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1. I N T R O D U C T I O N 

Below N, Z and R denote the sets of all naturals, integers and real numbers respectively 
For any a, b £ Z, we denote Z(a) = {a, a + 1 , • • • }, Z(a, b) = {a,a + 1, • • • ,b} 
when a < b. Besides, lp denotes the space of all real functions whose pth powers are 
summable over Z. 
The present paper considers the existence of a nontrivial homoclinic orbit for the 
following p-Laplacian difference equation 

(1.1) A(pp(Au(t - 1))) - pp(u(t)) = X(t)f (t, u(t + 1),u(t), u(t - 1)), t £ Z, 

where A is the forward difference operator Au(t) = u(t+1)-u(t), A 2u(t) = A(Au(t)), 
pp(s) is the p-Laplacian operator pp(s) = \s\ p - 2s(p > 2), Л £ C(Z, R ) and f £ 
C(Z x R 3 , R ) . 

p 

functional differential equation 

(1.2) [pp(u')]' - pp(u) = Л(s)f (s, u(s + 1), u(s), u(s - 1)), s £ R , 

where f £ C(R4, R ) . Equation (1.2) includes the following equation 

(1.3) c 2u"(s) = V'(u(s + 1) - u(s)) - V'(u(s) - u(s - 1)), s £ R . 
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Equations similar to (1.3) have been studied by many researchers. For example, using 
a version of the Mountain Pass Theorem, Smets and Willem [27] have proved the 
existence of solitary waves with prescribed speed on infinite lattices of particles with 
nearest neighbor interaction for (1.3). 
Recently, the theory of nonlinear difference equations has been widely used in the 
study of discrete models appearing in many fields such as computer science, economics, 
neural network, ecology, cybernetics see [1, 14, 15, 17, 20]. For example, the simple 
logistic equation un+i = run is a formula for approximating the evolution of an 
animal population over time, where un is the number of animals this year, un+i is 
the number in the next year and r is the growth rate or fecundity. The price-demand 
curve of cobweb phenomenon 

Dn = -mdpn + bd, md > 0, bd > 0 

is the economics application of difference equations, where Dn is the number of units 
demanded in period n, pn is the price per unit in period n and md represents the 
sensitivity of consumers to price. 
In the theory of differential equations, a trajectory which is asymptotic to a constant 
state as |s| ^ то (s denotes the time variable) is called a homoclinic orbit. Such orbits 
have been found in various models of continuous dynamical systems and frequently 
have tremendous effects on the dynamics of such nonlinear systems. So the homoclinic 
orbits have been extensively studied since the time of Poincare, see [4, 6, 9, 13, 16, 
21, 23, 25, 28] and the references therein. Similarly, we give the following definition: 
if x is a solution of a discrete system, another solution z will be called a homoclinic 
orbit emanating from x if lz(t) — xl ^ 0 when t ^ ±то. 
Homoclinic orbits of dynamical systems are important in applications for a number of 
reasons. They may be "organising centres" for the dynamics in their neighbourhood. 
From their existence one can under certain conditions, infer the existence of chaos 
nearby or the bifurcation behaviour of periodic orbits. In the past two decades many 
authors studied homoclinic orbits for dynamical systems via critical point theory. 
Here we only mention [6, 9, 16, 21, 28]. In particular, the second order systems were 
considered in [6, 16]. 
It is well-known that critical point theory is powerful tool to deal with the problems 
for differential equations [18, 19, 24, 29]. Only since 2003, the critical point theory has 
been employed to establish sufficient conditions on the existence of periodic solutions 
of difference equations. In particular, Yu, Shi, Chen and their collaborators considered 
the existence of periodic solutions of second order nonlinear difference equations [8, 
10 - 12, 26, 30, 31]. In the recent paper of Cabada, Li and Tersian [7] the existence 
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p 
coefficients is studied. However, to our best knowledge, the results on the homoclinic 

p 

scarce. Since f in (1.1) depends on u(t + 1) and u(t - 1), the traditional ways of 
establishing the functional in [2, 3, 10 - 12, 22, 30, 31] are inapplicable to our case. 
The main purpose of this paper is to give some sufficient conditions for the existence 

f ( t , •) 
t£ 
obtained. The main approach used in our paper is variational techniques and the 
notable Mountain Pass Lemma introduced by Ambrosetti and Rabinowitz [5, 24]. 
Now we state the main results of this paper. 

