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A b s t r a c t . This note is a revised and enlarged version of the german article [16] in a slightly 
different framework. We here correct a serious mistake in the first version and generalize the 

class of Polya sum processes considered there. (A corrected version of the same results can be 
found already in the thesis of Mathias Rafler [12].) Moreover, the class of Polya difference pro-
cesses is constructed here for the first time. In analogy to classical statistical mechanics we pro-
pose a theory of interacting Bosons and Fermions. We consider Papangelou processes. These are 

point processes specified by some kernel which represents the conditional intensity of the process. 
The main result is a general construction of a large class of such processes which contains Cox, 

Gibbs processes of classical statistical mechanics, but also interacting Bose and Fermi processes. 

M S C 2 0 1 0 n u m b e r : 60G55; 60G57; 60D05 
K e y w o r d s : Papangelou process; Polya sum; Polya difference process. 

1. INTRODUCTION AND G E N E R A L I T I E S 

The analysis of the ideal quantum mechanical gases of Maxwell-Boltzmann, Bose-

Einstein and Fermi-Dirac in [lj shows that the corresponding point processes are 

qualitatively different; the associated random fields have different distributions. 

Nevertheless they are ideal gases in the sense that they are of first order and have 

independent increments. Thus it is natural for the construction of the corresponding 

interacting particle systems to take as a starting point the corresponding ideal, i.e. 

non-interacting processes. For the Gibbsian theory of classical statistical mechanics 

this is the Poisson process. We propose here to construct interacting Bosons by means 

of the ideal Bose process and interacting Fermions by means of the ideal Fermi process. 

This is not done in the spirit of the DLR-approach but in the spirit of the equivalent 

theory of integration by parts formulas (cf. [7]) which represent an abstract version 

of the classical approach by Kirkwood-Salzburg equations. And this means that the 

starting point of the whole theory is the appropriate Boltzmann kernel determined by 
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the underlying interaction potential together with the appropriate ideal gas; and these 

kernels differ for the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirae processes. 

In the language of modern point process theory the Boltzmann kernels represent 

conditional intensities of the corresponding point processes, which are called Polya 

sum in case of the ideal Bose process resp. Polya difference processes for the ideal 

Fermi process and which have to be modified in case of interacions by an appropriate 

Boltzmann factor. 

Thus the main task is first to identify these conditional intensities for the three ideal 

gas processes. And this has been done in [1]. We take them here as a starting point to 

build up the first steps of a unifying general theory which can explain the appearance 

of all three quantum mechanical gases. Conceptually this theory exists since a long 

time and is the theory of Papangelou processes (cf. [3, 6, 7, 9, 13, 15]). The historical 

point of departure of this theory has been described in [10, 16]. 

The main result is a construction theorem which was missing until now. As examples 

we present the ideal Bose process, i.e. the Polya sum process, and the ideal Fermi 

process, i.e. the Polya difference process, and then indicate how one can add an 

interaction between the particles. All this is done in analogy to the Gibbsian theory 

which can be considered as a theory for quantum particles obeying Maxwell-Boltzmann 

statistics. 

Before starting our approach we indicate shortly how one can use the construction 

theory of the DLR-approach for the construction of Papangelou processes. This 

can be done by combining the important work of Rauchenschwandtner [13] with 

the fundamental work of Preston [11]: Given a kernel n one can define a socalled 

specification Vn such that the associated сollection S(Vn) of all abstract Gibbs states 

specified by Vn coincides with the collection of all Papangelou processes with kernel 

n. This result can be found in [13]. Therefore, if we start with a kernel n such that 

the assumptions of Preston's general existence theorem S(Vn) = 0 are satisfied then 

we are done. Our approach here is more direct but also weaker in the sense that we 

construct for a given n a Papangelou process for some locally modified kernel П which 

in general does not coinside with n. 

