Известия НАН Армении. Математика, том 46, н. 5, 2011, стр. 65-72. ON THE INTEGRAL OF MEAN CURVATURE OF A FLATTENED CONVEX BODY IN SPACE FORMS

F. Chen¹, C. Yang²

School of Mathematics and Statistics, Guizhou College of Finance and Economics, Guiyang, 550004, Guizhou, China¹

School of Mathematics and Computer Sciences, Guizhou Normal University, Guiyang, 550001, Guizhou, China 2

Abstract. Under the assumptions that E_{λ}^{n} is an *n*-dimensional, simply connected Riemannian manifold of constant sectional curvature λ and L_{λ}^{r} is an *r*-dimensional, totally geodesic submanifold of E_{λ}^{n} , the paper investigates the *q*-th integral of the mean curvature M_{q}^{n} of a convex body K^{r} in E_{λ}^{n} and gives the expression of M_{q}^{n} in the terms of M_{p}^{r} , where M_{p}^{r} is the *p*-th integral of the mean curvature of K^{r} in L_{λ}^{r} . A result of L. A. Santaló holds in particular.

MSC2010 number: 53C65, 53A35, 53A07, 52A20 Keywords: Integral of mean curvature; non-Euclidean space; element of area.

1. INTRODUCTION

Let n be a natural number, let $0 \leq r < n, 0 \leq p \leq r-1$ and let $0 \leq q \leq n-1$. Further, let E_{λ}^{n} be an n-dimensional, simply connected Riemannian manifold of constant sectional curvature λ , i.e. the sphere space S^{n} for $\lambda > 0$, the hyperbolic space H^{n} for $\lambda < 0$ and the Euclidean space E^{n} for $\lambda = 0$. Besides, let L_{λ}^{r} be an rdimensional, totally geodesic subspace of E_{λ}^{n} and let $K^{r} \subset L_{\lambda}^{r}$ be a convex body. Then, the boundary ∂K^{r} of K^{r} is an (r-1)-dimensional hypersurface in L_{λ}^{r} . Assuming that P is a point of ∂K^{r} , we choose e_{1}, \ldots, e_{r-1} to be the principal curvature directions at the point P. Further, we suppose that $\kappa_{1}, \ldots, \kappa_{r-1}$ are the principal curvatures at the point P, which correspond to the principal curvature directions. Consider the Gauss map $G: P \to N(P)$, whose differential

$$dG_P(e_i) = x'(t) \to N'(t) \quad (x(0) = P)$$

satisfies the Rodrigues' equations

$$dG_P(e_i) = -\kappa_i e_i, \quad i = 1, \cdots, r-1.$$

¹Supported in part by CNSF (Grant No. 11161007) and Guizhou Foundation for Science and Technology (Grant No. [2010] 2242).

²Supported in part by CNSF (Grant No. 11101099).

⁶⁵

ON THE INTEGRAL OF MEAN CURVATURE ...

Then we have the mean curvature

$$H = \frac{1}{r-1}(\kappa_1 + \dots + \kappa_{r-1}) = -\frac{1}{r-1}trace(dG_P),$$

along with the Gauss-Kronecker curvature

$$K = \kappa_1 \cdots \kappa_{r-1} = (-1)^{r-1} det(dG_P).$$

The p-th order mean curvatures are the p-th order elementary symmetric functions of the principal curvatures. By H_q we denote the p-th order mean curvature normalized such that

$$\prod_{p=1}^{r-1} (1+t\kappa_p) = \sum_{q=0}^{r-1} \binom{r-1}{p} H_p t^p.$$

Thus, $H_1 = H$ is the mean curvature and H_{r-1} is the Gauss-Kronecker curvature K. The *p*-th ($0) integral of the mean curvature <math>M_p^r$ of ∂K^r at P is defined by

$$M_p^r(\partial K^r) = \int_{\partial K^r} H_p d\sigma_{r-1} = \binom{r-1}{p}^{-1} \int_{\partial K^r} \left\{ \kappa_{i_1}, \cdots, \kappa_{i_p} \right\} d\sigma_{r-1}$$

