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Abstract. Under the assumptions that EY is an n-dimensional, simply connected
Riemannian manifold of constant sectional curvature A and LY is an r-dimensional,
totally geodesic submanifold of E7, the paper investigates the g-th integral of the
mean curvature M7 of a convex body K7 in EY and gives the expression of M7 in
the terms of My, where My is the p-th integral of the mean curvature of K" in LY.
A result of L. A. Santalé holds in particular.
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1. INTRODUCTION

Let n be a natural number, let 0 <r <n, 0 <p<r—landlet0<qg< n— 1
Further, let E} be an n-dimensional, simply connected Riemannian manifold of
constant sectional curvature A, i.e. the sphere space S™ for A > 0, the hyperbolic
space H" for A < 0 and the Euclidean space " for A = 0. Besides, let L} be an r-
dimensional, totally geodesic subspace of EY and let K" C L be a convex body. Then,
the boundary O0K” of K7 is an (r — 1)-dimensional hypersurface in L% . Assuming that
P is a point of K", we choose e1,...,e,_1 to be the principal curvature directions
at the point P. Further, we suppose that 1, ..., k,_1 are the principal curvatures at
the point P, which correspond to the principal curvature directions.

Consider the Gauss map G : P — N(P), whose differential

dGple;) =2'(t) = N'(t) (2(0) = P)
satisfies the Rodrigues’ equations
dGple;) = —rse;, i=1,--,r— 1L
'Supported in part by CNSF (Grant No. 11161007) and Guizhou Foundation for Science and

Technology (Grant No. [2010] 2242).
2Supported in part by CNSF (Grant No. 11101099).

65


mailto:chen.fangwei@yahoo.com
mailto:cfw-yy@126.com
mailto:yangcongli@gznu.edu.cn

ON THE INTEGRAL OF MEAN CURVATURE ...

Then we have the mean curvature

1 1
H= (K14 Ree1) = — 1trace(de)7

r—1 r—

along with the Gauss-Kronecker curvature
K=k Rp_q = (=1)""ldet(dGp).

The p-th order mean curvatures are the p-th order elementary symmetric functions of
the principal curvatures. By H, we denote the p-th order mean curvature normalized
such that

r—1 r—1 1

r_

[T0+05) -3 ( ) ) H.

p=1 q=0
Thus, H; = H is the mean curvature and H, 1 is the Gauss-Kronecker curvature K.
The p-th (0 < p <r — 1) integral of the mean curvature M) of K" at P is defined
by

1
M (OK™) = Hydo, 4 = (’" N 1) / {Kir, kg, don_1,
OK™ p aK™

where {x;,, ..., K, } denotes the p-th elementary symmetric function of the principal
curvatures and do,_1 is the area element of 0K”. As a particular case, let M} = 0,1
be the area of K", for completeness. Moreover, we have M)_; = O,_1, where O,_
denotes the area of the (r — 1)-dimensional unit sphere and its value is given by the
formula P
r
Oy 1 — %
For instance, if A = 0 and 7 = 2, and K? is a plane convex figure in £?, then M3 = o
and M? =27, If r = 3 and K> is a convex body in E°, then M3 = o5 and M7 is the

integral of mean curvature of K>. For more details, see [3, 4].

If K" C LY is a convex body, then it can be considered as a flattened convex body
of EY (n > 7). In order to define the ¢-th integral of the mean curvature My (¢ =
1,2,...,n—1) of K" in E}, we consider the outer parallel convex body K! = {z €
Er: d(K", z) < e} of K" in E?, where the d(K", -) denotes the geodesic distance

from K" in FY, and then we pass to the limit as ¢ — +0.

In this paper, we investigate the ¢-th integral of the mean curvature Mg of 0K™ in LY,
where K7 is considered as a flattened convex body in Y. We obtain an expression
of Mg in terms of the integral of the mean curvature M;. Besides, we prove the

following theorem.
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Theorem 1.1. Let EY be a simply connected Riemannian manifold of the sectional
curvature A, let L’ be the totally geodesic submanifold of EY, and let K™ C L be a
convex body of dimension v with C* boundary.

