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Abstract. We deal with overconvergence phenomena of power series with radius
of convergence zero. Among others it is shown that the partial sums of such series
can be elongated to become Cesaro summable on a set § C {2 : [z| > 0} if and only

if the considered power series is overconvergent.
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1. INTRODUCTION

We consider a power series

o0
(1.1) }_Ea,,gv with T |a,['/* = o0
V=

which has radius of convergence zero. Its partial sums

T

(1.2) sn(2) =) ayz”
=}
are divergent for all z # 0 and quantitatively we have
o 1/n
(1.3) ,}’_I,‘c{ol“"ﬂ(zn =00 forall z #0.

We define C as the family of all functions f : R — C which are infinitely differentiable
on R. Then, according to a classical result of E. Borel (see. e. g. 6], page 191 or 7]

page 102) for any sequence {a,} of complex numbers there exists a function p €

i SN
'"The research work of the second author has been supported by German Academic Exchange
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with the property that its sequence of derivatives satisfies »")(0) = a, for all v € Ny.

Hence, there is a function g € C> such that the power series (1.1) can be written as

oo

Z g(u) (0) P
v!

=0

and therefore represents the Taylor series of g. Of course, this series has no analytic
properties around the origin.

However, among others, we show in this paper that certain power series of the type
(1.1) may - by applying simple analytic operations to their partial sums — generate
holomorphic (and other) behavior on sets in |z] > 0. Our idea is, to modify the
sequence of partial sums by .elongation” and to apply a summability method to the
new sequence.

We say that a sequence {s,} of complex numbers is being elongated with respect to
a sequence m = {m,} of natural numbers if the term s,, is listed mp-times, i. e. the

modified sequence

SPs e 350351y o3 Shyer s Sk Shy.n
e et e —_— —
mg—times my—times my.—times

is considered. Occasionally we denote this new sequence as the m-elongation of

{sa}. It is clear that {s,} converges if and only if any m-elongation converges.
This may change drastically when instead of convergence, summability properties

are considered.

We mainly concentrate ourselves to the C; means (arithmetical means) which transform

the partial sums (1.2) into

(1.4) on(z) = - -Zs,,(z).
v=0

n+1l

This sequence again diverges for all z # 0 and simple estimations show that (in

analogy to the behavior of partial sums) the following holds:

lim |cJ'n(z)|lh1 =00 forall z #0.

n—oo

It is the object of this paper:

e To demonstrate in part 2 that certain power series of type (1.1) may show
overconvergence phenomena with respect to certain notions of convergence.
e To prove in the main parts 3 and 4 that special elongations of the partial

sums of those series may be C; summable in sets, contained in |2| > 0 and
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that this property occurs if and only if the power series under consideration

is overconvergent.
2. OVERCONVERGENCE

A power series iq: a,z" with radius of convergence zero is called overconvergent, if
there exist a se:_SU C {z : |z| > 0} and a subsequence {s,,(z)} of its partial sums
which converges on S. Such a sequence is called an overconvergent subsequence of
the consideres series. (There are other definitions of overconvergence also.)

In this part of our paper we construct power series which have different overconvergence
behavior with respect to certain convergence concepts.

For the construction of those series the following Lemma is useful.

Lemma 2.1. Let K be a cornpact set with connected complement, 0 ¢ K, a number

g € N, a holomorphic function F on K and € > 0. Then there exists a polynomial of
the type

Q
P(.Z) — Zapzl’
H=y

with

max |#(2) ~ P(z)| <&

Proof. The function F(z)/z% is holomorphic on X and by Runge's approximation

theorem there exists a polynomial Q(z) = ¥~ a,2" with

v=0
- F(z) €
“}?XIQ(’Z) “Hn w

Then P(z) := 29Q(z) has the required form and we get
max |P(z) - F(z)| < e,

Lemma 2.1 is.proved. .
In the following results we describe various overconvergence phenomena which deal

as basis for the main results in parts 3 and 4.

