [ bt d2)mlon s de)Pldu) b€ FL(X X,
Here Cp denotes the Campbell measure of P.

3. THE GENERAL PAPANGELOU PROCESS

Here we give a construction of a large class of infinitely extended Papangelou
processes, thereby correcting a mistake in [16}. The following comment is in order
here: In theorem 1 of {16] the statement is that £ is a Papangelou process for m. This
is false. The correct statement can be found in theorem 3 of the present paper: { is a
Papagelou process for @ = p,m. Thus the factor p, was missing in theorem 1 of [16].
We start with a kernel 7(p,7;.) from M x M to the set M of Radon measures on
X. We now require that there exists a locally finite partition A = (X,,)n>0 of X.
This means that every bounded Borel set has a non-empty intersection with only
finitely many elements of the partition. In addition every X,, has to be a bounded
Polish subspace of X. Recall that every Polish subspace of X is a §s5—set and thereby
Borelian.
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We need the following notations. nx~ is the restriction of 77 to X™ = XU --- U X,;
and 7y its restriction to Xj. We then say that 7 is locally integrable (with respect to
any A) if for all g, n, n the following series converge:
- 1
Znlen) = D —m ™ o nxn-1; X7,
m>0

By our considerations above the following finite process in X, is then well defined for
all o,n. If p € . (M}(X,))

1 1
0 Coy § ’ (m) -
HXn(nv 4)0) - En(Q7 77) = m! / o LP((S:M + + 5zm)7r (97 77X"*17dx1 cee dxm)

Note that the kernel Hé’(n depends only on the o-field 3%, , of events happening in
X"~!. This will be important in the sequel.

The aim now is to construct by means of these kernels and suitable initial and
boundary conditions an infinitely extended Papangelou process which has a modification
of 7 as its kernel. For this purpose we use the theorem of Ionescu Tulcea which enables
us to construct processes by means of an initial condition and conditional distributions
(see [2] e.g.).

Given o € M(X) and (o, ..., Mm—1) € My, X --- x My, consider the Markovian

kernels
Qﬁz(n(% s Im—1; dnm) - Hggm (770 +--+ Nm—1; dnm)

from My, x -+ x My to M (X,,). Given also a random measure Py € PM
then by the theorem of Ionescu Tulcea there exist random elements ¢ in M(X) and
random elements &, in M (X,,),n > 0, with the property that the corresponding

finite-dimensional distributions are given by

L(C7 507 ceey gn) - PO(dQ)Hg(O (07 dUO)Qi)(T](L d771) cee QEL(T](% sy in—1, d?”]n)

We are now in the position to construct the following random element in M (X).
n>0

Note that ¢ is locally finite because the underlying partition has this property. The

distribution Py of £ is the point process in X we are interested in. (We do not indicate

the initial condition Py.) We shall show now that Py is a Papangelou process specified

by a modification of the kernel 7. For later use we remark that P, has the following
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disintegration with respect to (.

Py :/ P2 Py(do).
M

We observe also that this implies for the Campbell measure of P, the disintegration

Cp, :/ Cpe Po(do).
M

We now formulate the conditions for the existence of infinitely extended Papangelou
processes.

We assume that 7 is a kernel from M(X ) x M (X) to M(X) which is locally integrable
with respect to any partition. Moreover, we assume that 7 is dominoeted with o
symmetric density, i.e. on the complement of any {y} each n(o,n + d,;dz) has a

symmetric density fr with respect to 7(p, 7; do) whith does not depend on p, 7. Thus

Lyyye(@)m(o,n + Oy; dz) = e () fr (@, y) (0, m; d)),

with fr being symmetric. We remark that this condition implies the cocycle condition
for m and thus is a bit stronger.

Finally we need the following finite-range property. There exists a positive constant
R > 0 such that

1p(a)m(o,n;dx) = 15(z)7 (0, nopp + nce; dx) for any B,C € By, B C C.

Here 0rB = {z € X|d(z,B) < R}, where d denotes some fixed metric compatible
with the Polish topology in X. Note that for configurations n with compact support
one has for any B € By

1g(z)w(o,n;dx) = 1g(z)7(0,n0gp; dx) for any B,C € Bo.

