Известия НАН Армении. Математика, том 45, н. 4, 2010, стр. 57-70.

SHARP FUNCTION BOUNDEDNESS FOR VECTOR-VALUED MULTILINEAR SINGULAR INTEGRAL OPERATORS WITH NON-SMOOTH KERNELS

LANZHE LIU

Changsha University of Science and Technology Changsha, China E-mail: lanzheliu@163.com

Аннотация. Sharp function inequalities for several vector-valued, multilinear singular integral operators with non-smooth kernels are obtained. As an application, some weighted $L^p(p>1)$ norm inequalities for the vector-valued multilinear operators are derived.

MSC2010 number: 42B20, 42B25

Keywords: Vector-valued multilinear operator, singular integral operator, sharp function estimate, non-smooth kernel, BMO.

1. Preliminaries and Theorems

As the development of the theory of singular integral operators, their commutators and multilinear operators have been well studied (see [1] - [5], [7], [12] - [15]). In [8], some singular integral operators with non-smooth kernels are introduced, whose kernels satisfy some requirements which are weaker than those for the Calderón-Zygmund singular integral operators. In [6] and [11], the boundedness of the singular integral operators with non-smooth kernels and their commutators is proved.

The main purpose of this paper is to study the vector-valued, multilinear, singular integral operators with non-smooth kernels defined as follows (see [8], [11]).

Definition 1.1. A family of operators D_t , t > 0 is said to be an approximation to the identity, if for every t > 0 the family D_t can be represented by the kernel $a_t(x, y)$ as follows:

$$D_t(f)(x) = \int_{\mathbb{R}^n} a_t(x, y) f(y) dy$$

for every $f \in L^p(\mathbb{R}^n)$ with $p \geq 1$, and $a_t(x,y)$ satisfies the inequality

$$|a_t(x,y)| \le h_t(x,y) = Ct^{-n/2}s(|x-y|^2/t),$$

where s is a positive, bounded and decreasing function such for some $\epsilon>0$

$$\lim_{r \to \infty} r^{n+\epsilon} s(r^2) = 0.$$

Definition 1.2. A linear operator T is called singular integral operator with non-smooth kernels, if T is bounded on $L^2(\mathbb{R}^n)$ and is associated with some kernel K(x,y) such that

$$T(f)(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

for every continuous function f with a compact support, and for almost all x, which do not belong to that support. In addition, it is required that:

(1) There exists an approximations to the identity $\{B_t, t > 0\}$ such that TB_t possesses an associated kernel $k_t(x, y)$ and there exist constants c_1 , $c_2 > 0$ such that

$$\int_{|x-y|>c_1t^{1/2}} |K(x,y)-k_t(x,y)| dx \le c_2 \text{ for all } y \in \mathbb{R}^n.$$

(2) There exists an approximations to the identity $\{A_t, t > 0\}$ such that A_tT possesses an associated kernel $K_t(x, y)$ which satisfies the inequalities

$$|K_t(x,y)| \le c_4 t^{-n/2}$$
 if $|x-y| \le c_3 t^{1/2}$,

and

$$|K(x,y) - K_t(x,y)| \le c_4 t^{\delta/2} |x-y|^{-n-\delta}$$
 if $|x-y| \ge c_3 t^{1/2}$

for some constants c_3 , $c_4 > 0$, $\delta > 0$.

Let m_j (j = 1, ..., l) be positive integers $m_1 + ... + m_l = m$ and b_j (j = 1, ..., l) be functions on \mathbb{R}^n . Set

$$R_{m_j+1}(b_j; x, y) = b_j(x) - \sum_{|\alpha| \le m_j} \frac{1}{\alpha!} D^{\alpha} b_j(y) (x - y)^{\alpha}, \quad 1 \le j \le m.$$

Given functions f_i (i = 1, 2, ...) defined on \mathbb{R}^n , for any $1 < r < \infty$ the the vector-valued multilinear operator associated to T is defined by the formula

$$|T_b(f)(x)|_r = \left(\sum_{i=1}^{\infty} (T_b(f_i)(x))^r\right)^{1/r},$$

where

$$T_b(f_i)(x) = \int_{\mathbb{R}^n} \frac{\prod_{j=1}^l R_{m_j+1}(b_j; x, y)}{|x - y|^m} K(x, y) f_i(y) dy.$$

Set

$$|T(f)(x)|_r = \left(\sum_{i=1}^{\infty} |T(f_i)(x)|^r\right)^{1/r}$$
 and $|f(x)|_r = \left(\sum_{i=1}^{\infty} |f_i(x)|^r\right)^{1/r}$.

Note that $|T_b(f)|_r$ is just the vector-valued multilinear commutator of T and b_j when m=0 (see [14]), while $|T_b(f)|_r$ is a nontrivial generalizations of the commutator when m>0. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors(see [2] - [5]). Hu and Yang (see [10]) proved a variant sharp estimate for multilinear singular integral

operators. In [14], Pérez and Trujillo-Gonzalez proved a sharp estimate for multilinear commutators when $b_j \in Osc_{expL^{r_j}}(\mathbb{R}^n)$.