T h e o r e m 1.1. Assume that the following hypotheses are satisfied: 

(Л) Л(t) > 0 for a,lit £ Z and E Л q(t) < where p + 1 = 1; 
t=—ж 

( f i ) there exists a functional g(vi,v2,v3) £ C(R ,R) such that 
g(v1;V2,V3) 

lim = 0 , r = \ v2 + v2 + vi, 

r^o v2 V 1 2 3 

\f(t,vi,v2,v3)\<\g(vi,v2,v3)\, for all t £ Z; 

(Fi) there exists a functional F(t,vi,v2) £ C  i(Z x R2,R) with F(t,v\,v2) < 0 and 

it satisfies the conditions 
dF(t - 1,v2,v3) dF(t,vi,v2) 

8^2 + — d v 2 — =  f  ( t, v i , v 2, v 3 ), 
lim  F ( t , n , v 2 ) =o 
P^0 pp  

uniformly for t £ Z, p = \Jv2 + v2; 
(F2) there exists a constant в > p such that 

d F  ( t ,v1 ,v2 ) +  d F  ( t , v i , v 2 )  

5 vi + 5 '°2 < pF(t,vi,v2) < 0, dv1 dv2 

for all (t,vi,v2) £ZxR2 \ {(0, 0)} . 

Then equation (1.1) has a nontrivial homoclinic orbit. 

R e m a r k 1.1. The above hypotheses imply that u(t) = 0 is a trivial solution of (1.1). 

( F2 ) 
interval I С Z there exist constants a > 0 md R > 0 such that 

(F2) F(t,vi,v2) < -a^/v2 + v2^ , for all t £ I and v2x + v2 > R2. 

f ( t , •) 
nontrivial homoclinic orbits. 
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T h e o r e m 1.2. Suppose that the conditions (Л), ( f i ) , (F1) and (F2) are satisfied. If 

(քշ) f (t, -Vi, -V2, -V3) = -f (t,V!,V2,V3), 
for all (t,V1,V2,V3) e Zx R , then equation (1.1) has an unbounded sequence of 
nontrivial homoclinic orbits. 

2. VARIATIONAL S T R U C T U R E AND SOME LEMMAS 

In order to apply the critical point theory, we establish variational framework corresponding 
to (1.1) and give some lemmas which will be of fundamental importance in proving 
our main results. We start by some basic notation. 
Let S be the vector space of all real sequences of the form 

u = {u(t)}tez, = (••• ,u(-t), • • • ,u(-1),u(0),u(1), • • • ,u(t), •••), 

namely 

S = {{u(t)}\u(t) en, t e Z} . 

Define 

E = J u e S\ ^ [\Au(t - l ) | p + \u(t)\ p] < t e Z I . 
Լ t= ֊<x> ) 

E 
1 ՝ | p 

£ PMt - 1)P + Mt)n > < u e E. 
t= ֊<x> ) 

For all u e E define the functional J as follows: 

J (u):= E 1 \Au(t - 1)\p +  1 \u(t)\ p + Л(^ (t, u(t + 1), u(t)) p p 

(2.2) = p\\u\\ PE + E +1),u(t)), 
p t= ֊<x> 

where 
dF(t - 1,V2, V3) dF(t,Vi,V2) ) 

Я 1 я = f (t, Vi,V2,V3). 0V2 0V2 
The functional J is well-defined C1 functional on E and Equation (1.1) is easily 

J 
J 

Five lemmas should be stated, which will be used in the proof of our main results. 
Firstly, let us recall the Palais-Smale condition. 
Let E be a real Banach space and J e C  1(E,n), that is J is a continuously Frechet-

E J 
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(P.S. condition for short) if any sequence {u(t)} С E for which {J(u(t))} is bounded 
and J'(u(t)) ^ 0(t ^ TO) possesses a convergent subsequence in E. 
Let Bp denote the open ball in E with radius p and centered at 0 and let dBp denote 
its boundary. 