Theorem 3.1. If w is a kernel from M(X) x M (X) to M(X) which is locally
integrable, dominated and of finite range, then any P2, 0 € M, is a Papangelou process

with kernel

(3.1) 7o, n; dx) = po(z,n) - w(o,n; dx),
where
Z;(on
3.2 (z,7) = J
(3.2) ) U~g 9777+5)

The kernel 7@ is a random Radon measure.
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Proof. We consider the point process £ constructed by means of Py = §, and start

to compute its Campbell measure C¢. For a given h € I

Z/ (z,€) & (da)d

n>0
(Here P denotes the underlying probability which should not be confused with the
law of £.) We follow the arguments of Mecke [8] and assume first that h has the
form h = g ® ¢, where g € F (X) is identically 0 outside some X;,0 < k < n, and

@ € F1 (M) is a random variable which is measurable with respect to Fy... In this

case
/§k w(Exn)d
and thus
Ce(h) = /H%O (0,dno) ... TIS, (xr—1, dnw) mi(g) - PE(nxr—1 + me),
where

wg(?mk):/ﬂ%k+1 (nxrs A1) - TP xetmep1 -1, dgn) e(nxe k14 +00).

Applying here the main lemma 2.1 to the inner integral of C¢(h) and using the cocycle

property one obtains

/chk(nkadm) i (g) - Ye(nxr—1 + k) =

/Hick (nxe—1,dn,) / ey, de) g(x) - oy nxn-1 + 1k + 5).

X
On the other hand, using again that the kernel 7 is dominated with a symmetric
density fr, we obtain for k <!l <n -1z € X,

HlﬂLl(Qﬂ//) o
S o 1oy @l dii1).
Eip(on+ 0, )f (@, mr )%, (nxts dmig)

Here fﬂ' (x7 77l+1) - Hygsuppnl+l f‘ﬂ'(x7 y)nl+1(y)‘
Thus we have

%, (0xt + basdmin) =

(o, mxk +6z) = /H§(k+1(77xk7d77k+1) TS (xe F 1+ 1, dng)
B ‘—‘l+1 97
—_— T T + + + n+(5z )
H = QWJF(S H Fr(@sme1}p(nxr + i1 7 )

1=k
and consequently, using again that the kernel is dominated with a symmetric density,

_ Er1(0,€ .
//th(x7§+5 HE Q7£+5) (0, Exn; dx)dP.
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Changing slightly the parameter [ and observing that =; depends only on that part

of ¢ which lies in the "past’ X'~!, whereas J, lies in the *future’ X}, one has

n

'—‘l(97£) .
//Xk (@,6+ 0 H_I(Q@:Jr(;) 7(¢, Exn;dx)dP,

where in this equation {x~ can be replaced by £ because of the special choice of ¢
and the finite range property of .
The finite range property is needed again and will enable us to replace the finite by

the infinite product. Consider the terms of the infinite product

ﬁ El (97 5)

1—0 :‘l(97 5 + (51)
Here the assumption of finite range implies that only finitely many terms of the
product can be different from 1. This shows the first part of the theorem for the

special class of variables h. Standard arguments then complete the proof of this part.

That 7 is a random Radon measure is obvious. O

Some consequences of the theorem. As a first consequence we obtain for the
distribution of & with a general initial condition Py that Pr = [ . P2 Py(do) is a

solution of the equation

(h) - / / / (2,1 + 8.) 70, n; dz) P2(dn) Po(do),

where h € F (X x M (

Furthermore, the above theorem gives a construction of a very large class of Papangelou
processes. We first discuss the special case where the infinite product appearing in
7 is identically 1: If the normalizing constants Z;(p, &) do not change if £ is locally
modified (i.e. if they are tail-measurable) then the infinite product is 1. A sufficient
condition for this to hold is for instance the tail-measurability of 7.

Consider the following additional condition on the kernel 7: For a given p the kernel

7 has zero range in the strict sense if
112esBm7r(m)(Q7 (.);dy), B € By, m > 1, are measurable with respect to F5.

In this case 7 is dominated with density f = 1, and has range B = 0. Moreover,
the normalizing constants E, depend only on ¢ but not on n. As a consequence,
if m satisfies this condition and is locally integrable then £ is a Papangelou process

for the kernel n. Moreover, by construction, £ has independent increments, and the
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distribution of the field variables £g, B € By, is given by

1
Pe(¢g = k) = — k) (o, B
‘n'(gB ) EB(Q) ]f'ﬂ- (97 )7

where we skipped 7 because there is no dependence on it. This raises the question for

which class of kernels 7 with strictly positive range the above construction leads to
Papangelou processes with kernel «, so that p, = 1.
Consider now a kernel m which satisfies the assumptions of the theorem and does not

depend on p for simplicity. We are interested in the kernel
v, dz) = Vi, n) - 7(n,dz),n € M (X).

