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1. Introduction

The Euclidean plane is represented by R2 and addressed simply as the �plane�. Let

W be a non-empty, bounded, convex, polygonal, open subset of R2, called window.

Loosely speaking, our random tessellations in W will be constructed in a way of the

following kind:

By help of a sequence of independent, identically distributed random lines γ1, γ2, . . .

in the plane that intersect W, a sequence of random tessellations T0, T1, T2, . . . in W

will be generated. It is supposed that γ1, γ2, γ3 cannot meet in one point a. s. The

number ζk of cells in Tk will be less or equal to k + 1.

The initial tessellation T0 has only the single cellW , it is called the empty tessellation.

Hence, ζ0 = 1.

The tessellation T1 consists of two cells, namely of the two parts into which W

is divided by the line γ1. The intersection γ1 ∩W of the line γ1 with the window is

called an I-segment. We have ζ1 = 2.

The line γ2 chooses randomly with probability 1/2 one of the two cells of T1, say

C. If the intersection of γ2 with C is empty, the line γ2 will be discarded. Otherwise,

C is divided into two cells. The una�ected cells of T1 together with the possibly new

cells form the tessellation T2. If the line γ2 is not rejected, the intersection of that

line with C is said to be an I-segment. Note ζ2 ≤ 3.
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In the n-th step, the line γn intersects some cells of Tn−1, sayD1, . . . , Dm. It is clear

that 1 ≤ m ≤ n a. s. Independently of the past, now some random decisions will be

made. With probability 1−m/n, the line γn leaves the tessellation Tn−1 unchanged;

we would say that γn is rejected. With the complementary probabilitym/n, a member

of the set of cells {D1, . . . , Dm} is selected for further treatment, where each of them

has equal chance of being chosen. If the cell Dk is selected, it is divided by γn into

two parts which are considered as cells of Tn as well as the una�ected cells of Tn−1.

The intersection γn ∩ Dk is called an I-segment of Tn,Tn+1, . . .. The number ζn of

cells of Tn ful�lls ζn = ζn−1 with probability (n − m)/n, and ζn = ζn−1 + 1 with

probability m/n.

The sequence (ζk)k=0,1,... is non-decreasing with ζk ≤ k + 1.

A more formalized description of the construction is presented in section 2.

A large variety of similar models for creating random tessellations by cell division

is treated by Cowan in [3]. Our selection of cells is �perimeter-weighted� in the sense

of Cowan, where �perimeter� means a pseudo-perimeter according to Ambartzumian

[1, 2], cf. subsection 3.2 and [9].

Note that in our terminology cells and edges are non-empty open sets. The union

of all cells and their boundaries is equal to the closure of W.

The random tessellations Tk are addressed as �random line-generated tessellations�;

k = 0, 1, . . ..

Some mean values for the random line-generated tessellations Tk are calculated in

Section 3.

The sequence T0,T1, . . . may be considered as a Markov chain with discrete time and

the set of tessellations in W as state space. Note that then the transition probabilities

are not time-homogeneous. The Markov chain T0,T1, . . . can be interpreted as a

process of cell division. In contrast to the Markovian process of cell division treated

in [7, 8], it lives on a discrete time axis, and in this way, many technical di�culties

can be avoided. Cowan also prefers a discrete time axis for the Markovian processes

in [3] producing random cells and random tessellations.

Not only the random states Tn of the chain at �xed time instants n can be

investigated, but also the states Tν at a random time instant ν.

We are only interested in the special case that the random non-negative integer ν is

independent of the sequence T1,T2, . . . and has a geometric distribution. Such random

tessellations Tν could be called mixed random line-generated tessellations; we simply

speak of �mixed line-generated tessellations�. For a strong de�nition and treatment,

see Section 4.
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If the distribution of the random lines γ1, γ2, . . . can be obtained by the restriction

of a shift-invariant line measure to the set of lines intersecting W , then we get an

interesting subclass of mixed line-generated tessellations. We speak of the homogeneous

case. The mean values evaluated in Section 5 coincide in the homogeneous case with

that for corresponding random STIT tessellations inW of Nagel and Weiss [4, 5, 6].

