Известия НАН Армении. Математика, том 46, н. 5, 2011, стр. 15-24.

О СЕР-ПОДГРУППАХ п-ПЕРИОДИЧЕСКИХ ПРОИЗВЕДЕНИЙ

В. С. АТАБЕКЯН

Ереванский Государственный Университет E-mail: avarujan@ysu.am

Аннотация. Хорошо известно, что произвольная группа G_1 является CEP-подгруппой как прямого произведения $G_1 \times G_2$, так и свободного произведения группы G_1 с любой группой G_2 . В работе получено необходимое и достаточное условие, при выполнении которого множитель G_i n-периодического произведения $\prod_{i \in I} {}^n G_i$ произвольного семейства групп $\{G_i\}_{i \in I}$, является CEP-подгруппой. В частности, согласно полученному критерию, любая группа G_1 нечетного периода $n \geq 665$ является CEP-подгруппой n-периодического произведения $G_1 \stackrel{n}{*} G_2$ для произвольной группы G_2 .

MSC2010 number: 20F05, 20F50, 20E06.

Ключевые слова: n-периодическое произведение; CEP-подгруппа; некоммутативный аналог группы рациональных чисел.

1. Введение

В работе [1] С. И. Адяном для каждого нечетного $n \geq 665$ была построена новая операция умножения групп, названная периодическим произведением данного периода n или n-периодическим произведением (см. также [2]). Эти операции умножения обладают многими свойствами классических операций свободного и прямого произведений групп, в том числе и свойством наследственности по подгруппам. Последнее свойство означает, что для любых подгрупп H_i сомножителей G_i n-периодического произведения $\prod_{i \in I} {}^n G_i$ семейства групп $\{G_i\}_{i \in I}$ тождественные вложения $H_i \to G_i$ продолжаются до вложения n-периодического произведение $\prod_{i \in I} {}^n H_i$ семейства подгрупп $\{H_i\}_{i \in I}$ в n-периодическое произведение $\prod_{i \in I} {}^n G_i$, т.е. подгруппы сомножителей порождают в $\prod_{i \in I} {}^n G_i$ свое n-периодическое произведение.

В. С. АТАБЕКЯН

Построенные операции периодического произведения групп решают проблему А. И. Мальцева о существовании ассоциативной, точной и наследственной по подгруппам операции (см. также [3], [4]). Доказано также (см. [5]), что периодическое произведение нечетного периода $n \geq 665$ данного семейства групп является простой группой в том и только том случае, когда каждый множитель этого произведения становится единичной группой при добавлении тождества $x^n=1$. Этот замечательный критерий простоты позволяет строить новые серии конечно порожденных бесконечных простых групп в многообразиях периодических групп нечетного составного периода nk, где k>1 и $n\geq 665$ и, тем самым, получить положительный ответ на вопрос: может ли многообразие, отличное от многообразия всех групп, содержать бесконечное количество неизоморфных неабелевых простых групп? (см. проблему 23 монографии [6]).

Работой [1] открылись новые возможности в теории периодических групп. В ней показано, что теория Новикова-Адяна (см. [7], [8]) может быть распространена на изучение факторизаций свободных произведений по специально выбранным соотношениям вида $X^n=1$. Именно, построение теории на базе свободных произведений позволяет ввести понятие n-периодических произведений групп (подробный обзор см. в [9]).

В настоящей работе мы исследуем свойства n-периодических произведений групп, связанные с так называемыми CEP-подгруппами (Congruence Extension Property). Речь идет о вполне естественном свойстве подгруппы: любую конгруэнцию на данной подгруппе H можно расширить до некоторой конгруэнции на всей группе G (следовательно, любая факторгруппа подгруппы H группы G естесвенным образом вкладывается в некоторую факторгруппу всей группы G).

В литературе для CEP-подгруппы помимо E-подгруппы используется также название Q-nodepynna (см. [13], [14]). Понятие CEP-подгруппы было введено Б. Нейманом в работе [10], где указанные подгруппы названы E-nodepynnamu.

Определение 1.1. Подгруппа H группы G называется CEP-подгруппой, если для любой нормальной подгруппы N_H группы H существует нормальная подгруппа N_G группы G такая, что $H \cap N_G = N_H$.

