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Abstract. We consider random �nite permutations and prove the following version
of Thoma's theorem in [8]: Random �nite permutations which are class functions
satisfy a new integration by parts formula i� they are given by a certain Ewens-S�ut�o
process. The main source of inspiration for the results in this note is the fundamental
work of Andras S�ut�o [7], from which some results are reestablished here again in the
present point process approach.
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1. Introduction

We are interested in the construction of point processes realizing con�gurations of
�nite cyclic permutations which represent a cycle decomposition of a �nite permutation.
This means, we consider random �nite permutations considered as a point process on a
space of cycles. This point of view di�ers from the one taken for instance by Olshanski
in [6] where also random permutations are constructed. But there Sn, the symmetric
group on [1, n] = {1, . . . , n}, is imbedded into S∞, the in�nite symmetric group,
whereas here the groups Sn as well as Sf , the collection of all �nite permutations, are
considered as a subset of M.

f (Cf ), the set of �nite subsets of the set Cf of �nite cyclic
permutations of a subset of the natural numbers N.
We start the construction with a special �nite measure ρ on N and build with it a point
process Eρ on Sf which we call the Ewens-S�ut�o process for ρ. It is a special mixture of a
sequence of point processes on Sn, which had been discovered independently by Ewens
[2] and S�ut�o [7] in completely di�erent contexts. Our main result is its characterization
by means of an integration by parts fomula in terms of its Campbell measure. This
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result can be viewed as a version of Thoma's theorem in [8]. We mention �nally the
important paper of Fichtner [3] where already random permutations of random point
con�gurations had been constructed.

2. The main lemma

We consider the following �nite Poisson process Pρ on the set of natural numbers
N. Its intensity measure ρ is de�ned by

ρ(j) = d(j) · zj

j
, jεN,(2.1)

where 0 < z < 1 and d > 0. We assume that ρ is a �nite measure on N, i.e. ρ(N) =∑∞
j=1 ρ(j) < ∞. This is a condition on the function d. Condition (2.1) implies that

Pρ is a law on the collection M..
f (N) of all �nite point measures µ on N.

Examples for ρ are: (1) d is a constant d given by some natural number; (2) d(j) =

C · j− ν
2 where ν ∈ N and C is a positive constant.

We denote by (ζj)jεN the �eld variables ζj(µ) = µ(j). It is well known that these
variables are independent if Pρ is the underlying law; moreover ζj has a Poisson
distribution with parameter ρ(j). This implies immediately that

Pρ(µ) = exp(−ρ(N)) · zN(µ) · d(µ) · q(µ),(2.2)

where

q(µ) =
∏

j≥1

1
µ(j)! · jµ(j)

,(2.3)

d(µ) =
∏

j≥1

d(j)µ(j),(2.4)

N(µ) =
∑

j≥1

j · µ(j).(2.5)

We remark that here the products resp. the sum terminate after �nitely many steps
because µ is �nite. The range of N therefore is N0, the collection of natural numbers
augmented by 0.
Denoting by M the identity on M..

f (N), we have

Pρ{M = µ,N = n} = exp(−ρ(N)) · zn · d(µ) · q(µ) · 1{N=n}(µ), n ≥ 0.(2.6)

Summing over all µ and n we obtain

exp(ρ(N)) =
∑

n≥0

Qn(d) · zn,(2.7)
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where

Qn(d) =
∑

µ:N(µ)=n

d(µ) · q(µ), n ≤ 0, Q0(d) = 1,

denotes the so-called canonical partition function of the ideal Bose gas in quantum
statistical mechanics, where it is the starting point of the investigations.
Comparing the power series on the right hand side of (2.7) with the one obtained
by inserting the power series ρ(N) into the exponential, we obtain as an aside the
following representation of the canonical partition function which is of independent
combinatorial interest.

Proposition 1. Qn(d) =
∑

k≥0
1
k!

∑
λ:|λ|=n

∏k
l=1

d(λ(l))
λ(l) .

Here the summation is taken over all point measures λ on the interval [1, k], which
do not vanish; and |λ| = λ(N).
In case of example (1) Qn(d) =

(
d+n−1

n

)
which contains Cauchy's formula for d = 1.

