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Abstract. The paper studies the differential equation
v+ (0747 (2) — q(a)) y =0 (%)
on the interval I = [0, 1], containing a finite number of zeros 0 < 21 <22 < ... <
< 2m < 1 of 2, i.e. so-called turning points. Using asymptotic estimates from [6]
for appropriate fundamental systems of solutions of (*) as |p| — oo, it is proved
that, if there is an asymptotic solution of the initial value problem generated by (¥)
in the interval [0,21), then the asymptotic solutions in the remaining intervals can
be obtained recursively. Furthermore, an infinite product representation of solutions
of (*) is studied. The representations are useful in the study of inverse spectral prob-
lems for such equations.
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1. INTRODUCTION

There are numerous research papers devoted entirely or partially to the study of the

equation
(1.1) v'+ (p°¢*(x) — q(z)y =0, 0<a<1,

where the real valued functions ¢? and ¢ are said to be the coefficients of the problem,
#” is the weight and ¢ is the potential function. Let I, be the set of points = € (0,1),
where ¢?(z) > 0, I_ be the set of = € (0,1), where ¢°(z) < 0, and let Iy be the
set of those = € (0,1), where ¢?(x) = 0. If both I, and I_ are of positive Lebesgue

measure, then the weight function ¢?(z) is said to be indefinite. The zeros of ¢*(z),
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which are assumed to form a discrete set, are called turning points or transition points
(TP) of (1.1). It is impossible to obtain exact solutions for the majority of differential
equations with variable coefficients, so it is necessary to find the best possible method
for approximation of solutions. One of the most useful mathematical methods is the
representation of a solution in an asymptotic form. For the existence of a solution of
(1.1) depending on the parameter p?, we would like to call the reader’s attention to
a complete historical review by Mingarelli [19].

The asymptotic techniques for solving differential equations of the form (1.1) play
a crucial role in analysis and in the development of methods of modern applied
mathematics and theoretical physics. The development of the asymptotic theory for
linear differential equations started by a work of Birkhoff [2], based on transformations
to first order systems, various diagonal transformation methods were applied by
many specialists. The reader can find them in the books by Wasow {26, 27]. The
results of Doronideyn [4], Kazarinoff [11}, McKelvey [18], Langer [14], Olver [22],
Wazwaz [28], Dyachenko [5], Tumanov [25] and Kheiri, Jodayree & Mingarelli [12]
give important innovations in the asymptotic approximation of solutions of the Sturm-
Liouville equations with two turning points.

The importance of asymptotic analysis in obtaining information on solutions of the
Sturm-Liouville equation with multiple turning points was shown by Leung [15}], Olver
[20-22], Heading [8], and Eberhard, Freiling & Schneider [6] in the case when the
coeflicients are smooth, in particular at TP. But the weakness of asymptotic methods
is that generally it is impossible to express exact solutions in closed forms, which
is necessary for the methods connected with dual equations. On representation of
solutions in closed forms, a result of Halvorsen [7] is known, which states that for
any z € [0,1] a solution y(z, A) of (1.1) satisfying a fixed set of initial conditions
is an entire function of the variable A, whose order does not exceed 1/2. Thus, it
follows from Hadamard’s factorization theorem (see, eg. [16]) that the solutions are
representable as infinite products, and this gives an alternate description that has not

been used for approximation purposes in various applications. Such infinite product
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representations have been effectively used by Trubowitz [23] and others [3,13], etc.,
in some theoretical considerations related to the inverse spectral problem associated
with (1.1) in definite cases, namely where the coefficient of the parameter A in (1.1)
is of a fixed sign in [0, 1], which is not true in the more general indefinite cases.
Nevertheless, there are some works of the same spirit as those of Trubowitz and the
mentioned above specialists (see, e.g. [10]), where such techniques is effectively used
in the study of inverse spectral problems associated with the indefinite problem (1.1).
This paper considers the Sturm-Liouville equation (1.1) on a finite interval I, say
1 =10,1], with a finite number of arbitrary turning points x1, s, ..., z,, subject to
any initial conditions, say y(0,A) = 0, ¥’(0,\) = 1, and the asymptotic solution in
intervals [zy—1,24], v = 1,2,...,m+ 1, 241 = 1, 20 = 0 is recursively obtained.

Then, the infinite product representation of solutions is studied.