В частности, в работе [11] (см. также [12]) доказано, что в абсолютно свободной группе F_2 ранга 2 с порождающими a, b подгруппа порожденная элементами $[a, b^{2i-1}ab^{-(2i-1)}]$, (i=1,2,...) является CEP-подгруппой, изоморфной свободной группе F_{∞} бесконечного ранга. Соотношения

$$H_1 = H/N_H = H/H \cap N_G \simeq HN_G/N_G < G/N_G = G_1$$

показывают, что справедлива

Пемма 1.1. Подгруппа H группы G является CEP-подгруппой тогда и только тогда, когда любой эпиморфизм $H \to H_1$ на произвольную группу H_1 можно продолжить до эпиморфизма $G \to G_1$ на некоторую группу G_1 , содержащую H_1 в качестве подгруппы.

Лемма 1.2. Если подгруппа H группы G является CEP-подгруппой, то любая сопряженная c H подгруппа группы G также является CEP-подгруппой.

Легко понять, что центр любой группы является CEP-подгруппой и что любая простая подгруппа данной группы — CEP-подгруппа. Из леммы 1.1 очевидно следует, что любой ретракт H данной группы G тоже является CEP-подгруппой (подгруппа H группы G называется ретрактом, если тождественное отображение $1_H: H \to H$ продолжается до некоторого гомоморфизма $\alpha: G \to H$).

Запись $H \leq_{CEP} G$ означает, что H является CEP-подгруппой группы G, или, что подгруппа H CEP-вложена в группу G. Из определения CEP-подгруппы легко следует, что если $H \leq_{CEP} G$ и $G \leq_{CEP} F$, то $H \leq_{CEP} F$, т.е. свойство быть CEP-подгруппой транзитивно.

Одним из важных результатов о CEP-подгруппах является теорема А. Ю. Ольшанского из работы [15], согласно которой произвольная неэлементарная гиперболическая группа содержит CEP-подгруппу, изоморфную абсолютно свободной группе F_{∞} бесконечного ранга.

Как показано в работах [16], [17], свободные бернсайдовы группы B(m,n) достаточно большого нечетного периода богаты свободными периодическими подгруппами. В работах [13], [14], [18], [19] построены CEP-подгруппы свободных бернсайдовых групп B(m,n) достаточно большого нечетного периода, изоморфные свободным бернсайдовым группам $B(\infty,n)$ бесконечного ранга.

В дальнейшем через $\prod_{i\in I} {}^nG_i$ будем обозначать n-периодическое произведение семейства групп $\{G_i\}_{i\in I}$ введенное Адяном в работах [1], [2] для всех нечетных $n\geq 665$. В случае двух множителей будем употреблять запись $G_1\overset{n}{*}G_2$.

Из определений прямого и свободного произведения непосредственно следует, что произвольная группа G_1 является CEP-подгруппой как прямого произведения $G_1 \times G_2$, так и свободного произведения $G_1 \times G_2$ группы G_1 с любой группой G_2 . В работе получено необходимое и достаточное условие, при выполнении которого множитель G_i n-периодического произведения $\prod_{i \in I} {}^n G_i$ произвольного семейства групп $\{G_i\}_{i \in I}$, является CEP-подгруппой. В частности, будет показано, что любая группа G_1 нечетного периода $n \geq 665$ является CEP-подгруппой n-периодического произведения $G_1 {}^n G_2$ для произвольной группы G_2 , а также, что для любого простого числа p и для любой группы G группа $A_p(m,n)$ является CEP-подгруппой n-периодического произведения $A_p(m,n) {}^n G$ (группа $A_p(m,n)$ есть фактор группа группы A(m,n) — некоммутативного аналога группы рациональных чисел по подгруппе $\langle d^p \rangle$, где d — порождающий элемент центра группы A(m,n) (см. [20])).

2. СЕР-множители периодических произведений

Теорема 2.1. Множитель G_1 n-периодического произведения G_1 $^n G_2$ групп G_1 u G_2 , где $|G_2| > 2$, является CEP-подгруппой тогда u только тогда, когда любая нетривиальная нормальная подгруппа N_{G_1} группы G_1 содержит подгруппу G_1^n , порожденную всеми n-ми степенями элементов группы G_1 .