where $\{\kappa_{i_1}, \ldots, \kappa_{i_p}\}$ denotes the *p*-th elementary symmetric function of the principal curvatures and $d\sigma_{r-1}$ is the area element of ∂K^r . As a particular case, let $M_0^r = \sigma_{r-1}$ be the area of ∂K^r , for completeness. Moreover, we have $M_{r-1}^r = O_{r-1}$, where O_{r-1} denotes the area of the (r-1)-dimensional unit sphere and its value is given by the formula

$$O_{r-1} = \frac{2\pi^{r/2}}{\Gamma(r/2)}.$$

For instance, if $\lambda = 0$ and r = 2, and K^2 is a plane convex figure in E^2 , then $M_0^2 = \sigma_1$ and $M_1^2 = 2\pi$. If r = 3 and K^3 is a convex body in E^3 , then $M_0^3 = \sigma_2$ and M_1^3 is the integral of mean curvature of ∂K^3 . For more details, see [3, 4].

If $K^r \subset L^r_{\lambda}$ is a convex body, then it can be considered as a flattened convex body of E^n_{λ} $(n \geq r)$. In order to define the *q*-th integral of the mean curvature M^n_q (q = 1, 2, ..., n-1) of ∂K^r in E^n_{λ} , we consider the outer parallel convex body $K^r_{\varepsilon} := \{x \in E^n : d(K^r, x) \leq \varepsilon\}$ of K^r in E^n_{λ} , where the $d(K^r, \cdot)$ denotes the geodesic distance from K^r in E^n_{λ} , and then we pass to the limit as $\varepsilon \to +0$.

In this paper, we investigate the q-th integral of the mean curvature M_q^n of ∂K^r in E_{λ}^n , where K^r is considered as a flattened convex body in E_{λ}^n . We obtain an expression of M_q^n in terms of the integral of the mean curvature M_p^r . Besides, we prove the following theorem.

66

Theorem 1.1. Let E_{λ}^{n} be a simply connected Riemannian manifold of the sectional curvature λ , let L_{λ}^{r} be the totally geodesic submanifold of E_{λ}^{n} , and let $K^{r} \subset L_{\lambda}^{r}$ be a convex body of dimension r with C^{2} boundary.

Then the q-th integral of the mean curvatures M_q^n of K^r , where K^r is considered as a flattened convex body in E_{λ}^n , satisfy the following conditions, where the quantity $\overline{s}(p, q)$ is that defined later, by (3.1):

1) If
$$q > n - r - 1$$
, then

(1.1)
$$M_q^n(\partial K^r) = \sum_{m=1}^{n-r} \frac{\binom{r-1}{q-m}}{\binom{n-1}{q}} \overline{s}(m, n-r) \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^r(\partial K^r).$$
(1.1) If $q = n-r-1$, then

(1.2)
$$M_q^n(\partial K^r) = {\binom{n-1}{q}}^{-1} \overline{s}(q, q) O_q \sigma_r(K^r)$$
$$+ \sum_{m=1}^{n-r-1} \frac{\binom{r-1}{q-m}}{\binom{n-1}{q}} \overline{s}(m, n-r) \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^r(\partial K^r).$$
3) If $q < n-r-1$, then

(1.3)
$$M_{q}^{n}(\partial K^{r}) = \frac{\binom{n-r-1}{q}}{\binom{n-1}{q}} \overline{s}(q, n-r-1)O_{n-r-1}\sigma_{r}(K^{r}) + \sum_{m=1}^{q} \frac{\binom{r-1}{q-m}}{\binom{n-1}{q}} \overline{s}(m, n-r) \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^{r}(\partial K^{r})$$

Especially, when $\lambda = 0$, that is, the convex body in Euclidean space E^n . In this case, if m < q, then $\overline{s}(m,q) = \varepsilon^{q-m} = 0$ as $\varepsilon \to 0$. Theorem 1.1 reduces to the below corollary proved by L. A. Santaló in 1957 (see [2, 3]). Note that the results of [2, 3] play an important role in integral geometry and differential geometry and are widely used (see [1, 3, 4, 5]).

Corollary 1.1. Let E^n denote the Euclidean space, L_r denote the r-dimensional linear subspace in E^n , let K^r be a convex body of the dimension r in L^r . Then K^r can be considered both as a convex body in L^r and as a flattened convex body in E^n , and the q-th integral of mean of the curvature M_q^n satisfies the conditions

ON THE INTEGRAL OF MEAN CURVATURE ...