We shall work in the following general setting. X denotes a Polish state space, B(X) 

resp. B 0 ( X ) its Borel resp. bounded Borel sets. M ( X ) is the vaguely Polish space 

of locally finite measures on X (i.e. of Radon measures on X ) . M " ( X ) denotes the 
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subspaee of all Radon point measures on X , and M b ( X ) , B e B0(X), the collection 

of all point measures with support in B. Mf(X) is the space of all finite point 

measures. We need also the space M (X) of all simple Radon point measures on 

X, i.e. of all locally finite subsets of X. All these spaces are given the Borel a-

fields generated by the vague topology in M ( X ) , and are denoted by F՛՛, Ff and 

F-ջ. For some underlying measurable space S we denote by F+(S) the collection 

of all non-negative, measurable real functions defined on S. We consider random 

measures in X , i.e. random elements £ in or, their laws P on M ( X ) , for which we 

write P e PM(X). If such a P is concentrated on the measurable subset M' (X) 

P X P 

defined by C P ( h ) = J J h(x, fi)^(dx)P(մբ), h e F+(X xM"(X)), whereas the reduced 

Campbell measure of P is given by C'P(h) = J J h(x— Sx)^(dx)P(մբ), h e F+. (We 

shall use freely these and related concepts of the theory of random measures and 

point processes and refer to the standard monographies [3] and [6] for details.) 

The point of departure is a kernel n(g, դ, dx) from (M x M՛՛, F ® F՛՛) to the set of all 

X X 

interested in point processes P in X for which the kernel n is a conditional intensity. 

P 

C P ( h ) = J j h(x, բ + Sx)n(v,dx)P(dv),h e F+(X x M " ( X ) ) . 

We then call P a Papangelou process for n. For such a Papangelou process the kernel 

n is a.s. uniquely determined; moreover, P is a Papangelou process for some kernel n 

iff the measure C P ( B x (.)) is dominated by P for any B e B0(X). (All this can be 

found in [5, 7, 9j.) In the scholion at the end we develop the notion of a Papangelou 

process in more detail in a discrete setting to relieve the understanding of the following 

abstract developements. 

Given a kernel n we define for every m e N,g e M and n e M՛ ՛ the following kernels 

on X m : 

n ( m )(p, n; dx1 .. . dxm) = n(g, n; dxi)n(g, ; dx2) .. .п(д, +• • •+£ xm֊ i  ;  d xm ) 

For m = 0 we denote by п (°\д,п;.) the kernel on X0 = {0 } which gives mass 1 to 
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2. T H E FINITE PAPANGELOU PROCESS 

Finite Papangelou processes can be constructed if the kernel n satisfies the following 

integrability condition: For any given (g,n) the following series is convergent. 

(2.1) z(g,n) = E m n ( m ) ( g , n ; X m ) . 
Հ—' m! 
m>0 

Under this condition the finite Papangelou process with kernel n is well defined for a 

given ( e F+(M՛՛) by 

(2.2) բ(տ , ո )(() = - ^ ֊ ) E —f f(SXl + ••• + SXm )n ( m )(g,n; dx1 ...dxm). 
m>0  m !  J X m  

We add another condition on the kernel n which plays a fundamental role in the whole 

theory. We require that n satisfies the following cocycle condition: For all g, n, x, y 

n(g,n; dx)n(g,n + 5x; dy) = n(g,n; dy)n(g,n + 5y; dx) 

This condition implies the symmetry of the kernels n ( m )(g, n; •)• The next result plays 

the role of a main lemma. A proof can be found in [16]. 

L e m m a 2.1. If n is an integrable kernel satisfying the cocycle condition then every 

РП 6' 1 1^ is a solution P e PMf of the following integration by parts formula. 

Cp (h) = / / h(x, բ + Sx)n(g,n + թ; dx)P (dp),h e F+(X x Mf). 
JMy J X 

Here C P denotes the Campbell measure of P. 

3. T H E GENERAL PAPANGELOU PROCESS 

Here we give a construction of a large class of infinitely extended Papangelou 

processes, thereby correcting a mistake in [16]. The following comment is in order 

here: In theorem 1 of [16] the statement is that £ is a Papangelou process for n. This 

is false. The correct statement can be found in theorem 3 of the present paper: £ is a 

Papagelou process for П = pen. Thus the factor pe was missing in theorem 1 of [16]. 

We start with a kernel n(g,n;.) from M x M՛՛ to the set M of Radon measures on 

X . We now require that there exists a locally finite partition Л = (Xn)n>0 of X. 

This means that every bounded Borel set has a non-empty intersection with only 

finitely many elements of the partition. In addition every Xn has to be a bounded 

Polish subspace of X . Recall that every Polish subspace of X is a Gs —set and thereby 

Borelian. 

52 



T H E PAPANGELOU P R O C E S S . A C O N C E P T F O R ... 

