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АННОТАЦИЯ. The aim of this note is to investigate the relationship between 
strictly positive random fields on a lattice Z v and the conditional probability 
measures at one point given the values on a finite subset of the lattice Z v . 
We exhibit necessary and sufficient conditions for a one-point finite-conditional 
system to correspond to a unique strictly positive probability measure. It is 
noteworthy that the construction of the aforementioned probability measure is 
done explicitly by some simple procedure. Finally, we introduce a condition on 
the one-point finite conditional system that is sufficient for ensuring the mixing 
of the underlying random field. 
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1. I N T R O D U C T I O N 

The mathematical theory of random fields is an active area of research aimed at 

study of the probabilistic properties of systems of interacting particles. In recent years, 

random fields have been successfully applied to the analysis of biological sequences, 

text and image processing, as well as to many areas of computer vision and artificial 

intelligence. In most of these applications, a random field is defined by its finite-

dimensional, conditional distributions and is therefore often termed conditional random 

field. The reconstruction of distributions of random fields from such conditional 

probabilities is the subject of the present paper. 

The description of a random field by means of its conditional distributions is an 

old problem, most important contributions to which date back to Dobrushin [5, 6]. In 

his seminal paper [6], Dobrushin considered some systems of conditional distributions 

on finite sets under the condition that the values of the field are known outside that 

sets and he proved that, under some assumptions, there exists a random field with 

the given conditional distributions. This line of research has been developed in recent 
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papers [4, 2, 1, 3, 8], while the present paper is complementing the mentioned works 

by an exhaustive description of one-point finite-conditional distributions that give 

rise to positive random fields. 

To be more precise, we consider a random field X on the ^-dimensional regular 

grid Z v and with values in a finite set X. Given the distribution of X, the conditional 

probabilities Q f A (x) = P(Xt = x\ХЛ) can be easily computed for every x € X and 

for every finite set Л с Z v . In some situations, however, the random field may be 

unavailable, and only a set of conditional distributions [QfA } can be defined. In image 

X 

specifying the conditional distribution of X at any lattice point t given its values on 

the neighboring points. Then, the segmentation is obtained by assigning to each point 

t the most likely value taken by Xt (cf. Figure 1, an example). In such a situation, 

it is relevant to raise the question of the existence of a random field corresponding 

to a set of conditional distributions [QXA }• This is the main issue studied in this 

work. We prove that under some consistency assumptions on the collection [QXA} 

there exists a random field corresponding to the mentioned collection. Furthermore, 

the distribution of this random field is uniquely determined by the collection [QXA }. 

The rest of the paper is organized as follows. In Section 2, we introduce the main 

notation used throughout the paper and present the mathematical formulation of the 

questions which are of our interest. The main result of the paper is stated and proved 

in Section 3. We briefly discuss the mixing properties in Section 4 and summarize the 

main results of the paper in Section 5. 

2. N O T A T I O N A N D P R O B L E M S T A T E M E N T 

Let X be a random field on Z v with a finite state space X drawn from a probability 

distribution P on (XZ" , A), where է he ст-algebr a A is defined as ( 2 X ) Z , wit h 2 X being 

the set of all subsets of X. Note th at P is a probability measure acting on an infinite-

dimensional space. A classical way of characterizing such probability measures passes 

through the collection of its finite-dimensional distributions 

( Р л , Л с Z v and СаЫ(Л) < ж]. 

The famous result of Kolmogorov states that a collection of finite-dimensional distributions 

corresponds to a unique probability measure on (XZ" , A) if and only if it satisfies 

Kolmogorov's consistency condition. 

In this paper, we focus our attention on strictly positive random fields, i.e. random 
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F i g . 1. A natural image and its segmentation into 4 regions. The segmented image 

is obtained as the most likely configuration with respect to a probability measure 

corresponding to a random field on Z 2 with state space {1, 2, 3, 4} . 

fields X satisfying Р ( Х Л = хЛ) > 0 for all non-empty, finite sets Л с Z v and for all 

хЛ E Х Л For such a random field, the one-point finite-conditional probabilities are 

defined as follows. For any Л с Z v , Х Л stands for the set of all functions ж defined 

on some non-empty, finite subset J of Z v \ Л and take values in X : x : J ^ X. We 

will refer to J as the support of ж E X^. For every t E Z v ^^d for every ж E X f the 
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following conditional probability measure can be defined on X: 

Q X ( • ) = P(Xt = Հ Xj = X), where J = supp(X). 