Formula (2.6) implies that the random variable N is distributed according to the
following version of the negative binomial distribution:

Proposition 2. Pρ{N = n} = exp(−ρ(N)) · zn ·Qn(d), n ≥ 0.

Corollary 1. Pρ{M = µ|N = n} = 1
Qn(d) · d(µ) · q(µ) · 1{N=n}(µ), n ≥ 0, µ ∈ M..

f (N)

We use the following notations in the sequel:

P (n)
ρ = Pρ(.|N = n), n ≥ 1;(2.8)

P (0)
ρ = δ0; (δj denotes the Dirac measure at j);(2.9)

M..
(n) = {N = n}.(2.10)

Observe that P
(n)
ρ does no longer depend on z.

Our aim will be now to calculate the Campbell measure of P
(n)
ρ , which is de�ned as

follows:

C
P

(n)
ρ

(h) =
∑

µ∈M..
f (N)

∑

j∈N
h(j, µ) · µ(j) · P (n)

ρ (µ), h ∈ F+.

Here F+ denotes the set of all non negative real functions. Now we are in the position
to state and prove the main lemma of this note.

Lemma 1. C
P

(n)
ρ

=
∑

µ∈Mf (N)

∑
j∈N h(j, µ + δj) · Qn−j(d)

Qn(d) · d(j)
j · P (n−j)

ρ (µ), h ∈ F+.
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Proof: By de�nition one has

C
P

(n)
ρ

(h) =
1

Pρ{N = n} ·
∑

µ,j

1M..
(n)(N)(µ) · h(j, µ) · µ(j) · Pρ(µ).

Mecke's characterization of the Poisson process in [4] implies that this equals

=
1

Pρ{N = n} ·
∑

µ,j

1M..
(n)(N)(µ + δj) · h(j, µ + δj) · ρ(j) · Pρ(µ).

But (µ + δj ∈ M..
(n)(N) i� µ ∈ M..

(n−j)(N)). Thus one gets

=
∑

µ∈Mf (N)

∑

j∈N
h(j, µ + δj) · Qn−j(d)

Qn(d)
· d(j)

j
· P (n−j)

ρ (µ).

The lemma is proved. ¤
A �rst immediate application of the lemma shows that the intensity measure ν

P
(n)
ρ

of P
(n)
ρ , de�ned as ν

P
(n)
ρ

(j) = P
(n)
ρ (ζj), is given by

ν
P

(n)
ρ

(j) =
Qn−j(d)
Qn(d)

· d(j)
j

, j ∈ [1, n].(2.11)

3. The Ewens-S�ut�o cycle process

Given n ≥ 1, consider the symmetric group Sn, acting on [1, n]. We use the
following properties of Sn (see [1] e.g.): Every permutation σ ∈ Sn can be decomposed
in a unique way into disjoint cycles. Let rj(σ) be the number of cycles with length
j. Then

∑
j j · rj(σ) = n. A conjugacy class consists of those permutations σ having

the same decomposition into cycles, i.e. having the same rj(σ).
A permutation σ ∈ Sn is always considered as a simple point measure of disjoint
cycles, including the trivial ones:

σ =
∑
x∈σ

δx.

Here the sum is taken over all cycles x of the cycle decomposition of σ. The neutral
element of Sn decomposes into trivial cycles only. We consider Sn as a subset of
M·

f (Cf ) where Cf denotes the collection of all �nite cycles x. This means that x is a
cyclic permutation of a �nite subset I ∈ N, I 6= ∅. (Recall that M·

f (Cf ) is the set of
�nite subsets of Cf considered as simple point measures.) For n = 0 S0 denotes the
singleton {0} consisting of the measure 0 on Cf . As a consequence Sf =

⋃
n≥0 Sn, the

set of all �nite permutations of N, is well de�ned subset of M·
f (Cf ).
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The connection between the cycle con�gurations σ in M·
f (Cf ) and the con�gurations

µ in M··
f (N) is given by the transformation

r : σ 7→ µ = r(σ),

where µ(j) = rj(σ) is the number of cycles of length j in σ. The length of a cycle
x is the cardinality of its domain, denoted by N(x). Thus N is a counting variable
de�ned on Cf .
Given µ ∈ M··

f (N) we denote by

Kµ = SN(µ) ∩ {r = µ}

the conjugacy class of permutations de�ned by µ. It is well known [1] that |Kµ| =

N(µ)! · q(µ).
We de�ne the following law on Sn

E(n)
ρ (σ) =

1
|Kr(σ)|

· P (n)
ρ (r(σ)), σ ∈ Sn.(3.1)

These probabilities are trivially extended to probabilities on the whole space M·
f (Cf ).