We need the following notations, nxn is the restriction of n to Xn = X0 U • • • U Xn; 

and nk its restriction to Xk. We then say that n is locally integrable (with respect to 

any A) if for all Q, n,n the following series converge: 

mi m>0 
*(Q,n)=^2 — n ( m )(e,nxn-i; Xnm). m! 

Xn 

all Q,n.Kv e F+(Mf(Xn)) 

1 N ֊ ^ 1 1 1 
Щс  (n; ¥ ) = — ( ^ ^ ^ V ( Sxi  Ւ Ւ 5xm ) n ( m ) (9,nxn-i ;  d x1 . . .  d xm ) . 

( Q , n ) m>0  —i xm 

Note that the kernel n X n depends only on the a-field F x n - 1 of events happening in 

X n- 1. This will be important in the sequel. 

The aim now is to construct by means of these kernels and suitable initial and 

boundary conditions an infinitely extended Papangelou process which has a modification 

of n as its kernel. For this purpose we use the theorem of Ionescu Tulcea which enables 

us to construct processes by means of an initial condition and conditional distributions 

(see [2] e.g.). 

Given Q e M(X ) AND (n0,..., nm-1) e M x 0 x • • • x M x l5 consider the Markovian 

kernels 

Qfn(n0, ... ,nm-i; dnm) = nxm (n0 + Ւ nm-1; dnm) 

from M x x • • • x M x to M"(Xm). also a random measure P0 e PM x 0  x m — 1 4 ' 

then by the theorem of Ionescu Tulcea there exist random elements £ in M ( X ) and 

random elements £n in M"(Xn),n > 0, with the property that the corresponding 

finite-dimensional distributions are given by 

L ( C  £0,...,  £n ) =  P0 ( dQ ) nx0 ( 0 ;  dn0 ) Qi (n0;  dni )...  Qn (rn,..., nn-i;  dnn ). 

We are now in the position to construct the following random element in M՛՛ (X). 

£ = E £n. 
n>0 

Note that £ is locally finite because the underlying partition has this property. The 

distribution Pn of £ is the point process in X we are interested in. (We do not indicate 

the initial condition P 0 . ) We shall show now that Pn is a Papangelou process specified 

by a modification of the kernel n. For later use we remark that Pn has the following 
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disintegration with respect to Հ. 

P6 Po(dg). 

We observe also that this implies for the Campbell measure of РП the disintegration 

We now formulate the conditions for the existence of infinitely extended Papangelou 

processes. 

We assume that n is a kernel from M ( X ) x M՛՛ (X) to M ( X ) which is locally integrable 

with respect to any partition. Moreover, we assume that n is dominated, with a 

symmetric density, i.e. on the complement of any {y} each n(g,n + 5y; dx) has a 

symmetric density f П with respect to n(g, n; dx) whith does not depend on g, n- Thus 

with f П being symmetric. We remark that this condition implies the cocycle condition 

for n and thus is a bit stronger. 

Finally we need the following finite-range property. There exists a positive constant 

R > 0 such that 

1B (x)n(g, n; dx) = 1B (x)n(g, nsRB + ПС с ; dx) for any B,C e B0, B С C. 

Here dRB = {x e X\d(x,B) < R}, where d denotes some fixed metric compatible 

X n 

one has for any B e B 0 

T h e o r e m 3.1. If n is a kernel from M ( X ) x M' ( X ) to M ( X ) which is locally 
integrable, dominated and of finite range, then any Pe, g e M, is a Papangelou process 
with kernel 

!{y}c (x)n(g, n + 5y; dx) = l{y}c (x)fn (x,y)n(g,n; dx), 

lB (x)n(g, n; dx) = 1B (x)n(g, neRB; dx) for any B,C e B0. 

(3.1) n(g, n; dx) = pe(x, n) • n(g, n; dx), 

where 

(3.2) Pe ( x ,n ) = П ՞ Հ 3 ) 
f=o - j ( g , n + Sx )  