The set q ( P ) = { Q X , t E Zv and X E X t } is called one-point finite-conditional 

distribution of P . The problems, we are interested in, can be formulated as those 

related to the inversion of the operator q. 

To be more precise, let X = {QX, t E Zv and X E X t} be a system of probability 

distributions on X, such that QX (x) > 0 for all x E X. We define P(X) the set of 

all strictly positive probability measures P , such that q ( P ) = Xj o r in other terms, 

P(X) = q - 1(X)- The main goal of the present paper is to accomplish the following 

tasks: 

(a) Determine necessary and sufficient conditions on Xj under which the set P(X) 

is non-empty. 

(b) Prove that if P(X) is non-empty, then it is a singleton, which means that 

qx 

distribution. 

qx 

if exists, possesses mixing properties. 

3. N E C E S S A R Y A N D S U F F I C I E N T C O N D I T I O N F O R E X I S T E N C E 

A N D U N I Q U E N E S S 

qx 

to a random field. For instance, it is obvious that any random field with strictly 

positive probability distribution the following property 

(3.1) 
P ( (Xt, Xs) = (x,y) | X j = X) = P ( X t = x | X j = X) P ( X S = y | X j = X, X t = x) 

should be satisfied for any t, s E Z v , (x, y) E X ^ a n d for all X E X^ t> s } . Therefore, 

if for X the condition QX(x)QXxx(y) = Q f (y)QX v(x) fails for some (s,t,x,y, X), then 

there is no random field having X as its one-point finite-conditional distribution. The 

next theorem provides a precise characterization of systems X that can be extended 

to strictly positive random fields. Moreover, it shows that the corresponding random 

field is unique and can be constructed by a simple procedure. 

T h e o r e m 3 .1 . Let X = {QX, t E Zv and XX E X t} be a one-dimensional finite-

X 
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q as its system, of conditional probabilities, i.e. P(q) = 0, if and only if the following 

conditions are fulfilled: 

[CI] QX (x) > 0 for a,II t E Zv, x E X and X E X t. 

[C2] For all t, s E Zv, x E X, y E X andx E X { t, s } it holds that 

QX (x)QX x(y) = QX (y)QX v (x). 

[C3] For all t, s E Zv, x,x' E X t and y, y' E X s it holds that 

(3.2) QV (x)QX' (y)QV' (x')QX(y') = QV՛ (x)QX' (y')QV (x')QX (y). 

qX 

the same distribution. 

P r o o f . We start by proving that all three conditions are necessary. This is obvious 

for the first condition. For the second one, the necessity follows from the property 

(3.1) of random fields. Further, note that if P is a probability measure and A, B, C, D 

are any events, then 

(3.3) P (AIB)P (BC )P (C D)P (DIA) = P (AID)P (DC)P (C IB)P (BIA). 

Applying this identity to the random field X drawn from P and to the events A = 

{ X t = x}, B = { X s = y}, C = { X t = x'} and D = { X s = y'}, we get the necessity 

of condition (3.2). 

qX 

point finite-conditional system satisfying these conditions. Then for any t E Zv, we 

choose s E Z v \ { t } , y E X s and set 

(3.4) Pt(x) =  QV  ( x )  ^ QV ( u ) 
Q u ( y )  

1 
x e X t. 

QS (y) 

Under condition [C2] and [C3], Pt(x) defined as above is independent of s and of y. 

Indeed, it follows from [C2] that for any distinct points t,s,r E Zv and any x E X t, 

y E X s , z E X r  

Qt (x)QZX(y) = QZ (y)QZV (x), 

QV (z)QZV (x) = QV (x)QVX(z), 

QX (y)QVX(z) = QX(z)Q t X ( y ) . 

Multiplying these equations, one can see that many terms vanish, and the result is 

the identity 

(3.5) Qt (x)QX(y)QV (z) = Qt (y)QX(z)QV (x). 
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Since (3.5) holds for any x € X t, we have also 

(3.6) QZ(u)QU(y)QV (z) = QZ(y)QU(z)QV(u), u € X t. 

Dividing (3.5) by (3.6), we come to the equality 

QZ (x)QX(y) QX(z)Qy (x) 
(3.7) 

QZ (u)QU(y) QU(z)Qt (u)' 

Rearranging the terms, we come to the equality 

(3.8) 

which implies 

(3.9) 

QZ(x)Qvt (u) = Qyt (x)QZ(u) 
QX(z)QU (y) Q xa(y)QU(z) 

Qt z(x) 
Qr (z) ^ QS (y) QS ( y ) ^ Qr (z) 

QV (u) QV(x) QZ (u) 

u € X t 

(3.10) QZ (x) 
QX(z) E 

и 

QZ (u) 
QU(.z)\ 

֊ 1 
QV (x) 
QX(y) 

^ Q V (u) 
QU(y)\ и 

1 

P t 
choice of ^ d y, i.e. taking r = s instead of s and z instead of y does not affect 

y 

[СЗ]. 