The main purpose of this paper is to prove a sharp function inequality for the vector-valued, multilinear singular integral operators with non-smooth kernels when $D^{\alpha}b_{j} \in BMO(\mathbb{R}^{n})$ for all α with $|\alpha| = m_{j}$. As the application, some $L^{p}(p > 1)$ norm inequality for the vector-valued, multilinear operators are obtained.

Throughout the paper, Q = Q(x, d) denotes a cube in \mathbb{R}^n with sides parallel to the coordinate axes, the center of which is a point x and the length of sides is d. If b is a locally integrable function, then its sharp function is defined as

$$b^{\#}(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| dy,$$

where, and in what follows,

$$b_Q = |Q|^{-1} \int_Q b(x) dx.$$

It is well-known that(see [9], [16]) that

$$b^{\#}(x) \approx \sup_{x \in Q} \inf_{c \in C} \frac{1}{|Q|} \int_{Q} |b(y) - c| dy$$

and

$$||b - b_{2^k Q}||_{BMO} \le Ck||b||_{BMO}$$
 for $k \ge 1$.

We say that b belongs to $BMO(\mathbb{R}^n)$ if $b^{\#}$ belongs to $L^{\infty}(\mathbb{R}^n)$ and $||b||_{BMO} = ||b^{\#}||_{L^{\infty}}$. Assuming that M is the Hardy-Littlewood maximal operator

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,$$

we set $M_p(f) = (M(f^p))^{1/p}$ for $0 . Further, the sharp maximal function <math>M_A^{\#}$ associated with approximation to the identity $\{A_t, t > 0\}$ is defined as

$$M_A^{\#}(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y) - A_{t_Q}(f)(y)| dy,$$

where $t_Q = l(Q)^2$ and l(Q) denotes the side length of Q.

The below two theorems are the main result of this paper.

Theorem 1.3. Let $1 < r < \infty$ and let $D^{\alpha}b_j \in BMO(\mathbb{R}^n)$ for all α with $|\alpha| = m_j$ (j = 1, ..., l). Then, there exists a constant C > 0 such that

$$M_A^{\#}(|T_b(f)|_r)(\tilde{x}) \le C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} ||D^{\alpha_j} b_j||_{BMO} \right) M_s(|f|_r)(\tilde{x}).$$

for any function $f \in C_0^{\infty}(\mathbb{R}^n)$, any $1 < s < \infty$ and any point $\tilde{x} \in \mathbb{R}^n$,

Theorem 1.4. Let $1 < r < \infty$ and $D^{\alpha}b_j \in BMO(R^n)$ for all α with $|\alpha| = m_j$ (j = 1, ..., l). Then, $|T_b|_r$ is bounded on $L^p(R^n)$ for any 1 , that is

$$|||T_b(f)|_r||_{L^p} \le C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} ||D^{\alpha_j} b_j||_{BMO} \right) |||f|_r||_{L^p}.$$

2. Some Lemmas

We present some preliminary lemmas.

Lemma 2.1. ([4]) Let b be a function on R^n and let $D^{\alpha}b \in L^q(R^n)$ for all α with $|\alpha| = m$ and some q > n. Then

$$|R_m(b;x,y)| \le C|x-y|^m \sum_{|\alpha|=m} \left(\frac{1}{|\tilde{Q}(x,y)|} \int_{\tilde{Q}(x,y)} |D^{\alpha}b(z)|^q dz\right)^{1/q},$$

where \tilde{Q} is the cube centered at x, with the side length $5\sqrt{n}|x-y|$.

Lemma 2.2. ([8], [11]) Let $1 < r < \infty$ and let T be a singular integral operators with non-smooth kernel as in Definition 1.2. Then, for every $f \in L^p(\mathbb{R}^n)$, (1 ,

$$|||T(f)|_r||_{L^p} \leq C|||f|_r||_{L^p}.$$

Lemma 2.3. ([6]) Let $\{A_t, t > 0\}$ be an approximation to the identity and $b \in BMO(\mathbb{R}^n)$. Then, for every $f \in L^p(\mathbb{R}^n)$, p > 1, $1 < r < \infty$ and $x \in \mathbb{R}^n$

$$\sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |A_{t_{Q}}((b - b_{Q})f)(y)| dy \le C||b||_{BMO} M_{r}(f)(x),$$

where $t_Q = l(Q)^2$ and l(Q) denotes the side length of Q.

Lemma 2.4. ([8], [11]) There exists a constant C > 0 such that for any $\gamma > 0$ and $\lambda > 0$

$$|\{x \in R^n : M(f)(x) > D\lambda, M_A^{\#}(f)(x) \le \gamma\lambda\}| \le C\gamma |\{x \in R^n : M(f)(x) > \lambda\}|,$$

where D is a fixed constant depending only on n. So that

$$||M(f)||_{L^p} \le C||M_A^{\#}(f)||_{L^p}$$

for every $f \in L^p(\mathbb{R}^n), 1 .$

3. Proofs of Theorems

Proof of Theorem 1.3. It suffices to prove that for $f \in C_0^{\infty}(\mathbb{R}^n)$

$$\frac{1}{|Q|} \int_Q \left| |T_b(f)(x)|_r - |A_{t_Q} T_b(f)(x)|_r \right| dx \le$$

$$\leq C \prod_{j=1}^{l} \left(\sum_{|\alpha_j|=m_j} ||D^{\alpha_j} b_j||_{BMO} \right) M_s(|f|_r)(x).$$