2. NOTATIONS, FUNDAMENTAL SOLUTIONS AND PRELIMINARY RESULTS

Let us consider the real, second order differential equation (1.1) where p? = X is the

spectral parameter. In addition, we assume that

(2.1) ¢’ (z) = gol@) [ [ (& — =),
v=1
where 0 = 29 < 21 < 29 < ... < Ty, < 1 = X1, £y 18 natural, ¢o(z) > 0 for

x €1 =[0,1], and ¢ is twice continuously differentiable on I. In other words, ¢°(x)
has m zeros x,, v =1, ..., m, of orders [, in I, which are also called turning points.
We also assume that ¢ is bounded and integrable on I.

We distinguish four different types of turning points as follows: the symbol

I, if 1, is even and ¢°(z)(z —2,) " <0,
11, if 1, is even and ¢°(x)(z — z,) " >0,
III, ifl, is odd and ¢°(2)(z — z,) " <0,
1V, if I, is odd and ¢?(z)(x — 2,) " > 0.

is said to be the type of the turning point z,, 1 <v < m.

T, =

x
x

Further, for a turning point z,, 1 < v < m, we set

I’U,E - [xvfl + &, Ty41 — E] and My =
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where £ > 0 is assumed to be a sufficiently small, fixed number, and

(2.2) 9 { 2, if T,=1II11V

1, if T,=1,11I
1, if T,=1II,1V
(2.3) o = { 2, if T,=1,11I

Also, we define
[I]ElJrO(%) as A — oo,
el=a+0("), aeC,
oo = min{ g1, 1o, - - - fom }-
Besides, we set

S, = {p carg p € {—%70”
and note that by [6] for each fixed & € I, ., according to its type, there exists a
fundamental system of solutions {ZUTfl(ga?p)7 ZZ“Q(x?p)} of (1.1), which is described
by the following formulas.

Turning point of type I:
ool 2w {o [ ool 1) s <o <,

()| 712 ese 7y exp {p/z |¢(t)|dt} 1], 2y <z < Zpr1,

€T

(24) Z,,(z,p) =

6(e)] /2 exp {—p | |¢<t>|dt} 1], 2e 1 <2<

ot sinmsexn { = [ lo0l ) 1. o, <o <o

Loy

(2.5) Z, 5w, p) =

(2.6) Z! (w0, p) = @(ﬂp)l/%““ cse Wﬂuem(1/4+““/2)71%Z¢_(21)) (1,
5 Wiz,
(2.7) Z)y(20,p) = g(w)l/z““em(1/4+“”/2)7F(1¢_(iv)) 1],
where
x 1/2—p

sten = tim o) { [Cowary
and 1
(2.8) W(p) = W(Z} (x,p), Zs 5 (2, p)) = —2p[1],

where W(f(z),g(z)) := f(z)g'(z) — f'(z)g(z) is the Wronskian of f and g.
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Turning point of type 11:
(2.9)

|p(x)|~1/? exp{zp/Z |p( t)|dt} ife, 1 <z <wmY,
72 (2, )= ola)| Vs, {exp{zp/ 9(t |dt}

4 COS T iy exp{—zp/ |o(¢) |dt} [1 ]} ,ifry, <z <zpga,

ol 2 [exp {0 [ otolarf 1+

Zgz(gg7 p) = § +rcosmp, exp {zp/ |<b(t)|dt} [1]} , if 2y <z <y,

()| 712 sin 7, exp {—zp/ |<b(t)|dt} 1], if zy <z < @yqd,

(2.10)

o
@11) 2 (. p) = V2T 2 m e gy e (1 4nf2) 20 gy
’ 2 (1 — pi)
\/27r It ¢(x )
. VAR v 1/2 pio 1 (1/4—puar /2) v
(2.12) 0,2 (@0, p) = =5 a0
(2.13) W(p) =W (2 (z, p), ZI5(2, p)) = =2upl1].