So far, we proved that for any one-point finite-conditional distribution <7 satisfying 

[C1-C3] one can uniquely determine one-point unconditional distributions. Let us now 

look at what happens with the remaining finite-dimensional unconditional distributions. 

To this end, let Л be a finite subset of Z d , the elements of which are somehow-

enumerated as Л = [tl7..., t n } . Then, for every хл € Хл we define 

(3.11) Р л ( х л ) = Pt ! (xt! )QT21 (xt2) Q t ( x t n ՝ ) , 

where P t l (xtl) is well defined by (3.4). We prove below that this definition is independent 

of the enumeration of elements of Л and that the family : Л is a finite subset of Z v } 

is a collection of probability measures that are consistent in the Kolmogorov sense. 

To prove that the definition of P ^ ^̂  ̂ ^ ^ ^ ^ ^ ^^^^^^ ^ ^ ^ r d e r on the elements of Л, 

t1 , . . . , tn 

of a finite set of permutations of two successive elements. Therefore, it is sufficient to 

prove that the replacement of {t1 ,t2,..., tk-1,tk,..., tn} by the ordered set 
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{t1,t2,... , t k , t k ֊ i , . . . ,tn} does not affect the definition of Р л . Thus, we aim at 

showing that 

(3.12) 

Q Z r t k - 2 ( x t k - i )Qtk 

and that 

(xtk ) = Q tk ՝(xtk )Qtk-i 
X t1 •••X tk-2 ,Xtk 

(xtk-1  ),  k >  2  

(3.13) P t 1 (xt1 Q 1 (xt2) = Pt2 (xt2)Q Xtt2 (xt1). 

Observe that (3.12) is reduced to the condition [C2J by setting t = t k ֊ i , s = tk, 

x = {xt1,... ,xtk-2}, x = xtk-1 and y = xtk. The case of (3.13) is a bit more delicate 

and requires the use of [C3J. To simplify notation, we set t = t i , s = t2, xt1 = x and 

xt2 = y and intend to show that Pt(x)QX(y) = P s ( y ) Q v t (x), which amounts to 

QУ (x) 
V- Qy (x') 

^ QX' (y)J 
QX(y) 

Qxs(y') 

- у ' е х ^  Q t  ( x ) -
E 

This can be equivalently written as 

( 3 _ 1 4 ) £ Q X ( y ' Q x £ 
y ՛ e X s  Q t ( x ) X ՛ e X ' 

^ Qt (x'Q (y) 

QX (y) 

Using the equality J2X, Qy (x') = J2y, QX (y') = 1, one can rewrite (3.14) as follows: 

(3.15) 

^ ^ QS(y')Qt (x)QS (y)Qt (x') £ ^ Qt(x')QS(y)Qt (x)QS (y') 

X e X У e X Qt (x)QS (y) Qt (x)QS (У) 

Now, it follows from [C3] that the equality (3.15) is true.Thus, if conditions [C2] and 

[C3J are fulfilled, then the distribution P л remains the same for any enumeration. 

In order to prove the consistency in Kolmogorov's sense, we use the fact that QX ( • ) 

is a probability measure on X. This provides the equality ^ X e X t QX (x) = 1 which 

implies that 

|X P M j { t } ( X x ) = YX (x) = Pл(x) 

for any finite Л с Z v , any t G Zv \ Л and an у x G Х л . This concludes the proof. 

4. S U F F I C I E N T C O N D I T I O N F O R M I X I N G 

The study of the mixing properties [7] of random fields is of primary interest in 

probability theory, since they characterize the behavior of additive functionals of the 

random field by means of central limit theorems [10]. The aim of this section is to 

describe a simple condition on a one-point finite-conditional distribution satisfying 
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conditions [C1-C3], that allows to evaluate the mixing properties of the underlying 

random field. To this end we introduce the notation 

(4.1) ps,t = sup m a X ^ \ Q f V ( x ) ֊ QfZ(x)\ 
л : в е л , г ^ л , \ л \ < ж V , Z e X s  

t:supp(t )=Л\^ } 

for every pair of distinct points t,s € and prove the following theorem. 