Without loss of generality, we can assume l=2. We fix a cube $Q=Q(x_0,d)$ and a point $\tilde{x} \in Q$ and suppose that $\tilde{Q}=5\sqrt{n}Q$ and

$$\tilde{A}_j(x) = A_j(x) - \sum_{|\alpha| = m} \frac{1}{\alpha!} (D^{\alpha} A_j)_{\tilde{Q}} x^{\alpha}.$$

Then

$$R_m(A_j;x,y) = R_m(\tilde{A}_j;x,y) \quad \text{and} \quad D^\alpha \tilde{A}_j = D^\alpha A_j - (D^\alpha A_j)_{\tilde{Q}} \quad \text{for} \quad |\alpha| = m_j.$$

Now, we decompose $f = g + h = \{g_i\} + \{h_i\}$ in $g_i = f_i \chi_{\tilde{Q}}$ and $h_i = f_i \chi_{R^n \setminus \tilde{Q}}$. Then

$$\begin{split} T_b(f_i)(x) &= \int_{R^n} \frac{\prod\limits_{j=1}^2 R_{m_j+1}(\tilde{b}_j; x, y)}{|x-y|^m} K(x, y) f_i(y) dy = \\ &= \int_{R^n} \frac{\prod\limits_{j=1}^2 R_{m_j}(\tilde{b}_j; x, y)}{|x-y|^m} K(x, y) g_i(y) dy - \\ &- \sum_{|\alpha_1|=m_1} \frac{1}{\alpha_1!} \int_{R^n} \frac{R_{m_2}(\tilde{b}_2; x, y) (x-y)^{\alpha_1} D^{\alpha_1} \tilde{b}_1(y)}{|x-y|^m} K(x, y) g_i(y) dy \\ &- \sum_{|\alpha_2|=m_2} \frac{1}{\alpha_2!} \int_{R^n} \frac{R_{m_1}(\tilde{b}_1; x, y) (x-y)^{\alpha_2} D^{\alpha_2} \tilde{b}_2(y)}{|x-y|^m} K(x, y) g_i(y) dy \\ &+ \sum_{|\alpha_1|=m_1, \ |\alpha_2|=m_2} \frac{1}{\alpha_1! \alpha_2!} \int_{R^n} \frac{(x-y)^{\alpha_1+\alpha_2} D^{\alpha_1} \tilde{b}_1(y) D^{\alpha_2} \tilde{b}_2(y)}{|x-y|^m} K(x, y) g_i(y) dy \\ &+ \int_{R^n} \frac{\prod\limits_{j=1}^2 R_{m_j+1}(\tilde{b}_j; x, y)}{|x-y|^m} K(x, y) h_i(y) dy = T \left(\prod\limits_{j=1}^2 R_{m_j}(\tilde{b}_j; x, \cdot) \frac{1}{|x-\cdot|^m} g_i \right) \\ &- T \left(\sum_{|\alpha_1|=m_1} \frac{1}{\alpha_1!} \frac{R_{m_2}(\tilde{b}_2; x, \cdot) (x-\cdot)^{\alpha_1} D^{\alpha_1} \tilde{b}_1}{|x-\cdot|^m} g_i \right) \\ &- T \left(\sum_{|\alpha_2|=m_2} \frac{1}{\alpha_2!} \frac{R_{m_1}(\tilde{b}_1; x, \cdot) (x-\cdot)^{\alpha_2} D^{\alpha_2} \tilde{b}_2}{|x-\cdot|^m} g_i \right) \end{split}$$

$$+T\left(\sum_{|\alpha_{1}|=m_{1}, |\alpha_{2}|=m_{2}} \frac{(x-\cdot)^{\alpha_{1}+\alpha_{2}}D^{\alpha_{1}}\tilde{b}_{1}D^{\alpha_{2}}\tilde{b}_{2}}{\alpha_{1}!\alpha_{2}!|x-\cdot|^{m}}g_{i}\right)+T\left(\frac{\prod_{j=1}^{2}R_{m_{j}+1}(\tilde{b}_{j};x,\cdot)}{|x-\cdot|^{m}}h_{i}\right)$$