Turning point of type 111:
e A A S
(2.14) ZIH (2, p) = —|¢< )71/ ese 22

<oxp {p [lot0ke+ TR i <o <o

ol 2 fexp { o [ oo} 1

+zexp{zp/ |¢(t)|dtH [1], if zy_1 <z <,
2(a)| /2 sin L2

xexp{ /|¢ |dt+ }[1]7 if z, <z <zpyq,

(2.15) Z[Y (=, p) =

(2.17) Zi (2o, p) = @(m)uz%ewv/zm (wgu) 1%’(‘11#_(22)) 1,

(218)  W(p) =W (2, (z.p). 2,5 (x,p)) = —2up]1].
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Turning point of type IV :

sl e {o [l it s <o <,
1 Ly _ .
L ese T ()1

(219) Z[%(w.p) = < Jexo {uo [ 1otk =5 b

+ exp{—zp/z |o(L)|dt + 2 } [1]} , i 2y < < xpy,

™

Ty 4
()] 2 exp{—p/zw(tndt} 0, i ae <o<a,
(220) ZL%(w.p) = § 25in L2 () V2

X {exp {—zp/z |p(¢)|dt — z%} [1]} , iz <z < wpy,

V2 2ip(zy)
2.21) ZHY (zy, p) = 1/2—pto J2a)
( ) u,l(ﬂﬂ 7P) B P CSC Tl F(l—uv)[ ]7
v V2T e, —emp)2 T\ 28 1p(zy)
(2:22) Z[5 (w0, p) = 5 —p!* e sec (£ )7“1_%)[1]7

(2.23) W(p) = W (Z,) (z, p), 215, p)) = —2p[1].
Halvorsen [7] proved that if 0 < ¢ <z < 1 and

[ totwiar 2o,
then the solution y(z, \) of (1.1), determined by fixed values of y, vy’ at ¢, is an entire
function of A of order 1/2. On the other hand, by Hadamard’s theorem an entire
function f(z) of a finite order [, can be represented in the following form:

2 h
_meal®) _Z LR 3 1z
f(z) =2"ed H(l an>eXp{an+2<an> +...+h o , z€C,

n
where a,, # 0 are the zeros of f(z), arranged in order of increasing magnitude, h <,
g(z) is a polynomial whose degree ¢ does not exceed ! and m is the multiplicity of the
zero of f(z) at the origin. By means of Hadamard’s theorem, we can find an infinite
expansion for sinh z and J/(z). It is well known that

0 2
sinhz:zH <1+%>7 zeC,
m2w

m=1
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and therefore
. = 202 = z
(2.24) sinh ey/z = c\/zwl;[l (1 + W) = C\/;71];[1 (1 + g) , z€eC,

where z,, = mm/c, and the holomorphity domain of the function f(z) = 2'/? is the
complement of the negative real axis z < 0, while its range is the right half of the
z-plane with the imaginary axis excluded.

Also, from [1] we have

2)1171 o0 22
. B P/ 0
(2.25) W) = e 1L (1= ) w0
m=1 m
where J,,, m = 1,2, ..., is the sequence of positive zeros of J|(z) and
2
(2.26) 32 = m?r? - % +O().

Putting z = ¢v/A and I'(1) = 1 in (2.25), we obtain

1 A2
(2.27) J! (C\/X) -3 H1 (1 - 5—2> 7
and similarly

(2.28) Ji (1) = % ﬁ (1 + A—f) .
1

s ES

For completeness, below we give the following well-known theorems which play an
important role in estimation of the infinite product and which can be found, for

instance, in [24].

Theorem 2.1. For any sequence of complex numbers p, , n=0,1,..., the product

>0

H(1 ern)

n=0

converges absolutely if and only if the series Y o py, converges absolutely.

Theorem 2.2. If p,(2), n = 0,1,..., are analytic functions in o simply connected

domain D, and the series

> Ipa(2)]
n=0

uniformly converges in every closed region R of D, then

>0

[T +pa(z)

n=0
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uniformly converges in every such R to a function f(z) analytic in D.

Theorem 2.3. (a) If amn, m,n > 1 are complex numbers such that

1
|amn|0<m>7 m#n,

then for anyn > 1

I1 (1+%mq1+0<ki”>.

m>1, m#n
(b) In addition, if b, (n > 1), is a square summable sequence of compler numbers,

then the product

I O+ amnbn)

m2>1, m#n
18 convergent.