Доказательство. Предположим, что G_1 является CEP-подгруппой группы $G=G_1 * G_2$. Пусть N_{G_1} — нетривиальная нормальная подгруппа группы G_1 , а N такая нормальная подгруппа группы G, что имеет место равенство $N_{G_1}=N\cap G_1$. Выберем произвольные нетривиальные элементы a,g,b_1,b_2 такие, что $a\in N_{G_1}=N\cap G_1,\ g\in G_1$ и $b_1,b_2\in G_2$, где $b_1\neq b_2$ (по условию $|G_2|>2$). Рассмотрим элемент $b_1^{-1}ab_1b_2^{-1}ab_2g$. Заметим, что он не равен произведению двух инволюций в свободном произведении G_1*G_2 , т.е. — в ранге 0, так как из теоремы о нормальной форме для свободных произведений непосредственно следует, что один из циклических сдвигов произведения двух инволюций имеет вид $i_1zi_2z^{-1}$, где

 i_1 и i_2 инволюции из сомножителей произведения G_1*G_2 , а слово z либо пусто, либо $|i_1zi_2z^{-1}|=2|z|+2$. Значит слово $b_1^{-1}a(b_1b_2^{-1})ab_2g$ над алфавитом свободного произведения G_1*G_2 есть элементарный период ранга 1. Поскольку $a\in N$, то $(b_1^{-1}ab_1b_2^{-1}ab_2g)^n\equiv g^n\pmod{N}$.

Так как слово $b_1^{-1}a(b_1b_2^{-1})ab_2g$ является элементарным периодом ранга 1, то, согласно определению n-периодического произведения, в группе G выполняется соотношение $(b_1^{-1}ab_1b_2^{-1}ab_2g)^n=1$. Следовательно $g^n\equiv 1\pmod N$, что означает $g^n\in N$. Но так как $g\in G_1$, то $g^n\in N\cap G_1$, т.е. $g^n\in N_{G_1}$. Таким образом, из условия $g\in G_1$ следует, что $g^n\in N_{G_1}$ и поэтому имеет место включение $G_1^n\subset N_{G_1}$. Необходимость условия доказана.

Теперь предположим, что любая нетривиальная нормальная подгруппа N_{G_1} группы G_1 содержит подгруппу G_1^n , т.е. $G_1^n \subset N_{G_1}$. Рассмотрим произвольный эпиморфизм $\phi_1: G_1 \to G_1'$ и докажем, что его можно продолжить до эпиморфизма из группы $G = G_1 * G_2$ на некоторую группу G', содержащую G_1' в качестве подгруппы (см. лемму 1.1).

Если эпиморфизм $G_1 \to G_1'$ является изоморфизмом, то существование нужного эпиморфизма следует из точности операции n-периодического произведения (см. теорему 3 работы [1]). Поэтому можно считать, что $G_1' = G_1/N_{G_1}$ для некоторой нетривиальной нормальной подгруппы $N_{G_1} \lhd G_1$. Обозначим $G_2' = G_2/G_2^n$ и построим n-периодическое произведение $G' = G_1' * G_2'$. По условию теоремы $G_1^n \subset N_{G_1}$, следовательно, группы G_i' суть периодические группы периода n для i=1,2. Воспользуемся следующим утверждением.

Лемма 2.1. (см. [1], теорема 5) Если все группы G_i семейства $\{G_i\}_{i\in I}$ суть периодические группы показателя n, то периодическое произведение $\prod_{i\in I} {}^nG_i$ этих групп при нечетном $n \geq 665$ также есть периодическая группа показателя n.

Согласно лемме 2.1, группа G' тоже является периодической группой периода n. Построим отображение $\phi: G_1*G_2 \to {G'_1}^n G'_2$, сопоставляя каждому элементу $g_{i_1}g_{i_2}...g_{i_t}$ в нормальной форме свободного произведения G_1*G_2 элемент $g'_{i_1}g'_{i_2}...g'_{i_t} \in G'$, где каждый элемент g_{i_s} принадлежит или группе G_1 или группе G_2 , s=1,...,t а g'_{i_s} есть образ элемента g_{i_s} при соответствующем естественном

В. С. АТАБЕКЯН

эпиморфизме $G_i \to G_i', i=1,2$. Из определения отображения ϕ следует, что оно является продолжением ϕ_1 . Чтобы доказать существование нужного эпиморфизма $\overline{\phi}: G_1 \overset{n}{*} G_2 \to G_1' \overset{n}{*} G_2'$, достаточно показать, что отображение ϕ можно пропустить через периодическое произведение $G_1 \overset{n}{*} G_2$.