E 
J G C i(E, R) satisfy the P.S. condition. If J(0) = 0 and 

(JI) there exist eonstants p, a > 0 such that J\dBp > a, 
( J 2 ) there exists e G E \ Bp such th at J (e) < 0, 

then J possesses a critical value c > a given by 

c = inf max J(g(s)), 
ger sE[0,I] V Y V L H 

where 
Г = {g G C( [0 ,1 ] ,E ) \g (0 )=0 , g(1) = e}. 

E 
J G C i (E, ) J(0) = 0 

If E = V ф X, where V is finite dimensional, and J satisfies the following conditions 
( J 3 ) there exist cons tants p, a > 0 such th at J\aBpnx > a, 
(J4) for each finite dimensional subspace IS С E, there is a Y = 7(EE) such that 
J < 0 on E \ B y , 

J 

L e m m a 2.3. The following inequalities are true: 

(2.3) \\u\\iP < H\E, 

( 2 . 4 ) \ \ u \ U < \\U\\e, 

where „ 

E \u(t)\ \\u\\ip 

p 

and \u\TO = sup \u(t)\. 
tez 

Proof . By the definition of \\ • \\ • m d \\ • \\E, inequalities (2.3) and (2.4) follow 
• 

L e m m a 2.4. For any x > 0, the following inequality holds 

\x p — 1\ > \x — 1 \p, where p > 1. 

• 
L e m m a 2.5. If the conditions (X), ( f i ) , (Fi) and (F2) are satisfied, then J satisfies 
the P.S. condition. 
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P r o o f . Let {uk} С E be such that {J(uk)} is bounded and J'(uk) ^ 0 as к ^ ж. 
Then there exists a positive constant K such that \J(uk)\ < K. Thus by (2.3) and 
( F2 ) к 

K + \\uk\\E > J(uk) -  1 (J'(uk),uk) 
P 

f 1 1 \ + 

= U - 1 \ uk \E + E Л(t)F(t,Uk(t +1),uk(t)) 
\ p  в J t= — ^ 

в 

1 
- в E 

t= 

\ ( t 1) dF(t - 1, uk(t),uk(t - 1)) 
Л(t - 1) - uk (t)+ dV2 

dF (t,uk (t + 1),uk (t)) (t) 

Л ( ( 1 ) dV2  u k  ( t )  

/1 1 \ 

= ( ֊ - 1 \\ uk \\ PE + E Л(t)F(t,Uk(t +1),uk(t)) 

- в ^ 

dF (t,uk (t +1),uk(t)) dF (t,uk (t +1),uk (t)) 
uk (t + 1) + д uk (t) 

dVi dV2 

f1 1 

1 + 

> l p - Ю \uk \E • 
Since в > p, it is not difficult to conclude that {uk} is a bounded sequenee in E , i.e. 
there exists a constant C1 > 0 such th at \\uk\\E < C1. So passing to a subsequence if 
necessary, it can be assumed that uk ^ u0 in E. Moreover, since 

( 2 . 5 ) \\uO\\E = s u p ^ ^ = s u p 

lim inf h(uk) 
k— 

— < И ^ М \\ uk\\E, 

0=heE' \\ h\\E 0=heE' \\ h\\E  k — ։ x ։  

we conclude that \\u0\\E is bounded and \\u0\\E < C^. By (2.5) we have \uk(t)\ < C1 

and \u0(t)\ < C1y for all t e Z, and by ( f 1 ) , there exists a constant C2 > 0 such that 

\f (t,uk(t +1),uk(t),uk(t - 1)) - f (t,u0(t + 1),u0(t),u0(t - 1))\ < C2, t e Z. 