We call E
(n)
ρ the Ewens-S�ut�o cycle process for the parameters (n, ρ). It is a simple

point process of cycles realizing a permutation σ of [1, n]. Observe that E
(n)
ρ is constant

on conjugacy classes and thus a so-called class function. Explicitly this Ewens-S�ut�o
cycle process is given by

E(n)
ρ (σ) =

1
n!Qn(d)

· d(µ) · 1{N=n}(µ), σ ∈ Sn,(3.2)

where µ = r(σ). We make the following useful observation that P
(n)
ρ is the image

of E
(n)
ρ under r, denoted by rE

(n)
ρ . In the sequel we'll use the notation: N(σ) :=

N(r(σ)), σ ∈ M·
f (Cf ). Finally we observe that E

(n)
ρ is well de�ned also for n = 0 :

E
(0)
ρ = δ0, 0 denoting measure 0 from M·

f (Cf ).
We now de�ne the main object of this note. The Ewens -S�ut�o cycle process for ρ is the
following mixture of the (E(n)

ρ )n≥0 with respect to the negative binomial distribution
of N under Pρ:

Eρ = exp(−ρ(N)) ·
∞∑

n=0

zn ·Qn(d) · E(n)
ρ .(3.3)

Eρ is a simple point process on the space Cf of �nite cycles. To be more precise:
According to the negative binomial distribution n is realized �rst, then a decomposition
of some σ ∈ Sn into disjoint cycles is realized according to E

(n)
ρ .
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Observe that rEρ = Pρ and thus in particular

Eρ{N = n} = exp(−ρ(N)) · zn ·Qn(d), n ≥ 0.

This means that N , the length of a permutation, is distributed according to the
negative binomial distribution for the Ewens -S�ut�o cycle process Eρ .

4. The distribution of cycle lengths in the Ewens-S�ut�o field.

Given (n, ρ) we consider the following random �eld, which we call the Ewens-S�uto
�eld for (n, ρ):

Ξ(n)
ρ ≡ (Sn, E(n)

ρ , (ξa)a∈[1,n])(4.1)

Here ξa(σ) denotes the length of the cycle in σ containing a.

Lemma 2. Ξ(n)
ρ is identically distributed in the following sense. For any choice of

distinct a1, . . . , ak ∈ [1, n] the distribution of (ξaj )j∈[1,k] is the same.

Proof: By de�nition for any j1, . . . , jk ∈ [1, n]

E(n)
ρ {ξa1 = j1, . . . , ξak

= jk} =
∑

µ∈M··
n(N)

1
|Kµ| · P

(n)
ρ (µ) ·

∑

σ∈Kµ

1{ξa1=j1,...,ξak
=jk}(σ).

(4.2)

We have to show that the inner sum does not depend on the choice of distinct
al. Let b1, . . . , bk ∈ [1, n] be another choice of distinct elements in [1, n]. Then
choose a permutation τ ∈ Sn such that τ(al) = bl, l = 1, . . . , k and consider
the conjugation transformation σ 7→ τστ−1 :=

∑
x∈σ δτxτ−1 . It is obvious that

(ξa1(σ) = j1, . . . , ξak
(σ) = jk i� ξb1(τστ−1) = j1, . . . , ξbk

(τστ−1) = jk) (see for
example [1]). This implies that

∑

σ∈Kµ

1{ξa1=j1,...,ξak
=jk}(σ) =

∑

σ∈Kµ

1{ξb1=j1,...,ξbk
=jk}(τστ−1).(4.3)

¤

Theorem 1. (S�ut�o [7]). (1) For any choice of distinct a1, . . . , ak ∈ [1, n] and distinct
j1, . . . , jk ∈ [1, n]