and

$$\begin{split} A_{t_Q}T_b(f_i)(x) &= \int_{R^n} \frac{\prod\limits_{j=1}^2 R_{m_j+1}(\tilde{b}_j;x,y)}{|x-y|^m} K_t(x,y) f_i(y) dy \\ &= \int_{R^n} \frac{\prod\limits_{j=1}^2 R_{m_j}(\tilde{b}_j;x,y)}{|x-y|^m} K(x,y) g_i(y) dy \\ &- \sum_{|\alpha_1|=m_1} \frac{1}{\alpha_1!} \int_{R^n} \frac{R_{m_2}(\tilde{b}_2;x,y) (x-y)^{\alpha_1} D^{\alpha_1} \tilde{b}_1(y)}{|x-y|^m} K_t(x,y) g_i(y) dy \\ &- \sum_{|\alpha_2|=m_2} \frac{1}{\alpha_2!} \int_{R^n} \frac{R_{m_1}(\tilde{b}_1;x,y) (x-y)^{\alpha_2} D^{\alpha_2} \tilde{b}_2(y)}{|x-y|^m} K_t(x,y) g_i(y) dy \\ &+ \sum_{|\alpha_1|=m_1,\ |\alpha_2|=m_2} \frac{1}{\alpha_1! \alpha_2!} \int_{R^n} \frac{(x-y)^{\alpha_1+\alpha_2} D^{\alpha_1} \tilde{b}_1(y) D^{\alpha_2} \tilde{b}_2(y)}{|x-y|^m} K_t(x,y) g_i(y) dy \\ &+ \int_{R^n} \frac{\prod_{j=1}^2 R_{m_j+1}(\tilde{b}_j;x,y)}{|x-y|^m} K_t(x,y) h_i(y) dy \\ &= A_{t_Q} T \left(\frac{\prod_{j=1}^2 R_{m_j}(\tilde{b}_j;x,\cdot)}{|x-\cdot|^m} g_i \right) \\ &- A_{t_Q} T \left(\sum_{|\alpha_1|=m_1} \frac{1}{\alpha_1!} \frac{R_{m_2}(\tilde{b}_2;x,\cdot) (x-\cdot)^{\alpha_1} D^{\alpha_1} \tilde{b}_1}{|x-\cdot|^m} g_i \right) \\ &+ A_{t_Q} T \left(\sum_{|\alpha_1|=m_2} \frac{1}{\alpha_2!} \frac{R_{m_1}(\tilde{b}_1;x,\cdot) (x-\cdot)^{\alpha_2} D^{\alpha_2} \tilde{b}_2}{|x-\cdot|^m} g_i \right) \\ &+ A_{t_Q} T \left(\frac{\sum_{|\alpha_1|=m_2} \frac{1}{\alpha_2!} \frac{R_{m_1}(\tilde{b}_1;x,\cdot) (x-\cdot)^{\alpha_1+\alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x-\cdot|^m} g_i \right) \\ &+ A_{t_Q} T \left(\frac{\prod_{j=1}^2 R_{m_j+1}(\tilde{b}_j;x,\cdot)}{|x-\cdot|^m} h_i \right). \end{split}$$

Further, by Minkowski's inequality

$$\left| |T_b(f)(x)|_r - |A_{t_Q}T_b(f)(x)|_r \right| = \left| \left(\sum_{i=1}^{\infty} (T_b(f_i)(x))^r \right)^{1/r} - \left(\sum_{i=1}^{\infty} (A_{t_Q}T_b(f_i)(x))^r \right)^{1/r} \right|$$

$$\leq \left(\sum_{i=1}^{\infty} \left| T_b(f_i)(x) - A_{t_Q} T_b(f_i)(x) \right|^r \right)^{1/r}$$

$$\leq \left(\sum_{i=1}^{\infty} \left| T \left(\frac{\prod_{j=1}^2 R_{m_j} (\tilde{b}_j; x, \cdot)}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \frac{R_{m_2} (\tilde{b}_2; x, \cdot) (x - \cdot)^{\alpha_1} D^{\alpha_1} \tilde{b}_1}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_2!} \frac{R_{m_1} (\tilde{b}_1; x, \cdot) (x - \cdot)^{\alpha_2} D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| A_{t_Q} T \left(\sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \frac{R_{m_2} (\tilde{b}_2; x, \cdot) (x - \cdot)^{\alpha_1} D^{\alpha_1} \tilde{b}_1}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| A_{t_Q} T \left(\sum_{|\alpha_2| = m_2} \frac{1}{\alpha_2!} \frac{R_{m_1} (\tilde{b}_1; x, \cdot) (x - \cdot)^{\alpha_2} D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{(x - \cdot)^{\alpha_1 + \alpha_2} D^{\alpha_1} \tilde{b}_1 D^{\alpha_2} \tilde{b}_2}{|x - \cdot|^m} g_i \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{1}{|x - \cdot|^m} \frac{1}{|x - \cdot|^m} \tilde{b}_1 \right) \right|^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1, \ |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \frac{1}{|\alpha_1| \alpha_2!} \frac{1}{|x - \cdot|^m} \frac{1}{|x - \cdot|^m} \tilde{b}_1 \right) \right)^r \right)^{1/r}$$

$$+ \left(\sum_{i=1}^{\infty} \left| T \left(\sum_{|\alpha_1| = m_1$$

Thus

$$\frac{1}{|Q|} \int_{Q} ||T_{b}(f)(x)|_{r} - |A_{t_{Q}}T_{b}(f)(x)|_{r}| dx$$

$$\leq \frac{1}{|Q|} \int_{Q} I_{1}(x)dx + \frac{1}{|Q|} \int_{Q} I_{2}(x)dx + \frac{1}{|Q|} \int_{Q} I_{3}(x)dx + \frac{1}{|Q|} \int_{Q} I_{4}(x)dx$$

$$+ \frac{1}{|Q|} \int_{Q} I_{5}(x)dx + \frac{1}{|Q|} \int_{Q} I_{6}(x)dx + \frac{1}{|Q|} \int_{Q} I_{7}(x)dx + \frac{1}{|Q|} \int_{Q} I_{8}(x)dx$$

$$+ \frac{1}{|Q|} \int_{Q} I_{9}(x)dx := I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6} + I_{7} + I_{8} + I_{9}.$$