The kernel П is a random, Radon measure. 
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P r o o f . We consider the point process £ constructed by means of P0 = Se and start 

to compute its Campbell measure C^. For a given h G F+ 
tt � 

C ( h ) = E / h(x,£) £n(dx)dP. 
n>0 

P 

law of £.) We follow the arguments of Mecke [8j and assume first that h has the 

form h = g ® p, where g G F+(X) is identically 0 outside some Xk, 0 < к < n, and 

P G F+ (M՛՛) is a random variable which is measurable with respect to 1 ՝ х ^ this 

case 
C ( h ) = J (g) р(£х~)dP 

and thus 

C (h) = j ПХо (0,dno)... (nxk-1 ,dnk) nk(g) • ф е(пх— + Vk), 

where 

Ф д (Пхк  ) = j  nxk+1  (Пх к  , dnk+i)...  п е (Пхк +Vk+1+ +Vn-i , dVn՝) P (Пхк +Щ+1+ +Ոո) 

Applying here the main lemma 2.1 to the inner integral of C ( h ) and using the cocycle 

property one obtains 

J п вхк (пхк-i , dnk) nk (g) • Ф д (пхк-1 + nk) = 

J П вхк (пхк-1 ,dnk) Д п(д,пхк ,dx) g(x) • ф(д,Пх— + nk + Sx). 

On the other hand, using again that the kernel n is dominated with a symmetric 

density fn, we obtain for к < l < n - 1, x G Xk , 

Пх1+1  (Пх1 +  Sx;  dni+i ) = — ^ 1+ 1 ( Ձ ,'Ո\ )  fn  ( х ,П1+1 ) п- вх1+1  (Пх i  , dni+i ). 
1 + 1 -i+1(Q,n + dx) + 

Here fn(x,ni+1) = Uyesuppm+i fn(x,y) n i+ l ( y ). 
Thus we have 

Ф^Пхь +  dx )= J  п вхк+1  (Пх к  , dnk+1)...  п вхп  (Пхк + nk+1 + + nn-1 , dnn )  

n-1 — ( ) n-1 
TT — ^t 1—тГтП  f nni+1 p (Пхк + nk+1  Ւ Ւ Ոո + Sx ) ,  

=  - i+ 1 ( Q, n +  dx ) 1=\ 
and consequently, using again that the kernel is dominated with a symmetric density, 

C ( h ) = ( f h(x, £ + Sx) П — ) n(Q, х ; dx)dP. 
J jхк =  -i+1 (Q , £ +  Sx )  
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Changing slightly the parameter l and observing that ^ depends only on that part 

of £ which lies in the 'past' X1-1, where as Sx lies in the 'fut ure' Xk, one has 

Գ т = Լ £ + « n - O f + L  x ; d x ) d P , 

where in this equation £xn can be replaced by £ because of the special choice of < 

and the finite range property of n. 

The finite range property is needed again and will enable us to replace the finite by 

the infinite product. Consider the terms of the infinite product 

^ Z i ( f , £ )  

Ei(f,£ + Sx)' 

Here the assumption of finite range implies that only finitely many terms of the 

1 

h 

That П is a random Radon measure is obvious. • 

S o m e consequences of the theorem. As a first consequence we obtain for the 

distribution of £ with a general initial condition P0 that Pn = fM P£ P0(df) is a 

solution of the equation 

Cpn (h)= f f f h(x,n + Sx) n(f,n; dx)Pn(dn)P0(df), 
M M . . x 

where h e F+(X x M"(X)). 

Furthermore, the above theorem gives a construction of a very large class of Papangelou 

processes. We first discuss the special case where the infinite product appearing in 

П is identically 1: If the normalizing constants El(Q, £) do not change if £ is locally 

1 

condition for this to hold is for instance the tail-measurability of n. 

Consider the following additional condition on the kernel n: For a given Q the kernel 

n has zero range in the strict sense if 

Ressmn ( m )(f, (.); dy),B e B0,m > 1, are measurable with respect to Fb. 

In this case n is dominated with density f = 1, and has range R = 0. Moreover, 

the normalizing constants En depend only on Q but not on n- As a consequence, 

if n satisfies this condition and is locally integrable then £ is a Papangelou process 

for the kernel n. Moreover, by construction, £ has independent increments, and the 
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distribution of the field variables £B ,B e B0, is given by 

P e  ( £B =  k > = EBQ 1  n ՝ k ) { f ' B t  

n 

which class of kernels n with strictly positive range the above construction leads to 

Papangelou processes with kernel n, so that pe = 1. 

Consider now a kernel n which satisfies the assumptions of the theorem and does not 
q 

Y(n, dx) = V(x, n) • n(n, dx), n e M" (X). 

We shall make several assumptions on V which will assure the existence of Papangelou 

processes Py for the modified kernel 7. This will be our model for interacting Bosons. 