E(n)
ρ {ξa1 = j1, . . . , ξak

= jk} =
j1 . . . jk

n(n− 1) . . . (n− k + 1)
E(n)

ρ (ζj1 · · · ζjk
).(4.4)

(2) For any choice of distinct j1, . . . , jk ∈ [1, n]

E(n)
ρ (ζj1 · · · ζjk

) =
k∏

l=1

d(jl)
jl

· Qn−(j1+···+jk)(d)
Qn(d)

.(4.5)
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As an immediate consequence the distribution of the lengths of the cycles containing
distinct a1, . . . , ak ∈ [1, n] is given by

E(n)
ρ {ξa1 = j1, . . . , ξak

= jk} =
d(j1) · · · d(jk)

n(n− 1) · · · (n− k + 1)
Qn−(j1+···+jk)(d)

Qn(d)
,(4.6)

provided that j1, . . . , jk are distinct. We note that the distribution of (ξal
)l=1,...,k

depends only on d but not on z.
Proof. (1) Given distinct j1, . . . , jk ∈ [1, n] we have that

∑ ∗
a1,...,ak

E(n)
ρ {ξa1 = j1, . . . , ξak

= jk} =

=
∑

σ∈Sn

E(n)
ρ (σ)

∑
m1,...,mk

∑ ∗
a1,...,ak

1{ξal
=jl,ζjl

=ml;l=1,...,k}(σ).

Here the sum
∑ ∗

a1,...,ak
is taken over all distinct a1, . . . , ak ∈ [1, n] and ζj(σ) =

ζj(r(σ)), j ∈ [1, n]. Since the inner sum equals to
k∏

l=1

jl ·ml · 1{ζjl
=ml,l=1,...,k}(σ),

we obtain that
∑ ∗

a1,...,ak
E(n)

ρ {ξa1 = j1, . . . , ξak
= jk} = j1 . . . jk · E(n)

ρ (ζj1 . . . ζjk
).

Combining this with lemma 2 we get (4.4).
(2) To evaluate the moment measure E

(n)
ρ (ζj1 · · · ζjk

) we use lemma 1 and the fact
that ζj are class functions, i.e. they depend only on r(σ). Thus

E(n)
ρ (ζj1 · · · ζjk

) = P (n)
ρ (ζj1 . . . ζjk

) = C
P

(n)
ρ

(1{j1} ⊗ (ζj2 . . . ζjk
)) =

=
d(j1)
j1

· Qn−j1(d)
Qn(d)

· P (n−j1)
ρ ∗∆j1(ζj2 · · · ζjk

).

Here ∗∆j1 denotes the convolution with respect to the point process δδj1
. Using then

that j1, . . . , jk are distinct by assumption the Campbell measure of P
(n)
ρ factorizes

and one obtains

E(n)
ρ (ζj1 · · · ζjk

) =
d(j1)
j1

· Qn−j1(d)
Qn(d)

· P (n−j1)
ρ (ζj2 · · · ζjk

).

Iterating this procedure yields (4.5). ¤

5. An integration by parts formula characterizing Eρ

In this section we derive an equation for Eρ in terms of its Campbell measure. We
use the following transformation:

N ⊗ r : Cf ×M·
f (Cf ) → N0 ×M··

f (N); (x, σ) 7→ (N(x), r(σ)).(5.1)
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Observe that CPρ is the image of CEρ under N ⊗ r because Pρ is the image of Eρ

under r.
We now want to compute the Campbell measure of Eρ for class functions h̃ of the
type h̃ := h◦(N⊗r) with arbitrary h : N0×M··

f (N) → R. Thus h̃ : Cf×M·
f (Cf ) → R.

Using again Mecke's characterization of the Poisson process, we obtain that

CEρ(h̃) = CPρ(h) =
∑

µ∈M··
f (N)

∑

j∈N
h(j, µ + δj)ρ(j)Pρ(µ).(5.2)

Going then back to the level of cycles and permutations we �nd that

CEρ
(h̃) =

∑

σ∈Sf

∑

x∈Cf

h(N(x), r(σ) + δN(x))1SN
(σ + δx)

ρ(N(x))
(N(x)− 1)!