We shall make several assumptions on V which will assure the existence of Papangelou
processes Py for the modified kernel . This will be our model for interacting Bosons.
V(z,7n) is to be understood as a Boltzmann factor exp(—FE(z,n)), where E(x,n)
denotes the energy of a particle in z, given the configuration n. (Usually £ is defined
by means of some potential.) The first assumption on V is that v(n,.) is always a

Radon measure. Moreover we need a symmetry condition:
(3.3) Viz,n) - V(y,n+ ) =V(y,n) Vi(z,n+0y) for any x,y, .

The next is a finite-range property:

Denoting B, (z) the ball centered in z with radius r, this means
(3.4) V(z,n) =V(z,np,.(2)), z € X, for some r > 0.

The following condition will guaranty that the Boltzmann kernel ~ is dominated by
some symmetric density: There exists a symmetric function U € F.(X x X) such
that

(35) V(ZEJ”] + (59) - V(,’,Eﬂ”]) : U(£E7 y)7 fOf all Z,Y,1].

In applications U is given by the exponential of the negative of a pairpotential.
Finally we are looking for a sufficient condition on V which implies local integrability
of v. We assume that there exists for any configuration 1 some constant 0 < C(n)

such that for any m > 1 and any z1,...,z,, € X

(36) V(xh 77)V(£E27 n+ 511) e V(:EW“ n+ 511 +ee 51771,71) <
In this case
m m m 1 m m
’7( )(UX"*UXn ) < 0(77) %’N( )(UX"*UXn )7
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and thus local integrability of 7 implies the one of v. We remark that the stability
condition (3.6) is a version of superstability.

Given such a pair (7, V) there exists a Papangelou process for the modified kernel 7.
We now comment the case of simple Papangelou processes. If 7 is simple in the sense

that 7 is a kernel from M (X) to X satisfying the condition
w(n, suppn) = 0 for any n € M,

then a Papangelou process for the kernel = is simple too. (See [7] e.g..) Tt follows
that a Papangelou process for the above kernel 4 then is simple too. Thus we have a
method which allows to construct a large class of simple Papangelou processes.

The above theorem induces several other problems and questions. Under which condi-
tions on 7 the associated Papangelou process is of first order or uniquely determined?
Under which additional condition on 7 the above construction leads to some Papangelou
process for m and not for 77 These questions can been seen also as follows: We
explained already in the introduction that the collection of Papangelou processes for
a given kernel 7 coincides with the collection of abstract Gibbs states (in the sense
of Preston [11]) for the local specification V, induced by 7 in a natural way. And
for this collection some of these questions have been analyzed in [11]. As has been
remarked already here one can find also a general construction method for Gibbs
states specified by V. and thereby for Papangelou processes with kernel 7.

The above construction shows that Papangelou processes are processes in spacetime
which have an infinitely long memory. The underlying symmetry given by the cocycle
condition is much stronger then reversibility in time. Thus there is a new underlying

spacetime structure here which has to be developped further.

4. EXAMPLES

We discuss some applications of the theorem. We don’t repeat here the example of
Gibbs processes for classical interacting systems which can be found in [16]. Instead
we discuss the analog constructions of interacting Bosons and Fermions which seem to
be new. In particular the Polya difference process or ideal Fermi process is considered

here for the first time.

Cox processes. We include this well known class of processes to make explicit the
appearance of the parameter p in the above setting. Cox processes P are of the form
P = [\, P«W(dk), where W is a random measure in X, i.e. a probability on M.
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It is well known (see [15]) that any Cox process is a Papangelou process for a
kernel having the structure w(u, de) = P*(dp) o(dz). Here (P*),e . is a Markovian
kernel from M- to M, i.e. a measurable family of random measures on X indexed
by configurations p. Thus 7(u,.) is given by the intensity measure of P* which we
assume to be always Radonian. A deep result of Wakolbinger {15] is that the following
converse is true: If P is a Papangelou process whose kernel is tail-field measurable
then P can be represented as a Cox process. Thus we see that a tail-field measurable
Papangelou kernel 7 can always be represented as n(u,.) = P*(dp)o(.) with a tail-
field measurable family of random measures P*, v € M.