Relying on unpublished results, the author expects that in the homogeneous case,

the mixed line-generated tessellation Tν has the same distribution as a corresponding

random STIT tessellation in W . A related conjecture is formulated in Section 5.

One of the main achievements of Nagel and Weiss [5], the construction of a

spatially homogeneous random tessellation in the whole plane, is beyond the scope of

this paper. But for many characteristics of such unbounded random STIT tessellations,

there exist unbiased estimators depending on bounded regions only. Hence, if conjecture

3 of Section 5 is true, on principle, all those characteristics can be calculated by the

methods presented in the following. These procedures are not very elegant, but are

almost elementary.

2. A sequence of random tessellations

As in the introduction, let W be a non-empty, bounded, convex, polygonal open

subset of the plane, called window.

Denote by N the set of positive integers, by N0 the set of non-negative integers, by

G the set of all lines in the plane, by G the common σ−algebra over G [10, 9], by Gx

the set of lines containing x ∈ R2, and given any subset B ⊂ R², by GB the set of all

lines having points in B,

GB = {g ∈ G : g ∩B ̸= ∅} .

The σ−algebra G ∩ GB over GB is denoted by GB .

Let Q be a probability measure on the measurable space [G,G] with Q(GW ) = 1, i.e.

Q(G \ GW ) = 0. Furthermore, it is assumed that Q(Gx) = 0 for all x ∈ R2. Such

measures are said to be bundleless ; they are in particular atomless.

Furthermore, let

(αn)n∈N, (γn)n∈N

be a system of random variables with the property of maximal independence, de�ned

on a probability space [Ω,F,P], where αn is a random non-negative integer uniformly

distributed in the �nite set {0, . . . , n− 1} and γn is a random line distributed according

to Q; n ∈ N.
If γ is a line not containing the origin O, denote by γ the open halfplane bounded

by γ and containing O and by γ the other open halfplane bounded by γ. It doesn't
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matter how the halfplanes are denoted when the line γ goes through O, because our

line measure Q is assumed to be bundleless.

We de�ne recursively a sequence of (n+ 1)- tuples

(C00), (C10, C11), . . . (Cn0, . . . Cnn), . . .

of so-called quasi-cells by

C00 = W, C10 = γ
1
∩W, C11 = γ1 ∩W

and for n = 2, 3, . . . :

Cnj =


Cn−1,j if j ∈ {0, . . . , n− 1} ; j ̸= αn,

Cn−1,αn ∩ γ
n

if j = αn,

Cn−1,αn ∩ γn if j = n.

Many of the quasi-cells are empty. The lines by which they are produced do not

contribute in a visible way to the system of boundary lines of the random tessellation.

In the language of simulation theory, one would say that these lines are rejected. The

non-empty quasi-cells are called cells.

The cells belonging to the (n+1)−tuple (Cn0, Cn1, . . . , Cnn) form the tessellation Tn

of the plane we are interested in; n ∈ N0.

By a cell C in W we mean a non-empty convex polygonal open subset of W , and

by a tessellation T in W a �nite set of non-overlapping cells in W with the property

that the union of the closures of these cells is equal to the closure of W.

Remark 1. By a suitable de�nition of the state space, the random sequence

(C00), (C10, C11), (C20, C21, C22), (C30, C31, C32, C33), · · ·

can be interpreted as a Markov chain on the discrete time-axis N0 with time-homogeneous

transition probabilities.

A sequence J1, J2, J3, . . . of so-called quasi-segments is given by J1 = γ1 ∩W , and

in general

Jn = γn ∩ Cn−1,αn ; n ∈ N.

Many of the quasi-segments are empty. If Jn is non-empty, it is called an I-segment

of Tn,Tn+1, . . .. The non-empty members of {J1, . . . , Jn} are the I-segments of Tn;

n ∈ N.

Remark 2. Analogous random tessellations on the sphere can be generated by random

great circles.
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3. Some mean values

3.1. Mean total edge length . Let Ek be the mean total length of all edges in the

random tessellation Tk; k = 0, 1, . . .. Then it is equal to the mean total length of all

I-segments in Tk.