V(x, n) is to be understood as a Boltzmann factor exp(-E(x, n)), where E(x,n) 

denotes the energy of a particle in x, given the configuration գ (Usually E is defined 

by means of some potential.) The first assumption on V is that Y(n,.) is always a 

Radon measure. Moreover we need a symmetry condition: 

(3.3) V(x, n) • V(y, n + Sx) = V(y, n) • V(x, n + Sy) for any x,y, գ 

The next is a finite-range property: 

Denoting Br (x) the ball rentered in x with radius r, this means 

(3.4) V(x, n) = V(x, nBr(x)), x e X, for some r > 0. 

Y 

some symmetric density: There exists a symmetric function U e F+(X x X) such 

that 

(3.5) V(x, n + Sy) = V(x, n) • U(x, y), for all x, y, n. 

U 

V 

of Y- We assume that there exists for any configuration n some const ant 0 < C (n) 

such that for any m > 1 and an у x1,..., xm e X 
C(n)m  

( 3 . 6 ) V ( x i ,n)V (x2,n + Sx!) . . . V (xm,n + Sx1 + ••• + Sxm_1) < . 
m! 

In this case 

Y ( m )(nx n֊i ,Xm) < c(n)m m n ( m )(nxn֊i ,Xm), m! 
5 7 
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and thus local integrability of п implies the one of 7. We remark that the stability 

condition (3.6) is a version of super stability. 

Given such a pair (п, V) there exists a Papangelou process for the modified kernel j . 

We now comment the case of simple Papangelou processes. If п is simple in the sense 

that п is a kernel from M (X) to X satisfying the condition 

п(n, supp n) = 0 for any n G M՛, 

п 

that a Papangelou process for the above kernel 7 then is simple too. Thus we have a 

method which allows to construct a large class of simple Papangelou processes. 

The above theorem induces several other problems and questions. Under which condi-

п 

п 

process for п and not for п? These questions can been seen also as follows: We 

explained already in the introduction that the collection of Papangelou processes for 

п 

of Preston [11]) for the local specification Vn induced by п in a natural way. And 

for this collection some of these questions have been analyzed in [11]. As has been 

remarked already here one can find also a general construction method for Gibbs 

states specified by Vn and thereby for Papangelou processes with kernel п. 

The above construction shows that Papangelou processes are processes in spacetime 

which have an infinitely long memory. The underlying symmetry given by the cocycle 

condition is much stronger then reversibility in time. Thus there is a new underlying 

spacetime structure here which has to be developped further. 

4 . E X A M P L E S 

We discuss some applications of the theorem. We don't repeat here the example of 

Gibbs processes for classical interacting systems which can be found in [16]. Instead 

we discuss the analog constructions of interacting Bosons and Fermions which seem to 

be new. In particular the Polya difference process or ideal Fermi process is considered 

here for the first time. 

Cox processes . We include this well known class of processes to make explicit the 

Q P 

P = FM PKW(dn), where W is a random measure in X , i.e. a probability on M. 
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It is well known (see [15]) that any Cox process is a Papangelou process for a 

kernel having the structure п(բ, dx) = P^(d,g) Q(dx). Here ( P i s a Markovian 
M ՛ ՛ M X 

by configurations բ. Thus п(^,.) is given by the intensity measure of Pթ which we 

assume to be always Radonian. A deep result of Wakolbinger [15] is that the following 

P 

P 

Papangelou kernel п can always be represented as п(^,.) = Pթ(dQ)Q(.) with a tail-

field measurable family of random measures P G M՛՛. 

In this case the above theorem yields a construction of Cox processes which in fact 

is well known. To be more precise: Consider the kernel п(д, n;.), which is tail-field 

measurable with respect to ntogether with a random measure P0(dg). Then the 

normalizing constants — n(g) do not depend on n, and it is obvious that the conditions 

of the theorem are satisfied, so that, for a given Q, PS is a Papangelou process 

with kernel п(д, 0) and therefore by Mecke's characterization a Poisson process with 

intensity measure п(д, 0^. As a consequence Pn = J Pn(s,0) P0(dQ) is a Cox process 

with random intensity measure п(д, 0). 

Po lya s u m proces se s a n d the ideal B o s e proces s . Here we consider Polya sum 

processes, which had been introduced in [16]. For the convenience of the reader we 

repeat here their construction and some of their properties. They describe the ideal 

Bose process of quantum mechanics (cf. [1]). 