3. ASYMPTOTIC FORM OF THE SOLUTION

Let us consider the second order differential equation (1.1) on a finite interval /, say
1 = [0,1], with any initial conditions, where vy and vy’ are determinated at a fixed
point ¢, for example y(0, A\) = 0, ¥'(0,A) = 1, also ¢ (=) is of the form (2.1) meaning
that I contains m turning points x1,z2, ..., Zm, which are zeros of ¢. A solution of

the problem in Iy . can be obtained by applying the initial conditions to
y(@,p) = C1(p) 214 (, p) + Colp) 21y (w, p), w € Iy,

In view of formulas (2.4) - (2.23) for the functions of {Zlel(gs7 0), ZleQ(ga7 p)} and their

derivatives, it is clear that this solution can be represented in the following form:

b0 (@ p) : = H(z, p) exp {(—1>5llu>5lp / ' |¢<t>|dt} Ei(z, p),

y(s,p) < = Flars, pn, p) csc s exp {(—1)91@)% / " |¢<t>|dt} Bi(a,p).

as it is done in Example 3.1 below. Here, the functions H(x,p) and F(zy,p1,p)

depend on the initial conditions and the type of the turning point z;. Moreover,

v(z)
Ej(w,p) = [1] +)_ ey, (2)],

n=1
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where a9 = a1 = —1, ap = —a_1 = 1, ﬁku(z)(x) 7§ 0,0<d< 6k1(x) < 5;@(95) <
- < By (®) < 2max{R (1), R_(1)}, and the integer-valued functions v and by,
are constant in all intervals [0, 21 —£] and [z + &, 29 — £] for sufficiently small £ > 0,

and

(3.1) Ry(x) = /05’3 vVmaz{0,¢?(t)} dt, R_(z)= /05’3 v/ maz{0, —¢2(t)} di.

The following theorem proves that if an asymptotic solution of initial value problem
(1.1) is obtained in the interval [0,1], then it can be obtained recursively in the

remaining intervals.

Theorem 3.1. Let Yo, o,..)(T,p) be an asymptotic solution of the initial value

problem (1.1) in the interval (x,,zy11). Then

(3.2) Y(0,01) (@, p) = H(z, p)exp {(—1)511(L)51P/Oz |¢(t)|dt} Ei(z, p)
= A(:E7 p)Ek(:E7 p)7

and for © € (xy,2y41), v > 1, we have

s
(3‘3) y(zv,zv+1)(x p) x17 H CSC
T <y
Tit1
x exp < (=1)% 71 (1)%p Z / (t)|dt
L <Xy

DY (—1>5v§+<—1>5v1<L>5vp/j|¢<t>|dt )

€y <Ly, Ty=I1T 1V

where k is the number of turning points z; < z, of Il or IV type. Also,

(34)  yler,p) = Flar, i, p) cscrmpus exp {(—nﬁuvlp I |¢<t>|dt} Byl ),
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and for x, > x1, which are turning points of Il or IV type, we have

(3.5) Y(zy, p) = Z%F(%Mmp) exp {(2 —du)em G - %)

yiz

H=1 ()" /O 1 |¢<t>ldt}csc““” 11 o35

x exp{<—1>5v1u>5vp >/

L <Xy

Tit1

o(t)|dt

7

LD DI VAt o §AC)

@3 <z Ty=IIT,IV

Similarly, for ©, > x1, which are turning points of I or I11 itype, we have

1 1 v
36 o) = g {2 vm (- + 2)

yiz
1)

+(—1)01(L)191p/0 ! |¢(t)|dt}csc7ruv H csc2 =

x exp{<—1>5v1u>5vp >/

T <xy T

Tit1

o(t)|dt

LD DI C VAt o § A}

@3 <z Ty=IIT,IV

where s is the number of turning points x; < z,, which are Il or I'V type.

Proof: Tt i clear that in the intervals (0,2z1) U (z1, z2) the solution can be obtained

by the formula
y(z, p) = C1(p)Z1y(z, p) + Cap) Z{5 (2, p),

and the initial conditions. For example, if z; is a turning point of IV type and

y(0,A) =1, ¥/(0, A\) = 0, then using formulas (2.19)-(2.21) and (2.23) we obtain

o) = 310020 2 exp {p [ 601t} 8o,

— H(z,p)exp {p I |¢<t>|dt} By, )

= A(O,zl)(x7 p)Ek('x7 p)
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Moreover, for the interval (z1,z9) we get

B7) Yo (@0) = 16| O] cse THL
(35) X exp {p | el [ o0 - %} Ey(,p)

1 T v v
= 340, (@1, p) csc % exp {Zp/ |¢(t)]dt — Z} :
x1

In order to find the solution in I -, we fix « € (1, 22) and write the obtained solution

in this interval as linear combination of fundamental solutions in Io:

(3.9) Ylas,z0) (@, 0) = Alp)Z3 4 (w, p) + B(p)Z33(x, p).-
Then, by Cramer’s rule we can determine the connection coefficients