Obviously, E0 = 0 and

E1 =

∫
Q(dg)|g ∩W |,

where |g ∩W | denotes the length of the segment g ∩W .

Relying on the construction of Tk described in Section 2, we obtain

E2 =

∫
Q(dg1)

(
|g1 ∩W |+ 1

2

∫
Q(dg2)

(
|g2 ∩ g1 ∩W |+ |g2 ∩ g

1
∩W |

))
or

E2 =

(
1 +

1

2

)
E1.

Analogously,

En =

(
1 +

1

2
+ . . .

1

n

)
E1; n ∈ N.

The generating function GE : [0, 1) → [0,∞) for the sequence E0, E1, . . . is de�ned

by

GE(z) =
∞∑
k=0

zkEk.

We obtain

GE(z) = E1

∞∑
k=1

zk
k∑

m=1

1

m
= E1

∞∑
m=1

1

m

∞∑
k=m

zk =
E1

1− z

∞∑
m=1

zm

m
.

Finally,

(3.1) GE(z) = −E1
ln(1− z)

1− z
.

Remark 3. Analogously, the entire intensity measure of total edge length can be

evaluated for Tk. The total mass of this �nite measure is then the mean total edge

length Ek; k ∈ N0, cf. proposition 1.

3.2. Mean total Ambartzumian length of edges . The results in this subsection

are not only interesting for its own; they are also helpful for calculating the mean

values in subsection 3.3.

Let R be a locally �nite bundleless measure on [G,G]. The R−pseudo-length |s|R
in the sense of Ambartzumian [1, 2] of a segment s in the plane is de�ned by

|s|R =
1

2
R(Gs).
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Although for certain R, a non-empty segment can have the R−pseudo-length 0, we

simply speak of �R-length� for short.

It is important for us that the R-length as a function on the set of segments is

additive on lines.

If R is shift- and rotation-invariant, the R−length is proportional to the Euclidean

length, and the results in this subsection reduce to that in subsection 3.1.

In the case R = Q, we speak of the intrinsic length belonging to the random

tessellations Tk; k ∈ N0.

Denote the mean total R-length of edges of Tk by Ak(R).

Analogously to subsection 3.1, we obtain

A0(R) = 0,

A1(R) =

∫
Q(dg)|g ∩W |R

=
1

2

∫
Q(dg)R(Gg∩W ),

. . . = . . . ,

An(R) =

(
1 +

1

2
+

1

3
+ . . .+

1

n

)
A1(R); n ∈ N

The result for n = 1 can be written in the form

A1(R) =
1

2

∫
Q(dg)

∫
R(dh)M(g, h),

where M(g, h) = 1 if g, h∈ G meet in W and M(g, h) = 0 otherwise.

Analogously to formula (3.1), the generating function GR : [0, 1) → [0,∞) for the

sequence A0(R), A1(R), A2(R), . . . is given by

(3.2) GR(z) = −A1(R)
ln(1− z)

1− z
.

3.3. Mean number of nodes . Denote by Nk the mean number of nodes of Tk in

W ; k ∈ N0. It is easily seen that

N0 = 0, N1 = 0, N2 = 2A1(Q),

where A1(Q) is the mean intrinsic length, i.e. the mean Q−length, of the single I-

segment in T1. Generally, we �nd

Nn+1 = Nn +
4

n+ 1
An; n ∈ N,

where An = An(Q) is the mean total intrinsic length of all edges in Tn, which was

evaluated in subsection 3.2. This recursion formula leads to

(3.3) Nn+1 = 4
n∑

m=1

Am

m+ 1
; n ∈ N.
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The generating function GN : [0, 1) → [0,∞) for the sequence (Nk)k=0,1,... is de�ned

by

GN (z) =
∞∑
k=0

zkNk =
∞∑
k=2

zkNk.