Докажем, что образ каждого определяющего соотношения группы $G_1 \overset{n}{*} G_2$ при отображении ϕ есть определяющее соотношение группы G'. Произведение $G_1 \overset{n}{*} G_2$ получается из свободного произведения $G_1 * G_2$ добавлением некоторых определяющих соотношений вида A^n , где $A \in G_1 * G_2$, следовательно, нужно проверить, что $\phi(A^n) = 1$ в группе G'. Но по определению $\phi(A^n) = (\phi(A))^n$, а группа G', как было отмечено выше, является n-периодической группой.

Для завершения доказательства остается вспомнить, что в силу точности n-периодического произведения, группа G_1 вкладывается в группу G, а группа G'_1 – в группу G'. Теорема доказана.

Согласно теореме 4 работы Адяна [1] операция n-периодического произведения коммутативна и ассоциативна. Поэтому, из теоремы 2.1 вытекает

Следствие 2.1. Пусть множество $\bigcup_{i\in I-\{k\}} (G_i-\{e_i\})$ содержит более одного элемента. Тогда множитель G_k n-периодического произведения семейства групп $\{G_i\}_{i\in I}$ является CEP-подгруппой группы $\prod_{i\in I} {}^nG_i$ в том и только том случае, когда любая нетривиальная нормальная подгруппа N_{G_k} группы G_k содержит подгруппу G_k^n , порожденную всеми n-ми степенями элементов группи G_k .

Как известно (см., например, [6]), группа с единственной минимальной нетривиальной нормальной подгруппой называется монолитической, а ее минимальная нормальная подгруппа называется монолитом группы. Согласно этому, теорему 2.1 можно переформулировать следующим образом.

Следствие 2.2. Пусть группа G_2 содержит более двух элементов. Тогда множитель G_1 п-периодического произведения $G_1^n G_2^n$ является CEP-подгруппой в том и только том случае, когда или G_1^n является монолитом группы G_1 или $G_1^n = \{1\}$.

Теорема 2.2. Пусть в группе G_1 содержится не более одной инволюции. Тогда множитель G_1 п-периодического произведения $G_1 * G_2$, где $|G_2| \neq 1$, является CEP-подгруппой тогда и только тогда, когда любая нетривиальная нормальная подгруппа N_{G_1} группы G_1 содержит подгруппу G_1^n .

Доказательство. Если $|G_1| \leq 3$, то утверждение очевидно, поэтому предположим, что $|G_1| > 3$. Пусть N_{G_1} – нетривиальная нормальная подгруппа группы G_1 , а $N \triangleleft G = G_1 \overset{n}{*} G_2$ и имеет место равенство $N_{G_1} = N \cap G_1$. Выберем произвольные нетривиальные элементы a, g, b такие, что $a \in N_{G_1} = N \cap G_1$, $g \in G_1$, $a \neq g$ и $b \in G_2$. Так как в группе G_1 содержится не более одной инволюции, то можно считать, что $a \neq g^{\pm 1}$. Следовательно, слово $b^{-1}abg$ не равно произведению двух инволюций в ранге 0. Очевидно, слово $b^{-1}abg$ есть элементарный период ранга 1, поэтому, согласно определению n-периодического произведения, имеет место равенство $(b^{-1}abg)^n = 1$ в группе G. Поскольку $a \in N$, то

$$(b^{-1}abg)^n \equiv g^n \pmod{N},$$

значит $g^n \equiv 1 \pmod{N}$, т.е. выполнено соотношение $g^n \in N$. Следовательно, из условия $g \in G_1$ вытекает, что $g^n \in N_{G_1}$, т.е. имеет место включение $G_1^n \subset N_{G_1}$. Необходимость условия доказана. Достаточность утверждения доказывается аналогично теореме 2.1.

Следствие 2.3. Любая группа G_1 нечетного периода $n \ge 665$ является CEP-подгруппой n-периодического произведения $G_1 * G_2$ для произвольной группы G_2 .