Then the q-th integral of the mean curvatures My of K", where K" is considered
as o flattened convex body in EY, satisfy the following conditions, where the quantity

3(p, q) is that defined later, by (3.1):
1) Ifg>n—r—1, then

r—1 >
n T — <q —mj_ OW*T —m r T
(1.1) MPOK™) =" ——Xs(m, n — ) (DK,
m=1
()
2 Ifg=n—r—1, then

—1
(1.2) M:(am(”‘l) S(4, )04, (K")

3 Ifqg<n—r—1, then

n—r—1
(1.3)  M}OK") = Mz(% n—r—=1)0p_r_100(K")

")

Especially, when A = 0, that is, the convex body in Euclidean space E™. In this case,
if m < g, then 3(m,q) = ¢¥7™ = 0 as ¢ — 0. Theorem 1.1 reduces to the below
corollary proved by L. A. Santal6 in 1957 (see |2, 3]). Note that the results of |2, 3]
play an important role in integral geometry and differential geometry and are widely
used (see {1, 3, 4, 5]).

Corollary 1.1. Let E™ denote the Euclidean spoce, L, denote the r-dimensional
linear subspace in B, let K" be a convex body of the dimension r in L. Then K"
can be considered both as o convex body in L and os o flattened conver body in E™,

and the g-th integral of mean of the curvature M satisfies the conditions
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1) Ifg>n—r—1, then

( i )
" T q_n+r O T T
MIMOK") = M (0K,

<n_1> Op oy ammr
q

n—1

2 Ifg=n—r—1, then

MP(OK™) = ( >1Onmar(K’”)7

n—r—1
3 Ifqg<n—r—1, then
M} (OK") = 0.

2. PRELIMINARIES

Let K" C L% and let L} be a totally geodesic submanifold of EY. Assuming that
0K is a twice differentiable hypersurface with a well defined normal at each point
P’ e OK?, by N(P') we denote the normal vector at the point P’. Let P be the
intersection point of the normal N(P’) with K”. Then, we say that P’ belongs to the
region (A) of dKT if P belongs to K", besides, we say that P’ belongs to the region
(B) of OKT if P belongs to 0K".

In later sections we use the following notation:

A=Y 2sin(rv/A), A >0,
sx(r)=1<¢ A=0,
IA|=1/2sinh(r/[A]), X <O.

By the moving frames introduced in the book of L. A. Santal {3], the area elements

at a point P’ € 0K with respect to the regions (A) and (B), respectively, are
do,_1 = sA(E)"frfldun,r,l A doy,
doyp_1 = sx(e)" "dup_r Ndo,_q,

where du,,_, denotes the area element of the (n —r)-dimensional unit sphere, do, and
do,_1 denote the volume element of K" and the element of area of K", respectively.

Then the g-th integral of the mean curvature of 0K is given by the formula

—1
" . n—1
en ek = (") [ s ) dos
n—1 -t n—r—1
- {’%17 T 7Hiq}sk(£) dunf'r’fl A da'r’
q Kr

‘f’/ {’%17 e 7’%4} SA(E)nirdunfr A da'r’fl
OKT
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Let R; (i =1,2,...,n—1) be the principle radii of the curvature of 9K corresponding

to eq,...,en_1, that is R; = 1/k;. Then (2.1) can be rewritten as

—1
(22)  MMOKT) = (”;1> U T {Rl RL} sx(e)duy, o1 A do,

tq

1 1
+/ { _} s (8)" " duun—y /\darl} .
OK™ ‘Rh ‘R%

Note that the following statements are true for the quantifies R; (i =1,...,n—1).

a) For the points of the region (A4), clearly,

Ry=¢ for h=1,2,...,n—7r—1,

Ry=00 for h=n—-rn—-r+1,...,n—1.

b) In order to find the values of R; at the points of (B), suppose €1,¢a,...,¢e, are a
frame of n orthogonal unit vectors, such that eq, ..., e,_, are constants independent of
z € OK”, orthogonal to L} and e,_r41,...,e,_1 are the principal tangent directions
of K" in L7, while e, is the normal to dK" in L}. A vector X of 0K can be

represented as

X =xz—¢N,
where x € K" and
(2.3) N = cosfle,, + Z costyep.
h=1

For any z, the vector X describes an (n — r)-sphere, and consequently

(2.4) Rp=¢ for h=1,2,....n—7.
Forh=n—r+1,...,n—1, the Rodrigues equations give

(2.5) AN - ep — _Rihdsm

where dS}, denotes the arc element on K and

(2.6) dSp, =dX - e, =dsp —edN - ¢y,

where ds;, is tangent to ej, arc element on OK”.

