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1. PRELIMINARIES AND THEOREMS

As the development of the theory of singular integral operators, their commutators
and multilinear operators have been well studied (see [1] - [5], [7], [12] - [15]). In
[8], some singular integral operators with non-smooth kernels are introduced, whose
kernels satisfy some requirements which are weaker than those for the Calderén-
Zygmund singular integral operators. In [6] and [11], the boundedness of the singular
integral operators with non-smooth kernels and their commutators is proved.

The main purpose of this paper is to study the vector-valued, multilinear, singular

integral operators with non-smooth kernels defined as follows (see [8], [11]).

Definition 1.1. A family of operators Dy, t > 0 is said to be an approrimation to
the identity, if for every t > 0 the family D; can be represented by the kernel ai(z,y)

as follows:
D@ = [ aw )i @iy
for every f € LP(R™) with p > 1, and as(x,y) satisfies the inequality
laa( )] < ho(w,y) = CE2s(z — yI2/2),
where s is a positive, bounded and decreasing function such for some € > 0
lim 7" *¢s(r?) = 0.

T—00
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Definition 1.2. A linear operator T is called singular integral operator with non-
smooth kernels, if T is bounded on L?>(R™) and is associated with some kernel K (z,y)
such that

(@)= | Kxv)fw)y

for every continuous function f with a compact support, and for almost all x, which
do not belong to that support. In addition, it is required that:
(1) There exists an approxzimations to the identity { By, t > 0} such that T By possesses

an associated kernel ki(xz,y) and there exist constants c1, ca > 0 such that
/ K (2,y) — kil g)lde < s for all y € R™
|z—y|>c1t1/2

(2) There exists an approximations to the identity { A, t > 0} such that AT possesses
an associated kernel Ki(x,y) which satisfies the inequalities
|Kt(x7y)| S Cé‘ktin/2 Zf |I - y| S C3t1/27
and
K (2,y) = Ki(w,y)| < cat |z —y| 770 if |z —y| > est'/?,
for some constants c3, c4 >0, § > 0.
Let mj (j =1,...,1) be positive integers mi + ... +my =m and b; (j =1,...,1) be
functions on R™. Set
1 o .
Ry 1 (bjiw,y) = bj(x) — Y P -y 1<j<m.
o] <my
Given functions f; (i = 1,2,...) defined on R", for any 1 < r < oo the the vector-

valued multilinear operator associated to T is defined by the formula

00 1/r
T (f)(2)]r = (Z(Tb(fi)(w))r> :

i=1
where l
[T Riny41(bj; 3,)
Ty(f:)(x) = L K () fiy)dy,
Rn |z — y
Set

00 1/r 00 1/r
()@ = <Z|T<fi><x>|r> and |f(e)], = (Zm(xw)

Note that |T;(f)|, is just the vector-valued multilinear commutator of T' and b; when
m = 0 (see [14]), while |T3(f)|- is a nontrivial generalizations of the commutator
when m > 0. It is well known that multilinear operators are of great interest in
harmonic analysis and have been widely studied by many authors(see [2] - [5]). Hu

and Yang (see [10]) proved a variant sharp estimate for multilinear singular integral
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operators. In [14], Pérez and Trujillo-Gonzalez proved a sharp estimate for multilinear
commutators when b; € Oscpprri (R").

The main purpose of this paper is to prove a sharp function inequality for the
vector-valued, multilinear singular integral operators with non-smooth kernels when
D%b; € BMO(R") for all @ with |«| = m;. As the application, some L”(p > 1) norm
inequality for the vector-valued, multilinear operators are obtained.

Throughout the paper, @ = Q(z,d) denotes a cube in R™ with sides parallel to the
coordinate axes, the center of which is a point  and the length of sides is d. If b is a
locally integrable function, then its sharp function is defined as

b (z) = sup — /b — boldy,
(x) e dre] L Ql

by = QI /Q b(w)da.

It is well-known that(see [9], [16]) that

b# () ~ sup inf /|b —cldy
]

zeQ ceC

where, and in what follows,

and
Hb— b2kQ||BMo S Ok”b”BMo for k Z 1.

We say that b belongs to BMO(R") if b* belongs to L>(R™) and ||b|| a0 = |[b7 || -
Assuming that M is the Hardy-Littlewood maximal operator
1
M(f)(@) = sup o [ 1 w)ld,

we set M,(f) = (M(f?))'/? for 0 < p < oco. Further, the sharp maximal function
Mf associated with approximation to the identity {A;,¢ > 0} is defined as

M) = s o [ 150)— A (Dl
T€Q |Q|

where to = 1(Q)? and 1(Q) denotes the side length of Q.