Since J ] Лq (t) < + ж for all e > 0 there exists D e N ( D > 1) such that 

1 

E Л q ( t ) | < e. 
y\t\>D ) 

For this D, we define a 2(D + 1) dimensional subspace of E : 

ED+1 = {u = {u(t)} e E : u(t) = 0 , \t\ > D + 1}. 

Let 
V (t) = j uk(t), if \t\< D + 1, 
V k ( t ) լ 0, if \t\ > D + 1, 
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uo(t), if \t\< D + 1, 
V o ( t ) - \ 0 , if \t\ > D + 1. 

Obviously, the above assumptions imply vk = {vk(t)} G ED+i and v0 = {v 0 ( t ) } G 
ED+I-

Since uk ^ u0, к — TO in E, we get 

(2.6) (uk,h) — (u0,h), h G E. 

Therefore, for any h G ED+i we have (vk, h) — (v0, h),i.e. vk ^ v0, к —• TO in ED+i . 
Consequently, we arrive at vk — v0, к — TO in ED+i which imp lies vk — v0, к — TO 
in E. So for к large enough, we have 

(2.7) \uk(t) — u0(t)\ = \vk(t) — v0 ( t ) \< 6, \t\< D + 1. 

Thus, we have 

\f (t, uk(t + 1),uk(t),uk(t — 1)) — f (t, u0(t + 1), u0(t), u0(t — 1))\ — 0, к — TO, 

t \ t\ < D 
к 

E X(t) [f (t,uk(t + 1),uk(t),uk(t — 1)) — f (t,u0(t +1),u0(t),u0(t — 1))] (uk(t)—u0(t)) 

= X(t) [f (t,uk(t + 1),uk(t),uk(t — 1)) — f (t,u0(t + 1),u0(t),u0(t — 1))] (uk(t)—u0(t)) 
\t\<D 

+ E X(t) [f (t,uk(t +1),uk(t),uk(t — 1)) — f (t,u0(t + 1),u0(t),u0(t — 1))](uk(t)—u0(t)) 
\t\>D 

< C 2 E X(t)\uk(t) — u0(t)\ + C 2 J 2 X(t)\uk(t) — u0(t)\ 
\t\<D \t\>D 

< C2X E \uk(t)—u0(t)\+C21 E x 9 ( t ) I I E \uk(t)—u0(t)\ 
\t\<D \\t\>D J \ \ t \ > D 

< 2C2XD • 6 + C2 \\uk — U0\\E • 6 = (2C2XD + C2 \\uk — U0\\E) • 6, 

p 

p I 

where X = sup X(t). Sinee 6 is arbitrary, we have 
tEz 

E X(t)[f(t,uk(t + 1),uk(t),uk(t — 1)) — 

(2.8) —f (t,u0(t +1),u0(t),u0 (t — 1))](uk(t) — u0(t)) — 0 as к — TO. 

Similarly, we get 

E X(t)[f (t, uk(t + 1), uk(t), uk(t — 1)) — f (t, u0(t + 1),u0(t), u0(t — 1))]h(t) 

23 
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< (Л + C2)\\h\\E • e, h e E. 

heE 

(J'(uk) - J'(u0),h) ^ 0, as к ^ + ж . 

Therefore, \\J '(u0)\\E < liminf \\J '(uk)\\E = 0. So we have k— 

(J'(uk) - J'(щ), uk - щ) = (J'(uk), uk - u0) 

(2.9) <\\J'(uk)\\E (\\uk\\E + IKWE) < 2Ci \\J'(uk)\\E ^ 0 m к ^ +ж. 