In this case the above theorem yields a construction of Cox processes which in fact
is well known. To be more precise: Consider the kernel 7(p, n;.), which is tail-field
measurable with respect to 7, together with a random measure Py(do). Then the
normalizing constants =, (o) do not depend on 7, and it is obvious that the conditions
of the theorem are satisfied, so that, for a given g, P¢ is a Papangelou process
with kernel 7(p,0) and therefore by Mecke’s characterization a Poisson process with
intensity measure 7(,0). As a consequence Pr = [ Pr(, 0y Po(do) is a Cox process

with random intensity measure 7(p,0).

Polya sum processes and the ideal Bose process. Here we consider Polya sum
processes, which had been introduced in [16]. For the convenience of the reader we
repeat here their construction and some of their properties. They describe the ideal
Bose process of quantum mechanics (cf. [1}).

Let 0 < z < 1 and o be some fixed Radon measure on X. Consider the kernel
wi(o,m;.) = z(o +n). (For simplicity we skip o in the sequel.) In this case local
integrability holds true with a normalizing constant independent of #:

=1(0) = exp(e(X)K(2) = T

where £(2) =35 ZJ—J Here we used the fact that

1

Z %Q(Xn)[m]zm = exp(o( Xy, )k(2)) = m

m>0
with al™ = a(a +1)---(a + m — 1). It is evident that the other assumptions of
the theorem are also satisfied. In particular 71 has range 0 in the strict sense. The

corresponding Papangelou process P, = P2 was called in [16] the Polya sum process
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specified by (z, o). But from the point of view of quantum mechanics this is the ideal
Bose process specified by (2, o).

Using that Py is a Papangelou process for 7 we show directly that this process has
independent increments, we deduce the distribution of the field variables {p, show
that Py is of first order (i.e. all {5 are integrable) and finally that P, is uniquely
determined by the kernel 7.

Let B € By and & > 1 and consider a non-negative measurable function ¢ on the
space of configurations which depends only on what happens outside B. Thus ¢ is
measurable with respect to Fy.. Then using its character as a Papangelou process

we obtain the recursion

Lp(2)Lep =k} (mp(n)n(dz) Py (dn)

Pr(ligp=iy - 9)

Ip(@)(ep=r—1y(mp(n)(o + n)(dz) P, (dn)

[o(B) + (k = )] Py (Igep=k—1} - #)-

Iterating this process until B is void of particles yields
k
z
Py(lep=ry - ¢) = HQ(B)““]PNH&B:O} -p).

\ \
— —

EdIRS ISl IR Sl W

Choosing now for ¢ the indicator of the event {{p, = k2,...,{n, = kn}, where k; > 1
and By = B, By, ..., B, € By are pairwise disjoint, and iterating the above procedure
we obtain that for ky,..., k, >0

z .
Po(&p, = ki, €p, = kn) = [[ 17eB)™ - Po(gp, =0, €5, =0).
j=1"7
This equation determines P, (5 B, =0,...,¢p, = O) as a product of terms which

depend only on a single k;. Thus P, has independent increments.

The distribution of g, B € By, amounts to

[K]
P{ép =k} = exp(—o(B)r(z)) - 2" - %7 k>0.

If o(B) is an integer this is a negative binomial distribution. From this we obtain that

P is of first order and

z

Pilés) = 7—

The above considerations used only the partial integration formula, for which Py is a

. Q(B)7B € Byg.

solution. Thus the finite-dimensional distributions of the random field ({g)pecs, and

thereby P, is completely determined by 7.
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We finally add an important observation of Mathias Rafler that P, is infinitely
divisible. (See {12}, Prop. 6.7 .) We thus see that the Polya sum process resp. the
ideal Bose process Py for (2, 0) has analog properties as the Poisson process and thus

has the character of an ideal gas.

The interacting Bose process. Here we propose a theory of interacting Bosons
in analogy to the Gibbsian theory of classical interacting particles. The idea is to
replace the Poisson process by the Polya sum process and to build by means of a
given potential the interacting system as in the classical case . To be more precise,
we replace the (conditional) intensity o of the Poisson process by the conditional
intensities of the Polya processes.