В качестве другого применения теоремы 2.2 рассмотрим фактор группу $A_p(m,n)=A(m,n)/\langle d^p\rangle$, где $n\geq 1003$ — произвольное нечетное число, $m>1,\,p$ — произвольное простое число, а группа

$$A(m,n)=\langle a_1,a_2,...a_m,d\,|\,a_jd=da_j$$
 и $A^n=d$ для всех $A^n\inigcup_{i=1}^\infty\mathscr{E}_i$ и $1\leq j\leq m
angle$

есть некоммутативный аналог группы рациональных чисел, построенный и исследованный в работах [8], [20]. Ясно, что группа $A_p(m,n)$ имеет задание:

$$A_p(m,n)=\langle a_1,a_2,...a_m,d\,|\,d^p=1,\,a_jd=da_j,$$
 $A^n=d$ для всех $A^n\inigcup_{i=1}^\infty\mathscr E_i$ и $1\leq j\leq m
angle.$

Пемма 2.2. Подгруппа $\langle d \rangle$ содержится в каждой неабелевой подгруппе группы $A_p(m,n)$. В частности, группа $A_p(m,n)$ – монолитическая группа с монолитом $A_p(m,n)^n = \langle d \rangle$.

Доказательство. Пусть $\overline{\Delta}$ – произвольная неабелева подгруппа группы $A_p(m,n),$ а Δ ее образ при естественном гомоморфизме

$$A_p(m,n) \to B(m,n) = A_p(m,n)/\langle d \rangle.$$

Поскольку фактор группа неабелевой группы по центру – нециклическая группа, то Δ – не циклическая.

В силу теоремы 1 работы [21], в нециклической подгруппе Δ содержатся элементы порядка n. Согласно утверждению [8, гл.VI, теорема 1.2], в Δ содержится некоторый элемент вида TAT^{-1} , где A – элементарный период некоторого ранга, т.е. $A^n \in \bigcup_{i=1}^{\infty} \mathscr{E}_i$. Тогда элемент $TA^nT^{-1} = TdT^{-1} = d$ принадлежит $\overline{\Delta}$. Первая часть утверждения доказана.

Остается показать, что если $\overline{\Delta}$ – нетривиальная абелева нормальная подгруппа группы $A_p(m,n)$, то $\overline{\Delta}=\langle d \rangle$. Поскольку подгруппа $\overline{\Delta}$ абелева, то ее образ Δ тоже – абелева нормальная подгруппа. В силу теоремы Адяна (см. [8, гл.VI, теорема 3.3]), всякая абелева подгруппа группы B(m,n) циклическая, т.е. $\Delta=\langle y \rangle$ для некоторого элемента $y \in B(m,n)$. Так как произвольный элемент x группы B(m,n) нормализует подгруппу $\langle y \rangle$, то $|\langle x,y \rangle| \leq n^2$ для любого $x \in B(m,n)$. По теореме Адяна (см. [8, гл.VII, теорема 1.8]) всякая конечная подгруппа группы B(m,n) – циклическая группа. Поэтому подгруппа $\langle x,y \rangle$ - циклическая, в частности, x и y коммутируют для любого $x \in B(m,n)$. Тогда y принадлежит центру B(m,n). Согласно другой теореме Адяна (см. [8, гл.VI, теорема 3.4]), центр группы B(m,n) тривиален, т.е. $\langle y \rangle$ — тривиальная подгруппа и поэтому $\overline{\Delta} \subset \langle d \rangle$. Но $|\langle d \rangle| = p$ — простое число, а $\overline{\Delta}$ нетривиальна, значит $\overline{\Delta} = \langle d \rangle$.

Заметим, что при $p \geq 3$ группа $A_p(m,n)$ не имеет инволюций, а группа $A_2(m,n)$ имеет единственную инволюцию d. Поэтому из леммы 2.2 и теоремы 2.2 вытекает

Следствие 2.4. Для любого простого числа p и для любой группы G группа $A_p(m,n)$ является CEP-подгруппой n-периодического произведения $A_p(m,n)$ $\stackrel{n}{*}G$.

О СЕР-ПОДГРУППАХ ...

Любопытно, что монолит $\langle d \rangle$ группы $A_p(m,n)$ является простой подгруппой и в то же время совпадает с центром группы $A_p(m,n)$, а каждое из этих условий достаточно, чтобы подгруппа $\langle d \rangle$ являлась CEP-подгруппой.