 $\begin{array}{l} \text{1) If } q > n-r-1, \ then \\ M_q^n(\partial K^r) = \displaystyle \frac{\binom{r-1}{q-n+r}}{\binom{n-1}{q}} \displaystyle \frac{O_q}{O_{q-n+r}} M_{q-n+r}^r(\partial K^r), \\ \text{2) If } q = n-r-1, \ then \\ M_q^n(\partial K^r) = \displaystyle \binom{n-1}{n-r-1}^{-1} O_{n-r-1}\sigma_r(K^r), \\ \text{3) If } q < n-r-1, \ then \end{array}$

$$M_q^n(\partial K^r) = 0.$$

2. Preliminaries

Let $K^r \subset L^r_{\lambda}$ and let L^r_{λ} be a totally geodesic submanifold of E^n_{λ} . Assuming that $\partial K^r_{\varepsilon}$ is a twice differentiable hypersurface with a well defined normal at each point $P' \in \partial K^r_{\varepsilon}$, by N(P') we denote the normal vector at the point P'. Let P be the intersection point of the normal N(P') with K^r . Then, we say that P' belongs to the region (A) of $\partial K^r_{\varepsilon}$ if P belongs to K^r , besides, we say that P' belongs to the region (B) of $\partial K^r_{\varepsilon}$ if P belongs to ∂K^r .

In later sections we use the following notation:

$$s_{\lambda}(r) = \begin{cases} \lambda^{-1/2} \sin(r\sqrt{\lambda}), & \lambda > 0, \\ r, & \lambda = 0, \\ |\lambda|^{-1/2} \sinh(r\sqrt{|\lambda|}), & \lambda < 0. \end{cases}$$

By the moving frames introduced in the book of L. A. Santaló [3], the area elements at a point $P' \in \partial K_{\varepsilon}^{r}$ with respect to the regions (A) and (B), respectively, are

$$d\sigma_{n-1} = s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r,$$

$$d\sigma_{n-1} = s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1},$$

where du_{n-r} denotes the area element of the (n-r)-dimensional unit sphere, $d\sigma_r$ and $d\sigma_{r-1}$ denote the volume element of K^r and the element of area of ∂K^r , respectively. Then the q-th integral of the mean curvature of $\partial K_{\varepsilon}^r$ is given by the formula

$$(2.1) \qquad M_q^n(\partial K_{\varepsilon}^r) = {\binom{n-1}{q}}^{-1} \int_{\partial K_{\varepsilon}^r} \left\{ \kappa_{i_1}, \cdots, \kappa_{i_q} \right\} d\sigma_{n-1} \\ = {\binom{n-1}{q}}^{-1} \left[\int_{K^r} \left\{ \kappa_{i_1}, \cdots, \kappa_{i_q} \right\} s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r \\ + \int_{\partial K^r} \left\{ \kappa_{i_1}, \cdots, \kappa_{i_q} \right\} s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1} \right].$$

$$68$$

Let R_i (i = 1, 2, ..., n-1) be the principle radii of the curvature of $\partial K_{\varepsilon}^r$ corresponding to e_1, \ldots, e_{n-1} , that is $R_i = 1/\kappa_i$. Then (2.1) can be rewritten as

$$(2.2) \qquad M_q^n(\partial K_{\varepsilon}^r) = \binom{n-1}{q}^{-1} \left[\int_{K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r + \int_{\partial K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1} \right].$$

Note that the following statements are true for the quantifies R_i (i = 1, ..., n - 1). a) For the points of the region (A), clearly,

$$R_h = \varepsilon$$
 for $h = 1, 2, \dots, n - r - 1$,
 $R_h = \infty$ for $h = n - r, n - r + 1, \dots, n - 1$.