Let us estimate I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 and I_9 separately. First, by lemma 2.1 we obtain that for any $x \in Q$ and $y \in \tilde{Q}$

$$R_m(\tilde{b}_j; x, y) \le C|x - y|^m \sum_{|\alpha_j| = m} ||D^{\alpha_j} b_j||_{BMO}.$$

Consequently, by the L^s -boundedness of T (lemma 2.2), we get

$$I_{1} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \frac{1}{|Q|} \int_{Q} |T(g)(x)|_{r} dx$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \left(\frac{1}{|Q|} \int_{R^{n}} |T(g)(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \left(\frac{1}{|Q|} \int_{R^{n}} |g(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |f(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}).$$

To estimate I_2 , we denote s=pq and using lemma 2.2 and Hölder's inequality for 1 1 and 1/q + 1/q' = 1, we get

$$I_{2} \leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \frac{1}{|Q|} \int_{Q} |T(D^{\alpha_{1}}\tilde{b}_{1}g)(x)|_{r} dx$$

$$\leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \left(\frac{1}{|Q|} \int_{R^{n}} |T(D^{\alpha_{1}}\tilde{b}_{1}g)(x)|_{r}^{p} dx\right)^{1/p}$$

$$\leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \left(\frac{1}{|Q|} \int_{R^{n}} |D^{\alpha_{1}}\tilde{b}_{1}(x)||g(x)|_{r}^{p} dx\right)^{1/p}$$

$$\leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |D^{\alpha_{1}}b_{1}(x) - (D^{\alpha}b_{j})_{\tilde{Q}}|^{pq'} dx\right)^{1/pq'}$$

$$\times \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |f(x)|_{r}^{pq} dx\right)^{1/pq} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha}b_{j}||_{BMO}\right) M_{s}(|f|_{r})(\tilde{x}).$$

In the same way, we obtain

$$I_3 \le C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} ||D^{\alpha}b_j||_{BMO} \right) M_s(|f|_r)(\tilde{x}).$$

Similarly, denoting $s = pq_3$ for $1 , <math>q_1, q_2, q_3 > 1$ and $1/q_1 + 1/q_2 + 1/q_3 = 1$, for I_4 we obtain

$$\begin{split} I_{4} & \leq C \sum_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \frac{1}{|Q|} \int_{Q} |T(D^{\alpha_{1}}\tilde{b}_{1}D^{\alpha_{2}}\tilde{b}_{2}g)(x)|_{r} dx \\ & \leq C \sum_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \left(\frac{1}{|Q|} \int_{R^{n}} |T(D^{\alpha_{1}}\tilde{b}_{1}D^{\alpha_{2}}\tilde{b}_{2}g)(x)|_{r}^{p} dx \right)^{1/p} \\ & \leq C \sum_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \left(\frac{1}{|Q|} \int_{R^{n}} |D^{\alpha_{1}}\tilde{b}_{1}(x)D^{\alpha_{2}}\tilde{b}_{2}(x)||g(x)|_{r}^{p} dx \right)^{1/p} \\ & \leq C \sum_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |D^{\alpha_{1}}\tilde{b}_{1}(x)|^{pq_{1}} dx \right)^{1/pq_{1}} \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |D^{\alpha_{2}}\tilde{b}_{2}(x)|^{pq_{2}} dx \right)^{1/pq_{2}} \\ & \times \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |f(x)|_{r}^{pq_{3}} dx \right)^{1/pq_{3}} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}). \end{split}$$

For I_5 , I_6 , I_7 and I_8 , we use lemma 2.3 and similar to I_1 , I_2 , I_3 , I_4 , we get

$$I_{5} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \left(\frac{1}{|Q|} \int_{R^{n}} |T(g)(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) \left(\frac{1}{|\tilde{Q}|} \int_{\tilde{Q}} |f(x)|_{r}^{s} dx \right)^{1/s}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_{j}|=m_{j}} ||D^{\alpha_{j}}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}),$$

$$I_{6} \leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \left(\frac{1}{|Q|} \int_{R^{n}} |T(D^{\alpha_{1}}\tilde{b}_{1}g)(x)|_{r}^{p} dx \right)^{1/p}$$

$$\leq C \sum_{|\alpha_{2}|=m_{2}} ||D^{\alpha_{2}}b_{2}||_{BMO} \sum_{|\alpha_{1}|=m_{1}} \left(\frac{1}{|Q|} \int_{R^{n}} |D^{\alpha_{1}}\tilde{b}_{1}(x)||g(x)|_{r}^{p} dx \right)^{1/p}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}),$$

$$I_{7} \leq C \prod_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \left(\frac{1}{|Q|} \int_{R^{n}} |T(D^{\alpha_{1}}\tilde{b}_{1}D^{\alpha_{2}}\tilde{b}_{2}g)(x)|_{r}^{p} dx \right)^{1/p}$$

$$I_{8} \leq C \sum_{|\alpha_{1}|=m_{1},|\alpha_{2}|=m_{2}} \left(\frac{1}{|Q|} \int_{R^{n}} |T(D^{\alpha_{1}}\tilde{b}_{1}D^{\alpha_{2}}\tilde{b}_{2}g)(x)|_{r}^{p} dx \right)^{1/p}$$

$$\leq C \sum_{|\alpha_{1}|=m_{1}, |\alpha_{2}|=m_{2}} \left(\frac{1}{|Q|} \int_{R^{n}} |D^{\alpha_{1}} \tilde{b}_{1}(x) D^{\alpha_{2}} \tilde{b}_{2}(x) ||g(x)|_{r}^{p} dx \right)^{1/p}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha} b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}).$$