Let 0 < շ < 1 and Q be some fixed Radon measure on X. Consider the kernel 

п+(д, n;.) =  Z(Q + n) (For simplicity we skip Q in the sequel.) In this case local 

integrability holds true with a normalizing constant independent of գ 

—n (Q ) = exp (Q ( Xn )K ( z ) ) = ^ _ , 

where K(Z) = J 2 j > 1 j . Here we used the fact that 

У) ЛQ(Xn) [ m ]zm = exp(Q(Xn)K(Z)) =  1  
Հ—^ m՛ 

m>0 

with a [m ] = a(a + 1 ) • • • (a + m _ 1) 

the theorem are also satisfied. In particular п+ has range 0 in the strict sense. The 

corresponding Papangelou process P+ = PS+ was called in [16] the Polya sum process 
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specified by (z, ջ). But from the point of view of quantum mechanics this is the ideal 

Bose process specified by (z, ջ). 

Using that P+ is a Papangelou process for we show directly that this process has 

independent increments, we deduce the distribution of the field variables £B, show-

that P+ is of first order (i.e. all £B are integrable) and finally that P+ is uniquely 

determined by the kernel 

Let B G B 0 and k > 1 and consider a non-negative measurable function < on the 

space of configurations which depends only on what happens outside B. Thus < is 

measurable with respect to F՝B Then using its character as a Papangelou process 

we obtain the recursion 
1 
k P + ( 1 { £ B = k } • < = ^ J 1 B ( X ) 1 { « B = k } ( n M v M d x ) P + ( d V )  

z j 1B ( X ) 1 { 5 B = հ - ւ } ( ո ) < ( ո ) ( ջ + n) ( d x) p+ ( dn) 
z 
k. 

z ջB) + (k -P+(1{ZB=k-i} • <). 
k 

B 

P+(1{B=k} • <) = ֊ = 0 } • <). 

Choosing now for < the indicator of the event {£B2 = k2,..., £Bn = kn}, where kj > 1 

and B1 = B,B2,... ,Bn G B 0 are pairwise disjoint, and iterating the above procedure 

ki , . . . , kn > 0 
n k zkj 

P + ( в = k i , . . . , B = К ) = п r r ջ ^ ) l k j ] • P + ( в = O , . . . , B = o). 
k j !  

j=i 

This equation determines P+(£Bl = 0,..., £Bn = 0) as a product of terms which 

depend only on a single kj. Thus P+ has independent increments. 

The distribution of £B,B G B 0 , amounts to 
P+{b = k} = exp—(B)K(z)) • zk •  ջ , k > 0. k! 

If ջ(B) is an integer this is a negative binomial distribution. From this we obtain that 

P+ is of first order and 
z 

P+ & ) = — Z • ջ(B),B G B 0 . 

The above considerations used only the partial integration formula, for which P+ is a 

solution. Thus the finite-dimensional distributions of the random field (£B ) В еъ 0 and 

thereby P+ is completely determined by 
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We finally add an important observation of Mathias Rafler that P+ is infinitely 

divisible. (See [12], Prop. 6.7 .) We thus see that the Polya sum process resp. the 

ideal Bose process P+ for (Z, Q) has analog properties as the Poisson process and thus 

has the character of an ideal gas. 

T h e interacting B o s e process . Here we propose a theory of interacting Bosons 

in analogy to the Gibbsian theory of classical interacting particles. The idea is to 

replace the Poisson process by the Polya sum process and to build by means of a 

given potential the interacting system as in the classical case . To be more precise, 

Q 

intensities of the Polya processes. 

Let V(x, n) be a non-negative, measurable function on X x M " ( X ) satisfying the 

conditions (3.3) _ (3.6); furthermore, let 0 < Z < 1 and Q G M(X). Denote by 

П+(П,.) = Z(Q + n) the Polya sum kernel for (Z, Q) from above. We then consider the 

kernel 

Y(n, dx) = V(x, n) • П+(П, dx), n G M՛՛ (X). 

As a consequence of the considerations above we know the existence of a Papangelou 

process for the modified kernel դ = ps • V • п+ and call it the В о sonic s tate for (Q,V ). 