Formula (3.3) implies

GN (z) =
∞∑

n=1

Nn+1z
n+1 = 4

∞∑
n=1

zn+1
n∑

m=1

Am

m+ 1
=

= 4

∞∑
m=1

Am

m+ 1

∞∑
n=m

zn+1 =
4

1− z

∞∑
m=1

Am

m+ 1
zm+1

or

(1− z)GN (z) = 4
∞∑

m=1

Am

m+ 1
zm+1.

Di�erentiation leads to

d

dz

(
(1− z)GN (z)

)
= 4

∞∑
m=1

Amzm.

The power series on the right hand side is equal to GQ(z) provided by formula (3.2),

hence

(1− z)GN (z) = −4A1(Q)

z∫
0

du
ln(1− u)

1− u

and �nally

(3.4) GN (z) =
2

1− z
A1(Q) ln2(1− z); 0 ≤ z < 1,

where

A1(Q) =
1

2
(Q×Q)

{
(g, h) ∈ G2 : g ∩ h ∩W ̸= ∅

}
The numbers Nk itself can be derived from (3.4) by representing the analytical

function in z on the right-hand side as a power series.

Remark 4. Even the entire intensity measure for nodes can be evaluated by similar

methods. The total mass of such an intensity measure is then equal to the corresponding

mean value calculated above, cf. proposition 2.

3.4. A restricted capacity functional. Let K be a compact convex subset of

W and Sk the probability that K is contained in exactly one cell of the random

tessellation Tk, i. e. that no I-segment of Tk intersects K; k ∈ N0. Obviously,

S0 = 1, S1 = Q(G \ GK)
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and

S2 =

∫
G\GK

Q(dg1)

(
1

2
+

1

2

∫
G\GK

Q(dg2)

)
= S1

(
1

2
+

1

2
S1

)
.

Analogously,

Sn = Sn−1

(
n− 1

n
+

1

n
S1

)
or

Sn =

(
S1 + n− 1

n

)
Sn−1; n ∈ N.

Finally,

Sn =

(
S1 + n− 1

n

)(
S1 + n− 2

n− 1

)
. . .

(
S1 + 1

2

)
S1; n ∈ N

or

Sk = (−1)k
(
−S1

k

)
; k = 0, 1, . . . .

Let GS : [0, 1) → [0, 1] be the generating function for the sequence S0, S1, . . . , i.e.

GS(z) =
∞∑
k=0

zkSk.

We obtain

GS(z) =
∞∑
k=0

zk(−1)k
(
−S1

k

)
.

The right hand side is the well-known binomial series, and hence

(3.5) GS(z) = (1− z)−S1 ; 0 < z < 1.

4. Mixed line-generated tessellations

4.1. De�nition. Let ν be a random non-negative integer independent of the sequences

(αn)n∈N, (γn)n∈N

and geometrically distributed with parameter 0 < p < 1 :

P(ν = k) = p(1− p)k; k ∈ N0.

It is convenient for our purposes to introduce the new parameter t = − ln p for the

geometric distribution, i.e.

P(ν = k) = e−t(1− e−t)k; k ∈ N0.

We are interested in the random tessellation Tν . Let Tt be a random tessellation

distributed as Tν , where ν has a geometric distribution with the new parameter t;

0 < t < ∞.

Formally, the random tessellations Tk are mappings from the probability space

[Ω,F,P] into the space of tessellations; k ∈ N0. These mappings induce a σ−algebra
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over the space of tessellations. The distributions Pk (laws) of the Tk are probability

measures on that σ−algebra. The law P t of Tt is given by

P t =
∞∑
k=0

e−t(1− e−t)kPk.

The random tessellation Tt is addressed as a mixed line generated tessellation with

characteristics Q, t.

In addition to theorem 1 in Subsection 4.2.4 and corollary 6 in Section 5, the

following observation may be regarded as a motivation for investigating such mixtures.

Conjecture 1. Let T be a mixed line-generated tessellation in W with characteristics

Q, t and Ŵ a window in the sense of section 2 with Ŵ ⊂ W and Q(G
Ŵ
) > 0. Then

the cutout of T in Ŵ can be interpreted as a mixed line-generated tessellation in Ŵ

with characteristics

Q̂ =
1

Q(G
Ŵ
)
Q(� ∩ G

Ŵ
), t̂ = tQ(G

Ŵ
).