Yoy (89205 (,0) = 2T, ), 1y (1)
W (2342, p), 255w, p)

Y @ P23, 0) = 233 (5, ) ) (2, 0)
W (233w, p), 285 ()

A(p)

(3.10)
B(p)

Note that {ZQT 2 (x, p), Z2T7 %(z, p)} are fundamental system of solutions in the intervals
(1, 29)U(x9, 23), and hence the continuation of the solution y(x, A) to (z9, z3) satisfies
(3.9), where A(p) and B(p) are the coeflicients obtained in the previous interval, but
now the formulas for {ZQTj(x?p)?ZQTfQ(x?p)} are used in z9 < z < x3. Further, one

can suppose that
y(zi,zi+1)(x7 p) - A(zi,zi+1)(x7 p)Ek (x7 p)

is the asymptotic form of the solution of the initial value problem in the interval
(x4, 2501), 4= 1,2, ..., m, with 2,41 = 1. Without loss of generality we can suppose
that 1 and a9 are turning points of IV and 111 types. Then, using formulas (2.14) -
(2.16) and those which they imply for the derivatives and taking into account (2.18),

we can calculate the connection coefficients A(p) and B(p) by (3.10). Thus, (3.9)
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yields
1 T TS 1
s o) = 3 pycse Tt e T exp Lo [ fototan

<exp {on [t = T o [lotolar+ 2

1

1 s v Wis
= 522 (2, 0) CSC% exp {p/ lp(t)]dt + Z} :

This procedure can be used to calculate the solution in the remaining intervals. For

completeness of the proof, note that acting in the same way one can obtain the

following representations.

(i) If z, is a I type turning point, then

Ay aoe) (@ 0) = Aoy 20y (@0, p) €SC Ty €XP {p/ |¢(t)|dt} :

(ii) If z, is a Il type turning point, then

Aty 20e) (@5 0) = Alwu_ | 20)(T0, p) CSCT 1y €XD {Lp/ |¢(t)|dt} :

(iii) If a, is a I11 type turning point, then

1 Ty “ v
Ay o) (@, 0) = gA(zvfl,z,J)(xm p) csc 5 exXp {p/ |p(t)|dt + Z} :

(iv) If z, is a I'V type turning point, then

1 Ty “ v
A(zv,zv+1)(x7 p) - §A(zv,1,zv)(xv7 p) CsC T exp {Lp/ |¢(t)|dt - Z} .

This completes the proof. |
Example 3.1. Let y(z, p) be the solution of 1.1 corresponding the initial conditions
y(0,0) =0, ¢'(0,)) =1.

Suppose, the first turning point zy is of I'V type, that is of the order [y = 4m+1, and
the other m — 1 turning points are arbitrary. Then, using the fundamental system of
solutions {Z{Y (z, p), Z{} (x, p)} we obtain

1
(311 ylw,p) = - (2140, 0215 (@ p) = Zi4 (@ 215 (0,0) @€ (0,0).
Hence, from (2.19) and (2.20) it follows that

(312) y(z,p) = W exo (o [ lotoiey 1= exo {=p [ fotoa )
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for z € (0,z1) or

T —1/2 z
(3.13) y(%p)%em{p / |¢<t>|dt}Ek<x7p> for @ e (0,a0).

Besides, in virtue of (2.21) and (2.22) we get

/ |p(0)|~ Y2\ 2mpl/ 2= #1284 (1) cse g
(3.14) y(@1, p) = AT(1 — py)

X exp {p I |¢<t>|dt} By, ).

Further, using Theorem 3.1 we can calculate

(3.15) y(x,p) = W cse %

4p
1 x

X exp {p/ |(b(t)dt+bp/ |p(t dt——}Ek(x p), x <z <.
0 1

We note that (3.15) also can be obtained directly.