In the case where V (and thereby C) does not depend on nsay V(x, n) = f (x), we 

obtain a Papangelou process for Y(n,.) = f • Z(Q + n). (Thus the infinite product is 
f 

differs from the above Polya sum process in that the constant Z may depend on the 

position x. We call this process also the ideal Bose process for (f,z,g). It has the 

same properties as the former Polya sum process. A quantum mechanical derivation 

of this model can be found in [1]. 

T h e Polya difference process and the ideal Fermi process . Here we study the 

Papangelou process which describes Fermions and which we call the Polya difference 

process or ideal Fermi process. This notion has been foreshadowed already in [1]. 

X 

even finite. The measure Q is the counting measure on X . Thus Q = 1. Again 0 < Z < 1 

is a given parameter. We then consider the Polya difference kernel for Z defined by 

П-(П,.) = Z • (Q _ n),n G M - ( X ) . 
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Note that this kernel is a kernel from M՝(X), the collection of simple point measures, 

to X, and thus well-defined as a Radon measure in the second variable. Moreover, 

n-(n, suppn) = 0, and thus a Papangelou process for n is simple. Again local integra-

bility holds true with a normalizing constant 

տո(ջ) = E mջ^ո)խւ^ = Ц + z) e { X n\ 
m>0 

which again does not depend on գ Note that here appears now the symbol a[m] = 

a(a — 1) • • • (a — m + 1), a G K. 

Again we are in the situation of the theorem. We call the corresponding Papangelou 

process P- = Pn- the Polya, difference process for z. From the point of view of 

quantum mechanics it is the ideal Fermi process for z. (For a quantum mechanical 

explication we refer again to [1].) By construction this process is simple, i.e. respects 

the Pauli exclusion property, and has independent increments. Exactly as above, by 

using only its character as a Papangelou process for the field variables £B,B G B0, 
have the following distribution: 

P-«B = 4 = Z - B ) > 0. 

where Z-(B) denotes the normalizing constant. In case that ջ(B) is an integer this 

is a binomial distribution. 
P-

z 
P-(tB) = T— • ջ(B),B G B0. 

1 I  z  

Again P- is completely determined by Therefore also P- has the character of 

an ideal gas. We indicate shortly how one can define difference kernels on abstract 

X 

Let X denote a Polish space and fix some Radon measure ջ on it. Consider a (random) 

element Z in M " ( X ) , i.e. a point process in X . Given some Radon measure ջ and a 

parameter z > 0 consider the following kernel called again Polya difference kernel 
n- (C, n; . ) =  z • ջ +  (C — n ) •  1ж-{с) (п ), 

where M"(Z) = {n G M"(X ) \n < Z}• Here n < Z means that n is a subconfiguration 

of Z and therefore the difference Z — n a well defined Radon point measure. The 

corresponding Papangelou process, called again Polya difference process, exists and 

is uniquely determined by n- and the distribution of Z- For a deterministic Z it has 

62 



T H E PAPANGELOU P R O C E S S . A C O N C E P T F O R ... 

independent increments and is of first order. This model seems to be interesting not 

only for quantum mechanical applications. 

We finally remark that in the case of simple Papangelou processes the structure of 

п 

generality by Kallenberg [4j in Theorem 3.1 . This discrete part па has the following 

structure: 

(4.1) п а ( j , dx) = Va(x, j) • (1 _ j ) (dx), x G X, j G M ^ X ) , where 

Va(x,/) = 1 - a n d т is intuitively given by т(x,.) = P(£x = 1 | £ { x p ) ( ) (For 

more details we refer to the following scholion.) 

The atomic part of the kernel for an ideal Fermi gas has the form where Va does 

not depend on j and in this case the corresponding process (£x)x has independent 

increments. Important examples are given by Va = Q with Q a probability on X which 

is not a Dirac measure; or Va = ֊լկ- A very special modification of the second case 

which takes into account also interactions with respect to the particles in j then leads 

to so called determinantal processes. For details we refer to Shirai/Takahashi [14]. 

Scholion: T h e probabi l i s t ic s t r u c t u r e of P a p a n g e l o u kernels . For the conve-

nience of the reader we add a rigorous derivation of the probabilistic structure of a 

Papangelou kernel in the discrete setting. The general theory can be found in [3, 4, 9]. 

The situation now is elementary: X is finite and п(j,x),x G X,j G M՛՛, is a kernel. 