4.2. Mean values .

4.2.1. General formula. If Mk is one of the mean values for Tk treated in section 3,

the corresponding mean value of Tt is denoted by M t, and we get

M t =

∞∑
k=0

e−t(1− e−t)kMk

or

(4.1) M t = e−tGM (1− e−t),

where GM : (0, 1) → [0,∞) means the generating function for the sequence (Mk)k∈N0 :

GM (z) =
∞∑
k=0

zkMk.

Now, the characteristics can be easily deduced from that in Section 3.

4.2.2. Edge length intensity measure. According to formula (4.1), the mean total edge

length Et of Tt is equal to e−tGE(1− e−t). Combining this with (3.1), we �nd

Et = t

∫
Q(dg)|g ∩W |.

Obviously, in an analogous manner the entire edge length intensity measure can be

deduced.

For easy formulation, the intensity measures are described as measures on R2

having zero mass at R2 \ W. A measure on R2 in our sense is a measure on the

measurable space [R2,R2], where R2 denotes the Borel σ−algebra over R2. In this
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manner, we often do not mention the σ−algebra involved if there is no danger of

confusion.

Proposition 1. The edge length intensity measure of Tt is given by

t

∫
Q(dg)µ(g; � ∩W ),

where µ(g; �) is a special measure on R2, namely the 1-dimensional Hausdor�-measure

concentrated at g.

Note that the total mass of this intensity measure is equal to Et.

Corollary 1. The edge length intensity measure of Tt is equal to βt(�∩W ), where βt

denotes the edge length intensity measure of a Poisson line �eld in R2with intensity

measure tQ (on G).

A Poisson line �eld in R2 is a Poisson hyperplane process (mosaic) in the case of

dimension d = 2 in the sense of Schneider and Weil [10].

4.2.3. Node intensity measure. According to formula (4.1), the mean number of nodes

N t of Tt is equal to e−tGN (1− e−t). Combining this with (3.4), we �nd

N t = t2c(Q),

where

(4.2) c(Q) = (Q×Q)
{
(g, h) ∈ G2 : g ∩ h ∩W ̸= ∅

}
.

Analogously, the complete node intensity measure can be calculated.

Proposition 2. The node intensity measure of Tt is given by

t2
∫

Q(dg)

∫
Q(dh)δ(g, h; �),

where δ(g, h; �) denotes the Dirac measure on R2concentrated at the intersection point

g ∩ h of the lines g, h, if this intersection point exists and is contained in W , and

δ(g, h; �) is equal to the zero-measure otherwise.

Note that the total mass of this node intensity measure is equal to N t.

Corollary 2. The node intensity measure of Tt is equal to 2νt(�∩W ), where νt denotes

the node intensity measure of a Poisson line �eld in R2 with intensity measure tQ

(on G).
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4.2.4. Restricted capacity functional. As a consequence of formulas (3.5), (4.1) we

have

(4.3) St(K) = exp (−tQ(GK)) ,

where K ⊂ W is convex and compact.

Proposition 3. The restricted capacity functional for Tt is equal to that for the

cutout in W of a Poisson line tessellation with intensity measure tQ (on G).

A remarkable consequence should be pointed out.

Theorem 1. The cell of Tt containing a �xed point x ∈ W has the same distribution

as the intersection with W of the cell containing x of a Poisson line tessellation with

intensity measure tQ (on G).

4.3. Remark on iterations. The following considerations are devoted to specialists

already familiar with the notions of iteration (nesting) of random tessellations and

stability under iteration [5], [7] .

The leading normalized line measure Q is �xed in this subsection.

Given the mixed line-generated tessellations Tt with law P t and Ts with law P s, let

Y1, Y2, . . . be a sequence of i. i. d. copies of Ts, independent of Tt. If {Z1, . . . , Zκ} is

the set of cells of Tt and Yn the set of cells of Yn (n = 1, 2, . . .), then the set of cells
κ∪

n=1

(Yn ∩ Zn)

forms a new tessellation, the law of which is denoted by P t � P s.