To estimate I_9 , we write

$$\begin{split} \left(\sum_{i=1}^{\infty} \left| (T - A_{t_Q} T) \left(\frac{\prod_{j=1}^2 R_{m_j+1}(\tilde{b}_j; x, \cdot)}{|x - \cdot|^m} h_i \right) \right|^r \right)^{1/r} \\ & \leq \left(\sum_{i=1}^{\infty} \int_{R^n} \left| \frac{\prod_{j=1}^2 R_{m_j+1}(\tilde{b}_j; x, y)}{|x - y|^m} (K(x, y) - K_t(x, y)) h_i(y) \right|^r dy \right)^{1/r} \\ & \leq \left(\sum_{i=1}^{\infty} \int_{R^n} \left| \frac{\prod_{j=1}^2 R_{m_j}(\tilde{b}_j; x, y)}{|x - y|^m} (K(x, y) - K_t(x, y)) h_i(y) \right|^r dy \right)^{1/r} \\ & + \left(\sum_{i=1}^{\infty} \sum_{|\alpha_1| = m_1} \frac{1}{\alpha_1!} \int_{R^n} \left| \frac{D^{\alpha_1} \tilde{b}_1(y) (x - y)^{\alpha_1} R_{m_2}(\tilde{b}_2; x, y)}{|x - y|^m} (K(x, y) - K_t(x, y)) h_i(y) \right|^r dy \right)^{1/r} \\ & + \left(\sum_{i=1}^{\infty} \sum_{|\alpha_2| = m_2} \frac{1}{\alpha_2!} \int_{R^n} \left| \frac{D^{\alpha_2} \tilde{b}_2(y) (x - y)^{\alpha_2} R_{m_1}(\tilde{b}_1; x, y)}{|x - y|^m} (K(x, y) - K_t(x, y)) h_i(y) \right|^r dy \right)^{1/r} \\ & + \left(\sum_{i=1}^{\infty} \sum_{|\alpha_1| = m_1, |\alpha_2| = m_2} \frac{1}{\alpha_1! \alpha_2!} \times \right. \\ & \times \int_{R^n} \left| \frac{D^{\alpha_1} \tilde{b}_1(y) D^{\alpha_2} \tilde{b}_2(y) (x - y)^{\alpha_1 + \alpha_2}}{|x - y|^m} (K(x, y) - K_t(x, y)) h_i(y) \right|^r dy \right)^{1/r} \\ & = I_9^{(1)} + I_9^{(2)} + I_9^{(3)} + I_9^{(4)}. \end{split}$$

Then, we observe that lemma 2.1 and the inequality

$$|b_{Q_1} - b_{Q_2}| \le C \log(|Q_2|/|Q_1|) ||b||_{BMO}$$
 for $Q_1 \subset Q_2$,

(see [16]) imply that for any $x \in Q$ and $y \in 2^{k+1}\tilde{Q} \setminus 2^k\tilde{Q}$,

$$|R_{m}(\tilde{b}; x, y)| \leq C|x - y|^{m} \sum_{|\alpha| = m} (||D^{\alpha}b||_{BMO} + |(D^{\alpha}b)_{\tilde{Q}(x, y)} - (D^{\alpha}b)_{\tilde{Q}}|)$$

$$\leq Ck|x - y|^{m} \sum_{|\alpha| = m} ||D^{\alpha}b||_{BMO}.$$

Note that $|x-y| \ge d = t^{1/2}$ and $|x-y| \sim |x_0-y|$ for $x \in Q$ and $y \in \mathbb{R}^n \setminus \tilde{Q}$. Therefore, by the conditions on K and K_t and Minkowski's inequality

$$I_{9}^{(1)} = \sum_{k=0}^{\infty} \int_{2^{k+1}\tilde{Q}\backslash 2^{k}\tilde{Q}} \frac{\prod_{j=1}^{2} |R_{m_{j}}(\tilde{b}_{j}; x, y)|}{|x - y|^{m}} |K(x, y) - K_{t}(x, y)||f(y)|_{r} dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) \sum_{k=0}^{\infty} \int_{2^{k+1}\tilde{Q}\backslash 2^{k}\tilde{Q}} k^{2} \frac{d^{\delta}}{|x_{0} - y|^{n+\delta}} |f(y)|_{r} dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) \sum_{k=1}^{\infty} k^{2} 2^{-\delta k} \frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |f(y)|_{r} dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha| = m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}).$$