We consider Papangelou processes P for п, i.e. point processes P in X solving the 

equations 

CP (h) = EY1  h(x, J +  5х)п(J, x)P ( / ) , h G F+, 
x բ 

and ask for the meaning of this condition in terms of the corresponding random field 

(бг:): !^. ^ c ^ l that the Campbell measure C P is concentrated on C = {(x, բ)խ^) > 
1}• 

The above equation is equivalent to 

(4.2) /j,(x)P(թ) = п(ц _ 5x, x)P(թ _ Sx) for any x, /л, /j,(x) > 1, i.e. ц G M՛՛. 

This is equivalent to saying 

(4.3) ( j + Sx)(x)P(j + Sx) = п(/, x)P(/), x G X, j G M՛ 
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Note that п ( / , x) > 0 iff ( P ( j + Sx) > 0 ^ ^ P ( / ) > 0). We observe that in the ease 

P 

(4.4) (1 — j ) ( x ) P ( j + Sx) = n(^,x)P(j),x G X, j G M ՛ . 

In this ease п can always be chosen as a kernel п : X x M՛ —> K+ satisfying 

п(/, x) = 0 if j(x) > 1. Thus п(/,.) is supported by the complement of the support 

of j . (4.2) means that п is a local specification of the point process P in the sense that 

п(/, x) = (1 + j)(x) •  P ( j +  S x ) fa all xP — a.s.[j]. 
P  ( j ) 

Note that one can choose always a version V for the quotient on the right hand side 

п 

(4.5) п ( j , x) = (1 + j)(x) • V(x, / ) , x G X, j G M՛՛, 

where V : X x M՛՛ —> K+ . 

Interpretation of п in terms of the random, field £x,x G X : Condition (4.2) can be 

expressed as follows: For all x and all j 

(1 + j)(x)P(£x = 1+ / ( x ) , { } c = /{x}c) = n(/,x) • P(£x = /(x),£{x}c = /{x}c). 

In the case of simple point processes P this condition reduces to: For all x, j 

(1 — J)(x)P(£x = 1,£{x}c = /{x}c) = n(/,x) • P(£x =0,£{x}c = /{x}c) ; 

or equivalently for all x, j with P(£{x}c = j { x } ° ) > 0 

( 1 — J ) ( x ) P ( £ x = 1\£{x}c = /{x}c) =  n ( / , x ) •  P(£x = 0 \ £ {x } c = /{x}c) . 

Setting qx = P(£x = 1 \ £ { x } c ) this means that the process P satisfies the condition 

(£ ) (qx > 0 1 — qx > 0) P — a.s., x G X, 

and thereby P(£{x}c = (.)) > 0, and that п is given by 

(4.6) п(j,x) = (1 — j)(x) qx(/ ,x G X, P — a.s.[j]. 
1 — qx (j )  

Thus in the simple case we have: P is a Papangelou process for п iff condition (՝£) 

п 

the Papangelou kernel by Kallenberg [4], theorem З.1., for simple processes in this 

elementary context. Note that for the right hand side of (4.6) one can choose always a 

version V(x, j) which depends only on / { x y if x is given. Thus for simple Papangelou 

processes P the kernel п has the following structure 

(4.7) п(/,x) = (1 — / ) (x) • V(x,j),x G X, j G M՛, 
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where V : X x M՛ —> R + is exvisible, i.e. is measurable with respeet to the a_field 

Z in X x M՛ generated by all sets of է he form {x} x N, where x G X and N G F{xy 

P 

given kernel п : X x M՛՛ —> R + , then п can be represented as 

(4.8) п(j,x) = (1 + j ) ( x ) • V(x,j),x G X, j G M՛՛, 

where V : X x M՛ —> R+ . 

Let P be a simple Papangelou process for a given kernel п : X x M՛ —> R +. Then п 

can be represented as 

(4.9) п(j,x) = (1 _ j ) ( x ) • V(x,j),x G X, j G M՛, 

where V is exvisible. We observe here that this implies that п(.^) is the conditional 

intensity of £ in the sense that for any x 

п (.^ ) = P ( £ x l £ { x } c )  Pa.s.. 

We use this terminology also in the non-simple case though this interpretation is no 

longer valid. 

Thus we now know the general structure of a Papangelou kernel in the discrete case 

which remains true in the general case (cf. [4]). 

If the random point field (£x)x is independent (or has independent increments) then 

V x 

V 
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