Abstract. There is a well-known fact, that any group G_1 is a CEP-subgroup both for the direct product $G_1 \times G_2$ and the free product $G_1 \times G_2$ of G_1 with any group G_2 . The paper gives a necessary and sufficient condition providing that a multiplier G_i of a n-periodic product $\prod_{i \in I}^n G_i$ of any family of groups $\{G_i\}_{i \in I}$ is a CEP-subgroup. Particularly, the found criterion means that any group G_1 of odd period $n \geq 665$ is a CEP-subgroup of the n-periodic product $G_1 \cap G_2 \cap G_3 \cap G_4 \cap G_4 \cap G_5 \cap G_5 \cap G_6 \cap G_6$

Список литературы

- [1] С. И. Адян, "Периодическое произведение групп", Теория чисел, математический анализ и их приложения, Тр. МИАН , **142**, Наука, М., 3-21 (1976).
- [2] С. И. Адян "Еще раз о периодических произведениях групп и проблеме А. И. Мальцева", Матем. заметки, 88, по. 6 (2010).
- [3] А. Ю. Ольшанский, "Проблема А. И. Мальцева об операциях над группами", Тр. сем. им. И. Г. Петровского, **14**, 225 249 (1989).
- [4] S. V. Ivanov, "On periodic products of groups", Internat. J. Algebra Comput., 5, no. 1, 7 17 (1995).
- [5] С. И. Адян, "О простоте периодических произведений групп", Докл. АН СССР, 241, no. 4, 745 – 748 (1978).
- [6] Х. Нейман, Многообразия Групп, Мир, М. (1969).
- [7] П. С. Новиков, С. И. Адян, "О бесконечных периодических группах. I, II, III". Изв. АН СССР. Сер. матем., 32, 212 244, 251 524, 709 731 (1968).
- [8] С. И. Адян, Проблема Бернсайда и Тождества в Группах, Наука, М. (1975).
- [9] С. И. Адян, "Проблема Бернсайда и связанные с ней вопросы", УМН, 65, no. 5 (395), 5 60 (2010).
- [10] B. H. Neumann, "An essay on free products of groups with amalgamations", Philos. Trans. Roy. Soc. London. Ser. A., 246, 503 – 554 (1954).
- [11] B. H. Neumann, H. Neumann, "Embedding theorems for groups", J. London Math. Soc., 34, 465 – 479 (1959).
- [12] G. Higman, B. H. Neumann, H. Neumann, "Embedding theorems for groups", J. London Math. Soc., 24, 247 254 (1949).
- [13] A. Yu. Olshanskii, M. V. Sapir, "Non-amenable finitely presented torsion-by-cyclic groups", Publ. Math. Inst. Hautes E'tudes Sci., 96, 43 – 169 (2003).
- [14] S. V. Ivanov, "On subgroups of free Burnside groups of large odd exponent", Illinois J. Math. Special issue in honor of Reinhold Baer (1902–1979), 47, no. 1-2, 299 – 304 (2003).
- [15] А. Ю. Ольшанский, "SQ-универсальность гиперболических групп", Матем. сб., 186, по. 8, 119 – 132 (1995).
- [16] В. С. Атабекян, "О простых и свободных периодических группах", Вестн. Моск. ун-та., Сер. 1. Матем., мех., по. 6, 76-78 (1987).
- [17] В. С. Атабекян, "О мономорфизмах свободных бернсайдовых групп", Матем. заметки, 86, no. 4, 483 490 (2009).
- [18] D. Sonkin, "CEP-subgroups of free Burnside groups of large odd exponents", Comm. Algebra, 31, 10, 4687 – 4695 (2003).

в. с. атабекян

- [19] S. V. Ivanov, "Embedding free Burnside groups in finitely presented groups", Geometriae Dedicata, $\bf 111$, no. 1, 87-105 (2005).
- [20] С. И. Адян, "О некоторых группах без кручения", Изв. АН СССР. Сер. матем., 35, по. 3, 459 468 (1971).
 [21] В. С. Атабекян, "О подгруппах свободных бернсайдовых групп нечетного периода n ≥ 1003", Изв. РАН. Сер. матем., 73, по. 5, 3 36 (2009).

Поступила 28 февраля 2011