For $I_9^{(2)}$, we get

$$I_{9}^{(2)} \leq C \left(\sum_{|\alpha|=m_{2}} ||D^{\alpha}b_{2}||_{BMO} \sum_{|\alpha|=m_{1}} \sum_{k=0}^{\infty} \int_{2^{k+1}\tilde{Q}\setminus 2^{k}\tilde{Q}} \frac{k d^{\delta}}{|x_{0}-y|^{n+\delta}} |D^{\alpha_{1}}\tilde{b}_{1}(y)||f(y)|_{r} dy \right)$$

$$\leq C \left(\sum_{|\alpha|=m_{2}} ||D^{\alpha}b_{2}||_{BMO} \right) \sum_{|\alpha_{1}|=m_{1}} \sum_{k=1}^{\infty} k 2^{-\delta k} \left(\frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |D^{\alpha_{1}}\tilde{b}_{1}(y)|^{r'} dy \right)^{1/r'}$$

$$\times \left(\frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |f(y)|_{r}^{s} dy \right)^{1/s} \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}).$$

Similarly,

$$I_9^{(3)} \le C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} ||D^{\alpha}b_j||_{BMO} \right) M_s(|f|_r)(\tilde{x}).$$

For $I_9^{(4)}$, taking $q_1,q_2>1$ such that $1/s+1/q_1+1/q_2=1$, we obtain

$$\begin{split} I_{9}^{(4)} & \leq C \sum_{|\alpha_{1}|=m_{1}, |\alpha_{2}|=m_{2}} \sum_{k=0}^{\infty} \int_{2^{k+1}\tilde{Q}\backslash 2^{k}\tilde{Q}} \frac{d^{\delta}}{|x_{0}-y|^{n+\delta}} |D^{\alpha_{1}}\tilde{b}_{1}(y)| |D^{\alpha_{2}}\tilde{b}_{2}(y)| |f(y)|_{r} dy \\ & \leq C \sum_{|\alpha_{1}|=m_{1}, |\alpha_{2}|=m_{2}} \sum_{k=1}^{\infty} 2^{-\delta k} \left(\frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |f(y)|_{r}^{s} dy \right)^{1/s} \\ & \times \left(\frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |D^{\alpha_{1}}\tilde{b}_{1}(y)|^{q_{1}} dy \right)^{1/q_{1}} \left(\frac{1}{|2^{k}\tilde{Q}|} \int_{2^{k}\tilde{Q}} |D^{\alpha_{2}}\tilde{b}_{2}(y)|^{q_{2}} dy \right)^{1/q_{2}} \\ & \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha|=m_{j}} ||D^{\alpha}b_{j}||_{BMO} \right) M_{s}(|f|_{r})(\tilde{x}). \end{split}$$

Thus,

$$I_9 \le C \prod_{j=1}^2 \left(\sum_{|\alpha|=m_j} ||D^{\alpha}b_j||_{BMO} \right) M_s(|f|_r)(\tilde{x}).$$

This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. In Theorem 1, we choose 1 < s < p and using lemma 2.2, we get

$$|||T_b(f)|_r||_{L^p} \le ||M(|T_b(f)|_r)||_{L^p} \le C||M_A^\#(|T_b(f)|_r)||_{L^p}$$

$$\le C \prod_{j=1}^l \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) ||M_s(|f|_r)||_{L^p} \le$$

$$\le C \prod_{j=1}^l \left(\sum_{|\alpha|=m_j} ||D^\alpha b_j||_{BMO} \right) |||f|_r||_{L^p}.$$

This finishes the proof.

4. Applications

In this section, Theorems 1.3 and 1.4 are applied to holomorphic functional calculus of linear elliptic operators. First, we review some definitions of holomorphic functional calculus (see [11]). Given $0 \le \theta < \pi$, introduce the domain

$$S_{\theta} = \{ z \in C : |\arg(z)| \le \theta \} \bigcup \{0\}$$

and denote its interior by S_{θ}^{0} . Set $\tilde{S}_{\theta} = S_{\theta} \setminus \{0\}$. A closed operator L on some Banach space E is said to be of type θ if its spectrum $\sigma(L) \subset S_{\theta}$ and for every $\nu \in (\theta, \pi]$, there exists a constant C_{ν} such that

$$|\eta||(\eta I - L)^{-1}|| \le C_{\nu}, \quad \eta \notin \tilde{S}_{\theta}.$$

For $\nu \in (0, \pi]$, we set

$$H_{\infty}(S^0_{\mu}) = \{f: S^0_{\theta} \rightarrow C: \ f \ \text{ is holomorphic and } ||f||_{L^{\infty}} < \infty\},$$

where $||f||_{L^{\infty}} = \sup\{|f(z)| : z \in S^0_{\mu}\}$. Further, set

$$\Psi(S_{\mu}^{0}) = \left\{ g \in H_{\infty}(S_{\mu}^{0}) : \exists s > 0, \exists c > 0 \text{ such that } |g(z)| \le c \frac{|z|^{s}}{1 + |z|^{2s}} \right\}.$$

For L of type θ and $g \in H_{\infty}(S^0_{\mu})$, define $g(L) \in L(E)$ as

$$g(L) = -(2\pi i)^{-1} \int_{\Gamma} (\eta I - L)^{-1} g(\eta) d\eta,$$

where Γ is the contour $\{\xi = re^{\pm i\phi} : r \geq 0\}$ parameterized clockwise around S_{θ} by $\theta < \phi < \mu$. If, in addition, L is one-one and its range is dense, then for any $f \in H_{\infty}(S_{\mu}^{0})$

$$f(L) = [h(L)]^{-1}(fh)(L),$$

where $h(z) = z(1+z)^{-2}$. Besides, L is said to have a bounded holomorphic functional calculus on the sector S_{μ} , if

$$||g(L)|| \le N||g||_{L^{\infty}}$$

for some N > 0 and all $g \in H_{\infty}(S_u^0)$.