Theorem 2.1. Let an open set O with simply connected components be given, 0 ¢ O

and a function f which is holomorphic on Q. Then there exists a power series S a,z"
. S : . v=0
with radius of convergence zero and e sequence {py}, such that the subsequence

{Spk(zJ} of partial sums converges compactly to f(z) on O,
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Proof. 1‘ W"e ha"‘e O — U G‘J “,-here the set J — {1‘2} &8 ‘} IS ﬂl’lite or COUnt&hle
JEJ ’
and the G; are pairwise disjoint simply connected domains. For each j € J we can

. & Ak wi i P aTre . k
choose a sequence of Jordan domains {G_&-“} exhausting G, which means that G_(,- L E

G_E-k] C G’E“’” C Gy for all k € N and that a compact set B C Gj is contained in
some G_gk").
We consider Ky, := |J Gﬁ'k) and a point z ¢ K with 0 < |2| < % Then K U {2}
JES
Jgk ; o
is compact with connected complement and does not contain the origin.

2. Now we construct a sequence of polynomials and a strictly increasing sequence

of integers by induction. Suppose that Py(z) = z,q0 = 0 and that for a k € N the

polynomials
qn

Po(z)=2,..., Pca(z) = D, i

v=qi-1+1

are already determined. Then, by Lemma 2.1 there exists a polynomials Py of the

form
Hh41
Biz) =" >, mz"
v=qu+1

with
s k-1 1

: max |Py(2) - {/(2) - 2P~<2>H =
and
(2.2) |Pe(ze) — 2| < 1.

] r . . P m . .

3. We consider the power series S a,z” and with the abbreviation px = gk+1 W€ get
=00 v=0 i

(observe that there are no overlappings of the coefficients in the polynomials):

P k
Spi(2) 1= Z augl = ZP,(Z).
L p v=0 v=0
et be given any compact set K C O, then there exists a ko with K C K for all
k > ko. Then, for k > ko, we obtain by (2.1)
K
ma 2) — >
o lsm( ) f("’)' < n}{&}‘x|sm(z) - f(z)i = 11}&}{'2 P,(2) - f(2)| < %
v=0

Since X € O was arbitrary, we obtain that {Sm (z)} converges on O compactly to
f(z).
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POWER SERIES WITH RADIUS OF CONVERGENCE ZERO

4. The constructed power series has radius of convergence zero. Otherwise there would

o0
exist an r > 0 such that ) a,z" is uniformly convergent on |z| < r. We have

v=0
0 < |zx| < r for sufficiently great k and it follows from (2.2)

Tl
Y aﬂ;':' = |Pu(z)| > 1,
v=qs+1
which contradicts Cauchy’s criterion for uniform convergence. d

Remark 2.1. Theorem 2.1 can be derived from a result due to Seleznev [5] (see
also Grofe-Erdmann [1, Theorem 17]) on universal elements. We prefered to give an

elementary and direct constructive proof.
In the next result we deal with pointwise or uniform overconvergence.

Theorem 2.2. There exists a power series i} ayz” with radius of convergence zero
and a sequence {py}, such that the subseque;c_e {5p.(2)} of partial sums converges to
zero

(a) pointwise for all z € C,

(b) uniformly on each compact set which does not intersect [0, co),

(c) uniformly on each compact set contained in (0, 00).

Proof. We consider the compact set
1
Hi= {z:?c'gzisk}\{“ﬁe(ff)>U,0<Im (z)<%}

which has connected complement and construct s sequence of polynomials {P;.} and
a strictly increasing sequence {ax} of integers by induction. Suppose that Py(z) =

z,qo = 0, and that for kel
QL
Po(z) =2z,..., Py (2) = Z 0, 2"
; v=gqp-1+1
have already been determined. Then, by Lemma 2.1 we find a polynomial
k41
Pk(z) = Z ayzu
V=gr+1
with
k-1 A
Py 1
(2.3) n}éx] k(z)+§}P,,(z)| < 5
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and
(2.4) ka(zik) & 2‘ <1

20
We consider the power series Z a,z”. If we abbreviate Pr = qr+1 then we have
v=0

Spr (2) == Z

k
fo Sl ZPV(Z)'
v=0 v=0

Let a point 2 € C be given. If z = 0 then s,, (0) = 0 for all k and for z # 0 there

exists a ko with z € K. for all k > ko; it follows from (2.3) that {sp.(z)} converges
to zero.

P

If K is a compact set with X N [0,00) = 0 or K C (0,00), then in both cases there
15 a ky with K C Ky for all k > k; and it follows again from (2.3) that {sp,(2)}
converges on K uniformly to zero.