к 

\\uk - u0\\ PE < (J'(uk) - J'(u0),uk - u0) 

(2.10) - X ЛШ(t,uk(t +1),uk(t),uk(t -1))-

-f(t,u0(t + 1),u0(t),u0(t - 1))](uk(t) - u0(t)). 

J 

(J'(uk) - J'(u0),uk - u0) 

= J2 [<fp (Auk(t - 1)) - VP (Au0(t - 1))] (Auk(t - 1) - Au0(t - 1)) 

+ X [<fp (uk(t - 1)) - VP (u0(t - 1))] (uk(t - 1) - u0(t - 1)) 

(2.11) + X Л(t)[f (t,uk(t +1),uk(t),uk(t - 1)) -

-f (t, u0(t + 1), u0(t), u0(t - 1))] (uk (t) - u0(t)). 

If Au0(t - 1) = 0, we set 
= Aukit-D 

X Au0(t - 1). 

Since uk possesses point-wise limit u0(x) at any x > 0, by Lemma 2.4, for all t e Z, 
we easily obtain 

(2.12) [Vp (Auk(t - 1)) - Vp (Au0(t - 1))] (Auk(t - 1) - Au0(t - 1)) > 

> \Auk(t - 1) - Au0(t - 1)\p  

and 

(2.13) [Vp (uk(t - 1)) - Vp (u0(t - 1))] (uk(t - 1) - u0(t - 1)) > 

> \uk(t - 1) - u0(t - 1)\p . 
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If Auo(t — 1) = 0, then (2.12) and (2.13) are obviously true. From the definition of 
|| • \\E, formulas (2.11), (2.12) and (2.13), (2.10) holds. Therefore, (2.9), (2.10) and 
(2.11) imply that uk ^ u0 in E. The proof of Lemma 2.5 is complete. • 

3. P R O O F S OF T H E MAIN R E S U L T S 

In this section, we firstly prove the existence of a nontrivial homoclinic orbit of 
equation (1.1). Next, if f (t, •) is an odd function for any t e Z , w e prove the existence 
of an unbounded sequence of nontrivial homoclinic orbits of equation (1.1). 

3.1. P r o o f of T h e o r e m 1.1. To prove the existence of a homoclinic orbit to (1.1) 
recall that as we know that J G C  1(E,H), J(0) = 0 Mid J satisfies P.S. condition. 
Hence, it suffices to prove that J satisfies the conditions ( J 1 ^ d ( J 2 ) . By (F1), there 
exists S > 0 such that 

\F(t,vi,v2)\< + f o r t G Z and vj + v\ < S2. 

Let p = ֊ S , for any u G E and ||u||E < p, we have 

\u(t)\ < Mi? < \IU\IE < p = ^ S , t G Z . 

Thus, we have u2(t + 1) + u2 (t) < S2 for all t G Z, which implies 

(3.1) \F(t,u(t + 1 ) , u ( t ) ) \ < ^ p + r ^ t v u ^ w + u w + i y < 

< -L[u p(t) + up(t + 1 ) ] , t G Z . 
4\p 

Summing inequalities (3.1) over Z, we get 

E \F(t,u(t + 1),u(t))\< w J2 [u p(t) + up(t + 1 ) ] < ^ \ l u \ I E . 
t= ֊<x> t=֊<x> 

Thus, if ||u||E = p, then 

1 +T O Հ Հ ֊ Հ 
J(u) = -l\ull PE + E  x(t)F(t,u(t + 1),u(t)) > -l\ull PE — ֊^MlullE = 2 - Բ ? , p  E ^ p  E 2\p  E 2p t= ֊Ж  1  

that is J(u) > a > 0, where a = 2pp^. To verify condition ( J 2 ) , for all т G R and 

any given w G E \ {0 } , we consider the quantity 

1 
J(TW) = 1 TP\lwl\E + V X(t)F(t,Tw(t + 1),Tw(t)). p 
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Let w e E be such that w2(t) + w2(t + 1) > R 2 o n a nonempty finite, integer interval 
I С Z. Then by (F2) we conclude that for any т > R 