Now, let L be a linear operator on $L^2(\mathbb{R}^n)$ with $\theta < \pi/2$ such that (-L) generates a holomorphic semigroup e^{-zL} , $0 \le |\arg(z)| < \pi/2 - \theta$. Then, applying theorem 6 of [8] and theorem 1.4, we arrive at the following statement.

Theorem 4.1. Given $1 < r < \infty$ let the following conditions be satisfied:

(i) The holomorphic semigroup e^{-zL} , $0 \le |\arg(z)| < \pi/2 - \theta$ is represented by kernels $a_z(x,y)$ which satisfy the upper bound

$$|a_z(x,y)| \le c_\nu h_{|z|}(x,y), \quad \nu > \theta$$

for $x, y \in \mathbb{R}^n$, and $0 \le |\arg(z)| < \pi/2 - \theta$, where $h_t(x, y) = Ct^{-n/2}s(|x - y|^2/t)$ and s is a positive, bounded and decreasing function such that

$$\lim_{r \to \infty} r^{n+\epsilon} s(r^2) = 0.$$

(ii) The operator L has a bounded holomorphic functional calculus in $L^2(\mathbb{R}^n)$, that is, for all $\nu > \theta$ and $g \in H_{\infty}(S^0_{\mu})$, the operator g(L) is such that

$$||g(L)(|f|_r)||_{L^2} \le c_{\nu}||g||_{L^{\infty}}|||f|_r||_{L^2}.$$

Then, for $D^{\alpha}b_j \in BMO(\mathbb{R}^n)$ for all α with $|\alpha| = m_j$ and $j = 1, \dots, l$, the multilinear operator $g(L)_b$ associated to g(L) and b_j satisfies the conditions:

(a) For $1 < s < \infty$ and $\tilde{x} \in \mathbb{R}^n$,

$$M_A^{\#}(|g(L)_b(f)|_r)(\tilde{x}) \le C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} ||D^{\alpha_j}b_j||_{BMO} \right) M_s(|f|_r)(\tilde{x});$$

(b) For any $1 , <math>|g(L)_b|_r$ is bounded on $L^p(\mathbb{R}^n)$, that is

$$|||g(L)_b(f)|_r||_{L^p} \le C \prod_{j=1}^l \left(\sum_{|\alpha_j|=m_j} ||D^{\alpha_j}b_j||_{BMO} \right) |||f|_r||_{L^p}.$$

Список литературы

- [1] S. Chanillo, "A note on commutators", Indiana Univ. Math. J., 31, 7 16 (1982).
- J. Cohen, "A sharp estimate for a multilinear singular integral on Rⁿ", Indiana Univ. Math. J., 30, 693 – 702 (1981).
- [3] J. Cohen and J. Gosselin, "On multilinear singular integral operators on Rⁿ", Studia Math., 72, 199 – 223 (1982).
- [4] J. Cohen and J. Gosselin, "A BMO estimate for multilinear singular integral operators", Illinois J. Math., 30, 445 – 465 (1986).
- [5] R. Coifman and Y. Meyer, Wavelets, Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Advanced Math. 48, Cambridge University Press, Cambridge (1997).
- [6] D. G. Deng and L. X. Yan, "Commutators of singular integral operators with non-smooth kernels, Acta Math. Scientia, 25(1), 137 – 144 (2005).
- [7] Y. Ding and S. Z. Lu, "Weighted boundedness for a class rough multilinear operators", Acta Math. Sinica, 17, 517 – 526 (2001).
- [8] X. T. Duong and A. McIntosh, "Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 15, 233 – 265 (1999).
- [9] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. 116, Amsterdam (1985).
- [10] G. Hu and D. C. Yang, "A variant sharp estimate for multilinear singular integral operators", Studia Math., 141, 25 – 42 (2000).
- [11] J. M. Martell, "Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications", Studia Math., 161, 113 – 145 (2004).
- [12] C. Pérez, "Endpoint estimate for commutators of singular integral operators", J. Func. Anal., 128, 163 – 185 (1995).
- [13] C. Pérez and G. Pradolini, "Sharp weighted endpoint estimates for commutators of singular integral operators", Michigan Math. J., 49, 23 – 37 (2001).
- [14] C.Pérez and R.Trujillo-Gonzalez, "Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65, 672 – 692 (2002).
- [15] C. Pérez and R. Trujillo-Gonzalez, "Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J., 55, 109 – 129 (2003).
- [16] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ (1993).

Поступила 4 октября 2009