As in step 4 in the proof of Theorem 2.1 it follows from (2.4) that the constructed

3 i ; O
POWer series cannot have a positive radius of convergence.

o0
Remark 2.2, If f is an entire function with the power series Zﬂ fuz¥, then
o0

Z (ay + fu)z”

still has radius of convergence zero and its sequence of partial sums
v=()

{ Pi (ﬂ'v‘f‘fv)zb

} converges to f(z) for all z € C and uniformly on each compact set
r=()
K with Kn [Uoo) =0 or K & (0, OO)

A result, similar to Theorem 2.1 also holds for power series with positive radius of

convergence which we mention without proof.

oo . .
Theorem 2.3, There ezists a power series Y. a,z” with radius of convergence 1 and
v=0 ey y
4 sequence {p.} such that the subsequence {sp.(2)} of partial sums converges AR

(a) pointwise for all z,|z| > 1,

(b) uniformly on eqch compact set K C {z : |z| > 1} which does not intersect
[]‘!OQ)J'

(¢) wniformly on eqch compact set K C (1, 00).

There also exists a result for measurable functions on measurable sets which easily

follows from a theorem of Tomm und Trautner [7), where even much more has been
proved.
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Theorem 2.4. Let M C C be a (Lebesgue-)measurable set and let the function
oo

f M — C be measurable on M. Then there exists a power series Y. a,z” with
v=0

radius of convergence zero and a sequence {py} such that the subsequence {5 (2)}

of partial sumns converges to f(z) almost everywhere on M.

To see this, consider the function
N Jf@2), if zeM
ali {0, if 2¢ M
which is measurable on C and it suffices to construct a power series with radius of
convergence zero with an almost everywhere convergent subsequence to the limit 9(z).

But the existence of such a series follows from Theorem 1 in the above mentioned

paper [7].

3. ELONGATIONS

We now show that overconvergence phenomena permit the elongation of partial sums
to become C; summable throughout the set of overconvergence. Then, in ——
shown - as a converse result — that such an elongation i1 S I IR So st ared
power series is overconvergent.
= L
Theorem 3.1. Let ) avz” be a power series with radius of convergence zero and
U.—.
partial sums s,(2) = Z a,z". Suppose that there exists an overconvergent subsequence
{sp(2)} which is on ¢ set Sc{z:|z| >0}

compactly convergent
or uniformly convergent
or  pointwise convergent
or almost everywhere convergent

to a limit f(z).

Then there exists an elongation of {Sn(z)} such that its Cy transforms have the same

convergence properties s {8p:(2)} on S.

Proof. Let be given such a set S where {s,,(z)} satisfies one of the assumptions.

1. We consider the sequence {p;} and for every k& > 1 we choose

my =k (pry :
(3.1) my (P41 + 1) ogflgaja}iﬂ { lrillclk s (z)|}_

51



W. LUH, A. STEPANYAN

we elongate the sequence {s,(z)} to the sequence {$n(2)} where the partial sums

Sp, (z) for k > 1 are listed my + 1 times, i. e. we consider the sequence

301'"73111—1:5?173?:!'--:3111 }3p1+1r"-?SPk'—l!S.PS:’SPk""‘SPk e
—— e —

my —times my—times

Any natural n > p; has a representation of the form

%
(3:2) n=p+ Zm,, +9, wherel <9 < Prtr— Pk
v=1
or
k
(3.3) n = pra1 + Zmu +~, wherel <7 <M1
r=1

2. If n has the form (3.2), then we get

crn(z) = ! g 12 3,,(3) =
v=0

n+1
1 Pa+v 1 19) ( )
s 2 . LS .+ 1+ S Z) 4
1 VE-G 5;,(2) 1 (p.L Pr+1

K
1
vl {;?”usm(ﬂ + (px + 1 +ﬂ)3m+1("‘)}'

The last term of this identity is exactly the €, mean of a sequence elongated along

{55 (2)} and therefore has (by the regularity of the C trans
properties as {s,, (2)}.

By (3.1) we get for the remaining terms and all sufficiently great &

form) the same convergence

max d L
|z|<k ‘n + l(pk +1+9) bPk+1(“) <
Pr+ 149
= k '|~|%{|3m+1(z)| £
Pt Y my+9+1
v=1
< Pt Rl 1
5 My Irillg}f, |SPI¢+1(Z)| E ‘;‘C‘
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and
1 p&+|9
max Sp\2 S
E ISL‘N el E_: 5
v=0
pe+U+1 ) { }
= k vg’ﬁﬁ |2 |4L|S"(2 |j <

P + Zm.,+19+1
v=1

P&+1+ ; 1
u<mpal}i;{| et s z)l} %

Therefore these terms are compactly convergent to zero on C.