T h e o r e m 4 .1 . Let q = { Q t , t € Zv and X € X t} be a one-dimensional finite-

X 

pair of disjoint finite subsets I and V from Zv the reconstructed, from X random, field 

P 

(4.2) mxx | P y (x) ֊ PV i (x\y)\ Ps,t. 

P r o o f . Denoting the cardinalities of I and V by m and n respectively, we perform 

induction on m + n. First suppose that m + n = 2. Then m = n = 1 and hence 

V = {t^ rnd I = { s } . Therefore, 

|P t (x ) ֊ Pt\s(x\y)\ J2 QZ (x)Ps(z) ֊ QV (x) t 
Z^X 

< £ Ps(z)\QZ(x) ֊ QV(x)| 

(4.3) < max\QZ (x) ֊ QV (x) | < ps,t, 

which proves our statement for m + n = 2. 

Now, we suppose our statement is true for every pair of strictly positive integers 

(m, n), such that m + n < k and prove (4.2) for m + n = k + 1. To this end, we choose 

an arbitrarily point u in I and set J = I \ { u } . Then 

(4.4) | P v ( x ) ֊ Pv\I(x\y)\ < | P v ( x ) ֊ Pv\J(x\yj)| + | P v \ J ( x \ y j ) ֊ P v \ i ( x \ y ) \ 

< E E Ps,t + \ P v \ J  ( x \ y j ) ֊  P v \ I  ( x\y )\, 
s e J t e v 

(V, J ) 

that 

P v \ J ( x \ y j ) =  Q T X V ճ { է ' }  ( x t ՛ ) P v \ { t ՛ } \ J ( x v \ { t ՛ } \ y j ) 

P v \ i (x\y) = QVtf V \ { t ' } (xt՛ ) P v \ { t ՛ } \ i (xv\{t'}\y) 
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for every t' € V, and hence 

(4.5) |Pv\ j ( x \ y j ) ֊ Pv\i(x\y)\ < | Q v t / x \ { է ' } (xv) ֊ Օ ՛ Ր \ { է ' } (xv) 

+ Pv \ t ' \ j (xv\t' \y j ) ֊ Pv\t' \i (xv\t'\y) 

It follows from the total probabilities formula that 

Q;J  X \' (XT') ֊ QYTRV \ (XT') 

Z e X u 

< max 
Z e X u 

J2 Q j ' Z ' x v ( x t ' ) ֊ Qy x(xt')) P(z\yj, x v \ t ' ) 

Q 
t j Z X v \ t ' 
t (xt') ֊ Q y ; x v ( x t ' ) < Pu,t' • 

Combining with (4.5), we get 

\ P v \ j (x\y j ) ֊ Pv \ i (x\y)\ <Pu,t' + Pv\t' \ J (xv\t'\y J ) ֊ Pv\t' \ i (xv\t'\y) 

Repeating the same argument, we obtain 

\Pv\ j ( x \ y j ) ֊ Pv\i(x\y)\ <^2 Put'• 

t ' e v 

Joining this estimate with (4.4), we complete the proof. 

As an application of Theorem 4.1, let us consider the one-dimensional case v =1. t s 
Assume that there exist p* < 1 and dփ > that ps,t < p\ as soon as 

\t ֊ s\ > d*. Then, one can easily verify that 
~ pd 

J 2 J 2 p s , t < J 2 J 2 p* pd+i+j = 

s e i t e v i = 0 j = 0 k=0 

for every pair of finite intervals V,I с Z such that 

d = d(V,I )= min It — s | > d * . 

t e v , s e i ՜ 

This short computation shows that the quantity \ P v ( x ) ֊ PV\i(x\y)\ exponentially 

V I 

5. C O N C L U S I O N 

In the present paper, we have introduced the notion of the one-point finite-conditional 

distributions and established necessary and sufficient conditions (cf. [C1-C3] in Theorem 

3.1) for which such a system to be the set of conditional probabilities of a strictly 

positive random field on Z v and with finite state-space. The conditions [C2-C3J, which 

are the most important ones, can be observed as consistency conditions in the same 

spirit as the Kolmogorov consistency conditions for finite-dimensional distributions 
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of random processes indexed by infinite sets. It is demonstrated that it is possible 

to assess the rate of mixing of a random field by evaluating some characteristics of 

one-point finite-conditional distributions, without resorting to the computation of the 

unconditional distributions of the random field. 

The relaxation of the assumption of strong positiveness, e.g. by introducing a 

notion of weakly positive random fields in the spirit of [2], is an essential open problem. 

We wish to thank Serguei՝ Dashyan for his careful reading of the initial version of 

the manuscript and his numerous valuable suggestions. 
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