Let V(z,n) be a non-negative, measurable function on X x M (X) satisfying the
conditions (3.3) — (3.6); furthermore, let 0 < z < 1 and ¢ € M(X). Denote by
71 (n,.) = z(p+ n) the Polya sum kernel for (z, ¢) from above. We then consider the

kernel
’7(777 Cl:l?) - V(ZE7 77) : 7T+(777 d$)7 ne M(X)

As a consequence of the considerations above we know the existence of a Papangelou
process for the modified kernel 4 = p, -V -7y and call it the Bosonic state for (o, V).
In the case where V (and thereby C) does not depend on 7, say V(z,n) = f(z), we
obtain a Papangelou process for v(n,.) = f - 2(o + n). (Thus the infinite product is
trivial here; f is playing the role of the exponential of a self-potential.) This state
differs from the above Polya sum process in that the constant z may depend on the
position z. We call this process also the ideal Bose process for (f,z,0). It has the
same properties as the former Polya sum process. A quantum mechanical derivation

of this model can be found in {1}.

The Polya difference process and the ideal Fermi process. Here we study the
Papangelou process which describes Fermions and which we call the Polya difference
process or ideal Fermi process. This notion has been foreshadowed already in [1].

For simplicity we assume first that the underlying space X is countably infinite or
even finite. The measure p is the counting measure on X. Thus p = 1. Again0 < z < 1

is a given parameter. We then consider the Polya difference kernel for z defined by

7 (n,.)=z-(e—n)ne€M(X).
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Note that this kernel is a kernel from M (X), the collection of simple point measures,
to X, and thus well-defined as a Radon measure in the second variable. Moreover,
7_(n, suppn) = 0, and thus a Papangelou process for 7 is simple. Again local integra-
bility holds true with a normalizing constant
=) = 3 o(Xa)w " = (11 2)",
m>0

which again does not depend on 7. Note that here appears now the symbol aj,) =
ala—1)---(a—m+1),a eR.

Again we are in the situation of the theorem. We call the corresponding Papangelou
process P = P, the Polya difference process for z. From the point of view of
quantum mechanics it is the ideal Fermi process for z. (For a quantum mechanical
explication we refer again to {1].) By construction this process is simple, i.e. respects
the Pauli exclusion property, and has independent increments. Exactly as above, by
using only its character as a Papangelou process for 7_, the field variables €5, B € By,

have the following distribution:

B

where Z_(B) denotes the normalizing constant. In case that o(B) is an integer this
is a binomial distribution.
From this we obtain that P_ is of first order and

z
142

Again P_ is completely determined by w_. Therefore also P_ has the character of

P_(¢p) = o(B), B € Bo.

an ideal gas. We indicate shortly how one can define difference kernels on abstract
spaces X and how to develop the corresponding interacting theory.

Let X denote a Polish space and fix some Radon measure g on it. Consider a (random)
element ¢ in M (X), i.e. a point process in X. Given some Radon measure ¢ and a

parameter z > 0 consider the following kernel called again Polya difference kernel

T (Cm ) =20+ (C=n) Ivc0o(),

where M (¢) = {n € M- (X)|n < (}. Here n < ¢ means that 7 is a subconfiguration
of ¢ and therefore the difference ¢ — 1 a well defined Radon point measure. The
corresponding Papangelou process, called again Polya difference process, exists and

is uniquely determined by n_ and the distribution of {. For a deterministic { it has
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independent increments and is of first order. This model seems to be interesting not
only for quantum mechanical applications.

We finally remark that in the case of simple Papangelou processes the structure of
the discrete part of the Papangelou kernel m has been analysed already in complete
generality by Kallenberg [4] in Theorem 3.1 . This discrete part 7, has the following

structure:

(4.1) Ta(p,dz) = Vo(z, p) - (1 — p)(dz),z € X, p € M (X), where

Volz,p) = 11(71(521) and 7 is intuitively given by 7(z,.) = P(& = 1[¢43<)(.). (For
more details we refer to the following scholion.)

The atomic part of the kernel for an ideal Fermi gas has the form where V,, does
not depend on p; and in this case the corresponding process (£, ), has independent
increments. Important examples are given by V, = ¢ with g a probability on X which
is not a Dirac measure; or V, = t@g. A very special modification of the second case
which takes into account also interactions with respect to the particles in p then leads

to so called determinantal processes. For details we refer to Shirai/Takahashi {14].