b) In order to find the values of R_i at the points of (B), suppose e_1, e_2, \ldots, e_n are a frame of n orthogonal unit vectors, such that e_1, \ldots, e_{n-r} are constants independent of $x \in \partial K^r$, orthogonal to L_r^n and $e_{n-r+1}, \ldots, e_{n-1}$ are the principal tangent directions of ∂K^r in L_r^n , while e_n is the normal to ∂K^r in L_r^n . A vector X of $\partial K_{\varepsilon}^r$ can be represented as

$$X = x - \varepsilon N,$$

where $x \in K^r$ and

(2.3)
$$N = \cos\theta e_n + \sum_{h=1}^{n-r} \cos\theta_h e_h.$$

For any x, the vector X describes an (n-r)-sphere, and consequently

(2.4)
$$R_h = \varepsilon \quad \text{for} \quad h = 1, 2, \dots, n - r.$$

For $h = n - r + 1, \dots, n - 1$, the Rodrigues equations give

(2.5)
$$dN \cdot e_h = -\frac{1}{R_h} dS_h,$$

where dS_h denotes the arc element on $\partial K_{\varepsilon}^r$ and

(2.6)
$$dS_h = dX \cdot e_h = ds_h - \varepsilon \, dN \cdot e_h,$$

where ds_h is tangent to e_h arc element on ∂K^r .

From (2.3), for h = 1, 2, ..., n - r, for which the vectors e_h are constant, we get

(2.7)
$$dN \cdot e_h = \cos\theta \, de_n \cdot e_h = -\frac{\cos\theta}{\rho_{h-n+r}} ds_h \quad (h = n-r+1, \dots, n-1),$$

69

where $\rho_1, \ldots \rho_{r-1}$ are the principal radii of the curvature of ∂K^r . Besides, by (2.5), (2.6) and (2.7) we obtain

(2.8)
$$R_h = \frac{\rho_{h-n+r}}{\cos\theta} + \varepsilon \quad \text{for} \quad h = n - r + 1, \dots, n - 1.$$

3. PROOF OF THE MAIN RESULT

Now, we are ready to prove the main result of the present paper, which is given in Theorem 1.1. To this end, first we set

(3.1)
$$\overline{s}(p, q) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^p} s_{\lambda}(\varepsilon)^q$$

and note another formula, which will be used later:

(3.2)
$$\int_0^{\pi/2} \cos^{q-m} \theta du_{n-r} = \frac{O_{n-r+q-m}}{O_{q-m}}.$$

Proof of Theorem 1.1: 1) If q > n - r - 1, on region (A), since all the principal radii of curvature $R_{i_1}, R_{i_2}, \ldots, R_{i_q}$ cannot be chosen from the normal space of K^r . There essentially exist some R_{i_j} which are selected from the tangent space of K^r . Then, the first integral of (2.2) vanishes and formula (2.2) reduces to

$$M_q^n(\partial K_{\varepsilon}^r) = \binom{n-1}{q}^{-1} \int_{\partial K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1}.$$

On the region (B), if there are $m \ (1 \le m \le n-r)$ principal radii of curvature R_{i_j} selected from the normal space, by (2.4) and (2.8) we get

$$\left\{\frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}}\right\} = \sum_{m=1}^{n-r} \frac{1}{\varepsilon^m} \left\{\frac{\cos\theta}{\rho_1}, \cdots, \frac{\cos\theta}{\rho_{q-m}}\right\}.$$

Then, using formula (3.2) and the definition of the q-th integral of the mean curvature M_q^r we obtain

$$\begin{split} M_q^n(\partial K_{\varepsilon}^r) \\ &= \binom{n-1}{q}^{-1} \sum_{m=1}^{n-r} \frac{1}{\varepsilon^m} \int_{\partial K^r} \left\{ \frac{1}{\rho_1}, \cdots, \frac{1}{\rho_{q-m}} \right\} \cos^{q-m}\theta \, s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1} \\ &= \sum_{m=1}^{n-r} \frac{\binom{r-1}{q-m}}{\binom{n-1}{q}} \frac{1}{\varepsilon^m} s_{\lambda}(\varepsilon)^{n-r} \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^r(\partial K^r). \end{split}$$

Letting here $\varepsilon \to 0$ we come to formula (1.1).