Eρ(σ).(5.3)

Here we used the fact that the number of cycles in some �xed domain of length
N(x) is equal to (N(x) − 1)!. Moreover σ + δx ∈ SN i� σ + δx ∈ SN(σ+δx). Since
r(σ)+ δN(x) = r(σ + δx), setting τρ(j) = 1

(j−1)! · ρ(j) = zj

j! d(j), j ∈ N, we obtain that

CEρ(h̃) =
∑

σ∈Sf

∑

x∈Cf

h̃(x, σ + δx) · 1SN (σ + δx) · τρ(N(x)) · Eρ(σ).(5.4)

To summarize, we have

Theorem 2. The Ewens-S�ut�o cycle process Eρ is a simple point process Q on Cf

which is concentrated on Sf , constant on conjugacy classes and solves the following
integration by parts formula

CQ(h̃) =
∑

σ∈Sf

∑

x∈Cf

h̃(x, σ + δx) · 1SN (σ + δx) · τρ(N(x)) ·Q(σ),(5.5)

provided that h̃ is a class function.

An immediate consequence is that the intensity measure of Eρ is τρ(N(.)).This is
the probabilistic signi�cance of τρ ◦ N for the Ewens-S�ut�o process: τρ ◦ N(x) is the
expected number of random permutations possessing x as a cyclic permutation.
Our next aim is to show the converse of this theorem. Let Q be an element of PM·

f (Cf )

i.e. a law on M·
f (Cf ) which is concentrated on Sf and is constant on conjugacy classes.

We assume that Q is a solution of the equation (5.5). Then there exists a function
P ′ : M··

f (N) → R+ which factorizes Q in the sense that Q(σ) = P ′(r(σ)), σ ∈ Sf .
Consider then P := rQ. P is a point process on M·

f (Cf ) with P (µ) = |Kµ|·P ′(µ), µ ∈
M··

f (N). Moreover, given any h ∈ F+(N0 ×M··
f (N)) and setting h̃ = h ◦ (N ⊗ r), with
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the help of (5.5), we obtain then that CP (h) equals

CQ(h̃) =
∑

σ∈Sf

∑

x∈Cf

h(N(x), r(σ) + δN(x)) · 1SN(σ)+N(x)(σ + δx) · τρ(N(x)) ·Q(σ) =

=
∑

µ∈M··
f (N)

P ′(µ)
∞∑

j=1

·h(j, µ + δj) · τρ(j) ·
∑

σ∈Kµ

∑

x:N(x)=j

1SN(µ)+j
(σ + δx).

It is obvious that the inner double sum factorizes and equals to (j − 1)! · |Kµ|. Thus
we obtain

CP (h) =
∑

µ∈M··
f (N)

∞∑

j=1

h(j, µ + δj) · ρ(j) · P (µ).

for any h ∈ F+(N0 × M··
f (N)). This means that P solves the integration by parts

formula characterizing the Poisson process Pρ (see [4]). Hence P = Pρ. Then it
follows that

Q(σ) =
1

|Kr(σ)|
· Pρ(r(σ)), σ ∈ Sf .

Thus Q = Eρ. To summarize we have

Theorem 3. Let ρ be as above and Q be a simple point process on Cf which is
concentrated on Sf and constant on conjugacy classes. If Q is a solution of (5.5) then
Q is the Ewens-S�ut�o cycle process Eρ.

Combining the last two theorems we see that random permutations of Sf whose
distributions are class functions , are solutions of (5.5) i� they are special mixtures
of Ewens-S�ut�o cycle processes (E(n)

ρ )n≥0. This result can be viewed as a version of
Thoma's theorem (see [8]).
Some concluding remarks are in order here: The integration by parts formula (5.5) has
to be compared with the corresponding characterization of Gibbs processes of abstract
particles, interacting in the sense of a classical gas (see [5]). In the present situation we
consider a system of cyclic permutations which interact strongly in the sense that their
con�guration represents the cycle decomposition of a permutation. Equation (5.5)
contains the precise expression of such an interaction: The cycles are hard rods, but
moreover they are glued together such that they form a permutation. This therefore is
a �rst step in �nding characterizations in the spirit of statistical mechanics of other
random tesselations like the Plancherel process (see [6]) or Delaunay and Voronoi
tesselations.
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