Scholion: The probabilistic structure of Papangelou kernels. For the conve-
nience of the reader we add a rigorous derivation of the probabilistic structure of a
Papangelou kernel in the discrete setting. The general theory can be found in |3, 4, 9].
The situation now is elementary: X is finite and w(u, z),z € X, u € M| is a kernel.
We consider Papangelou processes P for 7, i.e. point processes P in X solving the

equations

Cp(h) = Zzh(x7ﬂ+ )7 (p, ) P(p), b € ke,

and ask for the meaning of this condition in terms of the corresponding random field

(&z)zex - Recall that the Campbell measure Cp is concentrated on C = {(z, p)|p(x) >

1.

The above equation is equivalent to
(4.2) wz)P(p) = 7y — bg, )P — ;) for any z, p, p(x) > 1, de.pp € M.
This is equivalent to saying

(4.3) (b4 0:) (@) P(p+ 80) = 7, ) Pp), € X, pp € M.
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Note that (i, z) > 0 iff (P(u+ ) > 0 <= P(u) > 0). We observe that in the case

of simple point processes P condition (4.2) is equivalent to saying
(1.4) (1= 1)@ P+ 62) = 7, 2)P(), 2 € X, € M

In this case 7 can always be chosen as a kernel 7 : X x M — R, satisfying
w(w, x) = 0 if p(x) > 1. Thus 7y, .) is supported by the complement of the support

of w. (4.2) means that 7 is a local specification of the point process P in the sense that

Py d,)
P(p)
Note that one can choose always a version V for the quotient on the right hand side

w(p, z) = (14 p)(x) - for all « P — a.s.[u].

which is defined everywhere. Thus the kernel 7 has the following structure:
(4.5) m(px) = (14 p)(z) - Vie,p)z e X, pe M-,

where V: X x M — R,

Interpretation of w in terms of the random field £,z € X : Condition (4.2) can be

expressed as follows: For all z and all p
(14 w)(@)P (& = 14 p(@), Eraye = pgaye) = 7w, ) - P& = p(@), Eraye = pigaye)
In the case of simple point processes P this condition reduces to: For all z, p
(1= ) (@)P(Ee = 1,&aye = pigare) = 7(p, ) - P(&e = 0,&(aye = fifare);
or equivalently for all z, pn with P((zye = figzye) >0
(1 — w)(@)P (& = Ué(aye = pigaye) = 7(ps x) - P& = 0l€qaye = pigaye)-

Setting ¢, = P (gz = 1|£{z}c) this means that the process P satisfies the condition

(E) (qgﬁ>O:>1—qgﬁ>O)P—a.s.79£€X7
and thereby P(&gz3¢ = (.)) > 0, and that 7 is given by
(1)
4.6 w(p,z) = (1 —p)(z) ———F—,2€ X, P—a.s.|ul
(4.6) (wx) = (1 = p) () T 0l (1]

Thus in the simple case we have: P is a Papangelou process for 7 iff condition (X3)
is true; and in this case 7 satisfies (4.6). This is a well known representation of
the Papangelou kernel by Kallenberg {4}, theorem 3.1., for simple processes in this
elementary context. Note that for the right hand side of (4.6) one can choose always a
version V' (, ) which depends only on jigye if 2 is given. Thus for simple Papangelou
processes P the kernel 7 has the following structure

(4.7) () = (1 —p)(@) - Vie,p),z € X, pe M,
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where V : X x M — R, is exwvisible, i.e. is measurable with respect to the o—field
Z in X x M generated by all sets of the form {z} x N, where 2 € X and N € [a}e
To summarize we have the following situation: If P is a Papangelou process for a

given kernel 7 : X x M — R, then 7 can be represented as
(4.8) m(px) = (14 p) (@) - Vie,p),z € X, pe M-,

where V: X x M — R,
Let P be a simple Papangelou process for a given kernel 7 : X x M — R, . Then 7

can be represented as
(4.9) m(psx) = (1= p) (@) - Ve, p),z € X, pe M,

where V is exvisible. We observe here that this implies that (., ) is the conditional

intensity of £ in the sense that for any x
w(,z) = P(£z|£{z}c) Pa.s..

We use this terminology also in the non-simple case though this interpretation is no

longer valid.

Thus we now know the general structure of a Papangelou kernel in the discrete case

which remains true in the general case (cf. [4]).

If the random point field (£;). is independent (or has independent increments) then

V can be chosen in such a way that it depends only on z; if the field is even identically

distributed then V is a constant. In these cases one can speak of an ideal gas.
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