70

2) If q = n - r - 1, on the region (A), note that $R_h = \infty$ if h changes from $\{n - r, \dots, n-1\}$. Then all R_{i_h} in $\{\frac{1}{R_{i_1}}, \dots, \frac{1}{R_{i_q}}\}$ must be $R_{i_1} = R_{i_2} = \dots = R_{i_q} = \varepsilon$, and the first integral of (2.2) reduces to

$$\int_{K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r$$
$$= \int_{K^r} \frac{1}{\varepsilon^{n-r-1}} s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r = \frac{1}{\varepsilon^q} s_{\lambda}(\varepsilon)^q O_q \sigma_r(K^r).$$

By the same argument as the case 1), the second integral in (2.2) becomes

$$\int_{\partial K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1}$$

$$= \sum_{m=1}^{n-r-1} \int_{\partial K^r} \frac{1}{\varepsilon^m} \left\{ \frac{1}{\rho_1}, \cdots, \frac{1}{\rho_{q-m}} \right\} \cos^{q-m} \theta \, s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1}$$

$$= \sum_{m=1}^{n-r-1} \binom{r-1}{q-m} \frac{1}{\varepsilon^m} s_{\lambda}(\varepsilon)^{n-r} \frac{O_{n-r+q-m}}{O_{q-m}} M^r_{q-m}(\partial K^r).$$

Consequently,

$$\begin{split} M_q^n(\partial K_{\varepsilon}^r) &= \binom{n-1}{q}^{-1} \frac{1}{\varepsilon^q} O_q s_{\lambda}(\varepsilon)^q \sigma_r(K^r) \\ &+ \sum_{m=1}^{n-r-1} \frac{\binom{r-1}{q-m}}{\binom{n-1}{q\ cr}} \frac{1}{\varepsilon^m} s_{\lambda}(\varepsilon)^{n-r} \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^r(\partial K^r). \end{split}$$

Letting here $\varepsilon \to 0$ we obtain (1.2).

3) If q < n - r - 1, then similarly the first integral of (2.2) takes the form

$$\int_{K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r-1} du_{n-r-1} \wedge d\sigma_r$$
$$= \binom{n-r-1}{q} O_{n-r-1} \frac{1}{\varepsilon^q} s_{\lambda}(\varepsilon)^{n-r-1} \sigma_r(K^r),$$

while the second integral in (2.2) becomes

$$\int_{\partial K^r} \left\{ \frac{1}{R_{i_1}}, \cdots, \frac{1}{R_{i_q}} \right\} s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1}$$

$$= \sum_{m=1}^{q} \int_{\partial K^r} \frac{1}{\varepsilon^m} \left\{ \frac{1}{\rho_1}, \cdots, \frac{1}{\rho_{q-m}} \right\} \cos^{q-m} \theta \, s_{\lambda}(\varepsilon)^{n-r} du_{n-r} \wedge d\sigma_{r-1}$$

$$= \sum_{m=1}^{q} \binom{r-1}{q-m} \binom{r-1}{q-m} \frac{1}{\varepsilon^m} s_{\lambda}(\varepsilon)^{n-r} \frac{O_{n-r+q-m}}{O_{q-m}} M^r_{q-m}(\partial K^r).$$
71

Thus,

$$\begin{split} M_q^n(\partial K_{\varepsilon}^r) &= \frac{\binom{n-r-1}{q}}{\binom{n-1}{q}} \frac{1}{\varepsilon^q} s_{\lambda}(\varepsilon)^{n-r-1} O_{n-r-1} \sigma_r(K^r) \\ &+ \sum_{m=1}^q \frac{\binom{r-1}{q-m}}{\binom{n-1}{q}} \frac{1}{\varepsilon^m} s_{\lambda}(\varepsilon)^{n-r} \frac{O_{n-r+q-m}}{O_{q-m}} M_{q-m}^r(\partial K^r). \end{split}$$

Letting here $\varepsilon \to 0$ we obtain (1.3) and complete the proof of Theorem 1.1.

Список литературы

- C. H. Sah, Hilbert's Third Problem: Scissors Congruence, Rescher Notes in Mathematics, 33, Advanced Publishing Program, Pitman, Boston, Mass.-London (1979).
- [2] L. A. Santaló, "On the mean curvatures of a flattened convex body Rev. Fac. Sci. Univ. Istanbul. Sér. A 21, 189 – 194 (1956).
- [3] L. A. Santaló, Integral Geometry and Geometric Probability, Second edition. With a foreword by Mark Kac. Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge (2004).
- [4] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, 44 Cambridge Univ. Press, Cambridge (1993).
- [5] J. Zhou and D. Jiang, "On mean curvatures of a parallel convex body", Acta Math. Sci. Ser. B Engl. Ed., 28 (3), 489 - 494 (2008).

Поступила 10 января 2011

72