3. If n has the form (3.3) then we get

n

on(z) = —-1—-Z§u(3)=

n+1

v=0
Phl
1 1+ pras
o 1 e Zs”()_ n+1 *Spigs (2) +
E v=0

1 - :
o g { Zm-.,sp,(z) + (n +1- Zmu)sm+1(z)}.
=1 v=1

n+1

Again, the last term has the same convergence properties as {s,, (z)} and the remaining

terms are estimated in a similar way as in step 2. 0O

Remark 3.1. The Cesiro means Co of order o > 1 of the partial sums (1.2) are

given by

() (2) = (,Hlm) : Zn: (n T dllean. 1) 5u(2)-

For o« = 1 we obtain the above considered arithmetical means. It is well known that
for 1 < ay < oy the Ca, transform is stronger than Cy,. So, Theorem 3.1 holds also
for all Cesaro means Co of order @ > 1 and in addition for all Hélder means H,
of order o > 1 since Hq is equivalent to Co. Moreover, Theorem 3.1 remains true
for all summability methods which are stronger than the Cy means. For g number of
those exzamples see for instance [3, chapter 2] or [4, chapter II, 6. 1].
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4., THE CONVERSE RESULT

We now show, that elongations as in Theorem 3.1 are possible only in the case that

the power series under consideration is overconvergent. For the proof the following

Lemma is essential.

20
Lemma 4.1. Let Y a,2” be a power series with radius of convergence zero. Suppose
v=0
n
that there ezists an m-clongation of the partial sums sn(z) = S apz” such that their
=0

C, transforms are bounded at a point 2o with |z0| > 1. Then {;—:1—:} has a bounded

7L
subsequence, where My := Y m,.
=0

Proof. 1. Let {t,} be a sequence with the property that its Cy transforms

are bounded. We have t, = (n+ 1) Tn — N Tn-1 and it follows that {t-f;} is bounded.
2. Let the m-elongation {5;(2)} of {5n (z)} have the form
85(2); -, 80(8) s o -a sulz)ivssy G R
mg—times my—times
Then by the assumption, the C; transforms of {Sk(2) } are bounded at zo.
by step 1 that {E"—‘;{ﬁ} is bounded. Since 5ar, (20) = $a(20) We obtain with a positive

constant C:

This implies

% <C or |sal%)| £C-Mn.

3. Now choose any fixed R > 1. If {,‘%L} would not h
M n
m- — o and there exists an ng such that M, > R-mnx fo

for those n

ave a bonded subsequence, then

r all n > np and it follows

1
Mn T ﬂ’fn_]_ = MMp S —éﬂ’l’n

or

1.

M, <8 M,_,;, whereS = o1

It follows

M, <S- M, < s2. At Mg gn—mo . M.
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We therefore have |sn(zc|)| < C - 8" - My, which implies

Tm |sn(z0)|/" < S
n—=+oo

in contradiction to (1.3).

As a corollary one obtains now easily:

Theorem 4.1. Let 5. a,z” be a power series with radius of convergence zero and

v=0

. " mn
suppose that there exists an m-elongation of the partial sum s,(z) = Y a,z" whose
v=0
Cy transforms are on a set S C {z:|z| > 0}:

compactly convergent

or uniformly convergent e
; to

or pointwise convergent a limt f(z).

or almost everywhere convergent

Then there exists a subsequence {sp, ()} of the partial sums having the same convergence

properties with the same limit o7 S.

Proof. According to Lemma 4.1 there exists a sequence {p;} C N such that {%‘L}
T P‘&

is bounded.
We consider the following subsequence of the C; transforms:

1 T
pn(z) = E ’ Zm"‘gv(z)
v=0
(of course, with the corresponding convergence properties on the set S ) and obtain

M, - Pn(z) = Z?ﬂ.ysu(z)‘
=0

n-—1
My-1-pn-1(2) = Zm,,sy(z),
U’:U_

which gives us

My * 51:(3) =M, - pﬂ(‘z) = My, - pn-—l(z) =

= Mﬂ + {pn(z) = pﬂ—l(z)} + My pﬂ—l(zl-):

M

sn(z) = m_: 2 {pn(z) = ,0,1_1(2)} + pn-1(2).

Setting now n = Pk We find that {SPk (z)} has on S the same convergence properties

as {pn(z)} which proves the theorem. O
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