Now, for a turning point of IV type we use Theorem 3.1. Then we find the solution

in the interval (z,, Zy41):

LSO . o
e A e T oxp o |¢<>|dt—z}

Iz+1

yiz
X H csc219i1exp{(_ )oo pZ/ (t)|dt

2o L <Xy Tz <Xy

(316) y(zv,zv+1)(x7 p) -

Y w/ 9(0)ldt — 4 Bl )

oLy <&y T;=IT1,IV

Besides, for a turning point of 111 type

1 o))V mpn “ &l
(817) Yy apa)(®,p) = S P 0S¢ —5 5 P |p(t)|dt — T
Tt Iz+1
X H CC 75 7 OXP (1) 1(1)%p Z / (t)|dt
2oLy <Xy L5 Ty

FY e T e [ ol T B,

wo Lw;<wx,:T;=ITT[IV
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Similarly, for a turning point of I1 type we obtain

1 |(z)p(0)|—1/2 T 1 v
(3.18) Y(wy,wpir)(@,p) = Z—k%mfcscwvew p/ |6(t)ldt — —

Tit1

X H csce 27;5?1 exp{( L A LEP Z/ (t)|dt

2oLy <Xy L5 Ty

LD DR G R /j|¢<t>|dt Bi(z, ).

Co Ly <@y Ty=ITI,IV

Further, for a turning point of I type we have

1 [o(@)g(0)| " mp {

o1 v
(319) Yoy 0 (@:0) = 5 2 csc = esempuy exp 4p | [@(t)]dt — Z}

m Tit+1
X H C5C 551 exp{( So=l()0 Z/ (t)|dt

Lo <Ly < Ty T <Xy

Y Ty /j|¢<t>|dt By, p).

oLy L@, Ty =ITI,IV

Indeed, using Theorem 3.1 we can obtain that for a turning point of I1 or I'V type

(3.20)  ylzy,p) = 2—S| O \/2_”4;(1“:2:11) (21) €SC T iy

X exp {p/ozl ()|t + (2 — 9, ) <_ - _>} IT eses

L <Xy
Iz+1
x exp { (—1)%>71(1)%p Z/ (t)|dt

L <Xy

and for a turning point of I or 111 type

1 [9(0)] /2 /Fm(1p) /212 () esc mp,

(321)  ylzy,p) = 5

A0 )
xexp{p/ 1|<b(t)|dt+(2—197J)L7r (——Jr >} H e8¢ 5
0 23 <o
Iz+1
x exp { (—1)>71(1)%p (t)|dt
ez

X Y Bl

@<k Ty=IITITV
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4. INFINITE PRODUCT REPRESENTATION

In this section, we consider the real, second order differential equation (1.1) with the

initial conditions
(4.1) y(0,\) =0, ¢'(0,\) =1,

under the assumption that ¢?(z) is a real function having m zeros z,, of the orders £,,,
v=1,...,m,in I, where ¢, is an odd number and 05, ¢35 ..., ¢, are even. Specially,
we suppose that ¢4 = 4k 4+ 1 and £, = 4k, v = 2,3,...,m. In the terminology
of [6], =1 is of the type IV while xq, 3, ...z, are of the type I1. Besides, the function
¢o : I — R — {0}, defined as

go(w) = ¢ () [ [ (@ —z) 5,

v=1

is twice continuously differentiable.

Now, let S(z,A) be the solution of the initial value problem (1.1), (4.1). Then by
Halvorsen’s result, S(z, A) is an entire function of the order 1/2 for any fixed z € (0, 1),
and therefore by Hadamard’s theorem [3], S(x, A) is representable in the form

S, \) = s(z) ﬁ (1 - ﬁ) :

n=1
where s(2) is a function independent of A but can depend on z. For any z, the sequence
{wy, () }3° is the set of zeros of S(x, A), i.e. S(z,w,(z)) = 0, which corresponds to the
eigenvalues of the boundary value problem L(¢?(z),q(x),z) defined by the second-

order differential equation (1.1) with the boundary conditions
y(0,A) =0, y(0,A) =1, ylz,A)=0.

We see that for any fixed z each w,(z), n = 1,2,..., appears in the denominator
and hence must be nonzero. Adding the extra condition ¢(z) > 0 for any z, we get
wp(x) # 0 by Sturm’s comparison theorem. Further, for any fixed « € (0,21) the

function S(z, A) has the asymptotic representation

(4.2) Sl A) = 23p|¢<x>¢<o>|*1/2 exp {p / ' |¢<t>|dt} Bi(z, p).
71



H. R. MARASI
For any = € [0, z1), the boundary value problem L(#?(x), ¢(z), z) has infinitely many
negative eigenvalues, say {A (z)}, and in this case w,(x) = A, (z). Besides, due to

(1.1) the asymptotic representation of each A, (x) is of the form

(4.3) = () = nm (/Oz|q§(t)|dt>1+0 (%)