Conjecture 2. The class of all mixed line-generated tessellations (related to Q) as

a whole is stable under iteration in the following sense: Every operation of iteration

maps the mentioned class into itself, i. e. an iterated mixed line-generated tessellation

is again a mixed line-generated tessellation. If the mixed line-generated tessellation

Tt is iterated according to the law P s of Ts, then the law P t � P s of the outcome

ful�ls

P t � P s = P t+s.

5. Homogeneous case

Let Λ be a shift-invariant, locally �nite measure on the space of lines [G,G] with

Λ(GW ) = 1, not concentrated on a set of parallel lines.

Denote by Tt the mixed line-generated tessellation in W in the sense of Section 4,

now related to the line measure Q = Λ(. ∩ GW ).

As a consequence of proposition 1, we obtain the following result.
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Proposition 4. The edge length intensity measure of Tt is equal to

t

2
Λ(GB)µ2(� ∩W ),

where B is the unit disk, and µ2 denotes the Lebesgue measure on R2.

Let Ht be a random STIT tessellation [5] in the whole plane related to the line

measure tΛ.

Corollary 3. According to [6] and proposition 4, the cutout in W of the random

STIT tessellation Ht has the same edge length intensity measure as Tt.

Now, proposition 2 is applied to the homogeneous case.

Proposition 5. The node intensity measure of Tt is equal to

t2

4

∫
GB

Λ(dg)

∫
GB

Λ(dh) | sin](g, h)|µ2(� ∩W ).

Corollary 4. According to [6] and proposition 5, the cutout in W of the random

STIT tessellation Ht has the same node intensity measure as Tt.
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Proposition 6. The restricted capacity functional of Tt in formula (4.3) can be

written in the form

St(K) = exp(−tΛ(GK)); K ⊂ W compact, convex.

Corollary 5. According to [6] and proposition 6, the cutout in W of the random

STIT tessellation Ht has the same restricted capacity functional as Tt.

Note also the following consequence.

Corollary 6. The cell of Tt containing the point x ∈ W as well as the intersection

with W of the cell in Ht containing x are distributed as the intersection with W of

the Crofton cell related to Λ, x.

If conjecture 2 could be veri�ed, also the following conjecture is true.

Conjecture 3. The random tessellations Ht restricted to W and Tt are identically

distributed.

The following two additional ways are proposed for proving the conjecture:

(1) Comparing the algorithms for producing the tessellations.

(2) Evaluating the capacity functional.

In the case of random STIT tessellations, the capacity functional is already known as

a recursion formula [5]; the stability under iteration even was the starting point for

all investigations.

The above Figure is related to the homogeneous case. It shows a simulation of an

anisotropic random STIT tessellation according to an algorithm of Nagel and Weiss

[4, 5, 10] and was provided by Joachim Ohser, Hochschule Darmstadt.

Note added after submission

The present paper was submitted on December 31, 2009. On February 16, 2010, the

author received the profound and very important preprint of Tomasz Schreiber and

Christoph Thaele: �Typical Geometry, Second-Order Properties and Central Limit

Theory for Iteration Stable Tessellations� from Werner Nagel.

In the article of Schreiber and Thaele, the process of cell division living on the

continuous time axis that was introduced in [7, 8] and the related STIT tessellations

are treated with the e�cient and very powerful methods of martingale theory.

Because also inhomogeneous counterparts are considered, probably the conjectures

above can be easily veri�ed by the methods of Schreiber and Thaele.

In the present paper, the focus is on a tessellation-valued Markov chain living on a

discrete time axis and producing STIT tessellations and inhomogeneous counterparts.

Furthermore, the aim of the present paper is to provide an easy access to the theory.
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Notes added in proof

1. Remark 2 in the present paper is in�uenced by an idea of Matthias Reitzner.

2. The argument in the exponential function in formula (4.3) may be addressed as

the Ambartzumian perimeter related to the line measure tQ of the compact convex

set K.
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