J(TW) <  1 T p\\w\\E + VЛ(t)F(t,TW(t +1),TW(t)) p 
1 tei 

< ֊T P\\W\\E - а \ т \ в [ , / Щ i + H y + ^ J t ) 
p tei 

в 

where Л = min ЛШ > 0. 
՜ tei 

Since в > p, we can choose т large enough to ensure that J (TW) < 0. Thus, both 
conditions (J1) and ( J 2 ) are satisfied. Theorem 1.1 is proved. • 

( f2 ) J 
already know J e C  1(E,H), J(0) = 0 and J satisfies P.S. condition. In order to prove 

( J3 ) 
and ( J 4 ) . From the proof of Theorem 1.1, condition (J1) is valid, so ( J 3 ) is also valid. 
To prove ( J 4 ) , suppose E С E is a finite-dimensional subspace and consider u e E 

u = 0 ( F2 ' ) R > 1 а > 0 

F(t, Vi,V2) < -a^V2 + V 2  

t e Z and V2 + V2 > R . For all u e E, we have \\u\\ pE < c\\ where c = c(E). 
Choosing u such th at \\u\\E > pcR, we define I = {t \ \u(t)\ > R}. Hence, 

Л(t)F(t,u(t +1),u(t)) > - а ^ Л ^ ^ Ы ^ + 1))2 + (u(t)) 2  

te i te i 

Thus, we have 
Լ ՜ ՜ 

J(u) = ֊\\u\IE + Y Л(^(t,u(t +1),u(t)) E  

< p ME - a £ Л(t) V(u(t + 1))2 + (u(t)) 

а < -cML - a ^ ( t ) Վ W + W + Ш ) 
Դ1 f J 

tei 

< -c\\u\\L - a\\u\\LJ2 Л(t). 
tei 

Since в > p there exists 7 = 7 (E)(Y > R) such th at J (u) < 0 whenever \\u\\TO > 7- By 
Lemma 2.2 J possesses an unbounded sequence of critical values cj with cj = J (uj), 
j e N . Hence, by (Fi) we have 

(3.2) cj = p \\ uj\\E 
1 

+ J2 Л(^(t,uj(t +1),uj(t)) < p j \ E 
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Since cj ^ ж as j ^ ж , (3.2) implies that {uj} is unbounded in E. Therefore, the 
existence of an unbounded sequence homoclinic orbits is obtained. • 

R e m a r k 3.1. As an application of Theorems 1.1 and 1.2, we give an example 
illustrating our results. 

For all t G Z, assume that 

A(<fP(Au(t - 1))) - <fp(u(t)) = 

= -j3e - t u(t) 
Ը ֊ 1 

(1 + cos2 2nt) ((u(t + 1))2 + (u(t)) 2) 2  1  

(3.3) 
Ը ֊ 1 

+ (1 + cos2 2n(t - ((u(t)) 2 + (u(t - 1 ) ) 2 ) 2 1 

where в > p. Then, we have X(t) = e t and 

f (t,vi,v2,v3) = -pv2 (1 + cos2 2nt) (v2 + v2)2  1 + 

+ (1 + cos 2 2n(t - 1)) ( v-2 + v J 

g(vi ,v2,v3) = -4fiv2 (v 2 + v2 + v23) 

Then 

F(t, vi, v2) = - (1 + cos2 2nt) {v2 + v2)2 . 

dF(t - 1,v2,vs)+ dF(t,viv) 
dv2 dv2 

= ev2 (1 + cos 2 2nt) ( v 2 + v2 ) 2 + (1 + cos2 2n(t - 1))( '° 2 + vn) 2\ 2 p_ I 

It is easy to verify that all assumptions of Theorems 1.1 and 1.2 are satisfied. Consequently, 
equation (3.3) has an unbounded sequence of nontrivial homoclinic orbits uj, j G N . 
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