From (2.3), for h=1,2,...,n —r, for which the vectors e, are constant, we get

cost

(2.7) dN - e, = cosOde,, -ep, — —

dsp, (h=n—-r+1,...,n-1),
Ph—n-+r
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where p1,...pr—1 are the principal radii of the curvature of 9K”. Besides, by (2.5),
(2.6) and (2.7) we obtain

(2.8) Rh:%JrE for h=n—-r+1,....,n—1.

3. PROOF OF THE MAIN RESULT

Now, we are ready to prove the main result of the present paper, which is given in
Theorem 1.1. To this end, first we set

1
— i q
(3.1) 3(p, q) = iln% = sxle)

and note another formula, which will be used later:

/2 19)
(3.2) / cos?™ " Oduy,_, = —LIHT

0 Oqu
Proof of Theorem 1.1: 1) If ¢ > n —r — 1, on region (A), since all the principal radii
of curvature Ry, Iy,, ..., [%;, cannot be chosen from the normal space of K. There
essentially exist some I;, which are selected from the tangent space of K. Then, the

first integral of (2.2) vanishes and formula (2.2) reduces to

MXOK!) = n—1 1/ 1 R (" "d A d
q ) q . Ri17 7Riq Sx Up —r Tp—1.

On the region (B), if there are m (1 < m < n —r) principal radii of curvature R;,

selected from the normal space, by (2.4) and (2.8) we get

1 i: cost) cost)
Ril 7 em 7 " Pg-m )

Then, using formula (3.2) and the definition of the ¢-th integral of the mean curvature
M we obtain

MIMOK?)

1n—r
n—1 1 { 1 } g _
= . cos? 0 s, () "dug_y A doy_q
( q > Z €™ Jorr qum ( )

_ — —m 1 n—r On*’f’ﬂL(I*m r r
_ }:1 (n_ 1) Al T TG (9K,
q

Letting here £ — 0 we come to formula (1.1).
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2) If g = n—r — 1, on the region (A), note that R, = oo if h changes from {n —
r,---,n—1}. Then all R;, in {7, -+, 7} must be Ry, = Ry, = ... = R;, =&,
P ie
and the first integral of (2.2) reduces to

1 1
J g g e s,
Kr i1 iq

1 1
= / ——— s\ (&) duy g Ao, = —53(€)10, 0, (KT).
K el

- Enf'r’fl A

By the same argument as the case 1), the second integral in (2.2) becomes

1 1
[ SA(E)nirdunfr A dUT,1
/8K’" {R’Ll Riq }

n—r—1
1 1 1
— E / — {—7 e } cos? ™0 s\ (e)" Tduy_yp ANdop_q
ok &7 L p1 Pq—m

m=1
n—r—1
r—1 1 _ Onf'r’%»qu
= ()T (DK,
3 <q >£m 3)\(5) Oqu qu( )

m=

Consequently,

Letting here € — 0 we obtain

3) If ¢ <n —r — 1, then similarly the first integral of (2.2) takes the form

1 e
/ {R .. 7R—}3>\(£)" Yduy_p_q Ado,

Tq

( "”‘1) On s 1= s (&) Lo, (KT),

c4q

while the second integral in (2.2) becomes

1 1
y T SA(E)nirdunfr A da'r’fl
/aw {Ril R, }

q
1 1 1
= Z / — {—7 - } cosT M0 sx ()" " duy_r Ndoy_y
m—17 K" em £1 Pq—m
q
_ r—1 r—1 1 n—r On*’f’ﬂL(I*m r r
=2 ( _m> <q—m> S SAE)TT =g M (OKT).
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Thus,

(n —r — 1>

Mrkr -~ L mrio) o (kT
1 B n—1) &4
(")
. (r -1 >
+ mz::l (LZ”‘ j) Eimsx(s)"ri()"();*;m My ., (OKT).
q

Letting here £ — 0 we obtain (1.3) and complete the proof of Theorem 1.1. O
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