By Hadamard’s theorem, for a fixed = € [0, z1) the following representation is true:

T ()

n=1

where the function s(z) is independent of A but may depend on z, and for any =
infinitely many negative eigenvalues {\, (x)}5°, form the zero set of S(z,\). We

rewrite the infinite product as follows:

A A=A (x)
(4.4) Sz, A) = s(x) 1—— = s1(z) —_—
}; ( A (x)) 1 1; 22
where
—22 nm
si(z) = s(z) [] x(;) and 2z, = )

Note that

—22 1
n_=140|—
ey (5):
and hence by Theorem 2.1 the infinite product
1
Am ()

m>1 """

is absolutely convergent on any compact subinterval of (0, z1). Besides, the function

L2
/\f(*;) is continues, and so the O-term is uniformly bounded in =z.

The proof of the following theorem is similar to Theorem 6.1 of [9] and therefore

omitted.

Theorem 4.1. Let S(z, ) be the solution of (1.1) satisfying the initial conditions
S(0,3) =0, §'(0,\) = 1. Then

A= (x)

Sz, A) = ¢(2)(0)| V2 R_(2) ] =, 0<w<a,
m>1 m
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where

M R (a)— /Oz\/max{Q—qbz(t)}dt?

and the sequence A, (x) (m > 1) is that of the negative eigenvalues of the boundary

value problem L on [0, z].

Similarly, Theorem 3.1 implies that for any z, < z < zy41, v =1,2...m, Tp1 =1,

the asymptotic form of the solution of the initial value problem (1.1), (4.1) is

1
(4.5) Sz, p) = %|¢(x)¢(0)|71/2 cse % CSCTT 4o -+ CSC T by 1 CSC T Ly

o1 ¢ v
X exp {p [ 1etoleao [ ool - z} Bu(a, ).
0 z
Further, the boundary value problem L in [0, 2] has a countable set of positive and
negative eigenvalues which we denote by {\,(z)} = {AF(2)} U {A,(z)}, and the

following formulas are true:

wite) = (o= 2) ([ |¢<t>|dt)1 +o(2),
VAt = = (nr =) (/O |q§(t)|dt>1 4o (%) .

By Hadamard’s theorem, for z, < x < z,41 the solution on [0, z] is of the form

-1 ) (1 )

n>1

(4.6)

Let J,, be the sequence of positive zeros of J{(z). Then (see [1], § 9.5.11)
o)
7 1
IS EE——— + O <_> ,
R (@M (@) 2

%2
—In 1
— I i 0(=).
moem o (#)
Consequently, the infinite products
o) o)
In —Jn
—" ———  and —
Umons Umone
are absolutely convergent for each = € (xy, 2y+1). Therefore, we can write
A=A (2)R? (24 A(x) = AR (=
6T St — e [ AT DR 1) (i) - VR @

=2 =2
n>1 In n>1 In
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where

0o) — 90) [T g [ i
RN (@) L T an @

Theorem 4.2, Ifz, <z < aypr1,v=1,2,...m and xm+1 =1, then

(4.8)  S(z,\) = g| ( Yo ()| 1/2(3,(95)&(95))1/2csc%csmm...csmuv
o)) R? (x A(z) = MR (z
H : (1)H( ()52)+()7
n>1 n n>1 "
where

0= [ Ve Fw, B~ [ e -

the sequence {\, (z)} is that of the positive eigenvalues and {\, (x)} is that of the

negative eigenvalues of the boundary value problem L in [0, z].

Proof: By Lemmas 2 and 3 of {10}, for a fixed x the infinite products

I (A=A (2)) R (11)7 I (Ai(x):A)Ri(x)

n>1 jn n>1 In

are entire functions of A, with sequences of zeros A, (z) and A (z) (n > 1) respectively.

Moreover,

’ﬂ

(A= Ao ( )R (1) A)RZ()
I I

dexp q R_(z1)vV A
— WRl/z({%)Ri/lz(x)jX {Cos <R+(x)\/X— 7r/4) +0 (%) }

as A — oo. Consequently, using of the asymptotic expansion (4.5) of S(x, A) we get

(A=A (@) B2 (1)

—1
X)) — 2 x
gu(x) = S(,\) (H 11 At (=) 72A)R+( ))
n>1 jn n>1 In

™ _ 1/2 s
= Zle@)pO) (R (w) R () cse T escmpy - csep,

which completes the proof. |
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