The below two theorems are the main result of this paper.

Theorem 1.3. Let 1 < r < co and let D*b; € BMO(R™) for all o with |a| = m;
(j=1,...,1). Then, there exists a constant C > 0 such that

MG ON@ <CTL [ 3 1D bllswo | M7,

J=1 \leyl=m;

for any function f € C§°(R™), any 1 < s < oo and any point T € R",



60 LANZHE LIU

Theorem 1.4. Let 1 < r < oo and D*b; € BMO(R™) for all o with |a| = m;
(j=1,...,1). Then, |Tp|, is bounded on LP(R™) for any 1 < p < oo, that is

l
NT(Hlelle <CTT L Do 1ID%0ilisaro | 111l lze.

3=1 \Jay|=m;

2. SOME LEMMAS

We present some preliminary lemmas.

Lemma 2.1. ([4]) Let b be a function on R™ and let D*b € LY(R™) for all o with

|a] =m and some ¢ > n. Then

1/q
Ron(b2,9)| < Clo — g™ 3 (@(1 |D%<z>|wz) ,

z,9)| Oy

|a]=m

where Q is the cube centered at x, with the side length 5yv/nlx —yl.

Lemma 2.2. ([8], [11]) Let 1 < r < 0o and let T be a singular integral operators with
non-smooth kernel as in Definition 1.2. Then, for every f € LP(R"™), (1 < p < c0),

T CHlellee < ClIflellze

Lemma 2.3. ([6]) Let {A:,t > 0} be an approzimation to the identity and b €
BMO(R™). Then, for every f € LP(R™),p>1,1<r < oo and x € R"

sup @ﬂ /Q vy, (b — bo) F)(W)ldy < ClIbl|saro M, (£) (2),

where tg = 1(Q)* and 1(Q) denotes the side length of Q.

Lemma 2.4. ([8], [11]) There exists a constant C > 0 such that for any v > 0 and
A>0

[{z € R : M(f)(2) > DA\, M (f)(w) <A} < Chl{z € R™ : M(f)(x) > A},
where D is a fized constant depending only on n. So that
IM(P)llr < CIME ()l

for every f € LP(R™),1 < p < oo.
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3. PROOFS OF THEOREMS

Proof of Theorem 1.3. It suffices to prove that for f € C§°(R™)

|¢19/Q [Ty (f)(@)]r — | A, To(f) (@) | da <

l
< CH Z ||Dajbj||BMO Ms(|f‘7)(x)

J=1 \lajl=m;
Without loss of generality, we can assume [ = 2. We fix a cube @ = Q(z,d) and a
point Z € Q and suppose that Q = 54/n@Q and
A 1 «a «
Ajz) = Aj(@) = Y (P 45) 5"
|a]=m

Then

Ry (Aj;x,y) = Ry(Aj;x,y) and DYAj = DA, — (D%4;)5 for |af =m;.

Now, we decompose f =g+ h={g;} +{h:} in g; = fixs and h; = fixpn\g- Then

2 -
Hlij-i-l(bj;-Tay)

L)) = [ =

2 -
13 ij (b]7 €L, y)

J

K(x,y)g:(y)dy—

Rn |z — y|™
1 R, (b 3T, Y Jr—yC”D"‘ll; y
- = 2bai 7,y ,,3 1 )K($7y)gi(y)dy
los |=ma a1 JRn lz =y
1 Ron, (b 3T, Y x—y“zDo‘?B Y
- = 1 (bri 7,0 ,2 2 )K(%y)gi(y)dy
oa oy 020 R lz =y
1 / (x — y)“1 22D by () D2y (y)
+ K(z,y)g:(y)dy
|a1_m12|:a2|_m2 aqlas! n |Qj — y‘m ( ) ( )
2 - ~
_H1 Riny41(bjs 2, y) _1_[1 R, (bj; 2, +)
J= J=
K hi(dy=T | ——g;
+/n P (z,y)hi(y)dy PSR

1 Ry, (bo;z,-)(z — )** Dby
—T - 2 Y 9’ i
Z ! lz—|m Yi

ﬁ _ ,|m 9i
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2
7 5 [I Rimj41(bj5 2, )
(z — )M T2 Db D2by =1
- _ Z B aqlagl|e — ™ gi | + |z — ™
lai|=m1, |az|=m2
and
2 ~
_ﬂRmm(bJ;x,y)
ATR)@) = [ e Ko )y
2 -
H1 R, (bji2,9)
j=
— K, y)g:(y)dy
R
1 R, B;x,y x—yalDo‘llE Y
- D = ol ,,3 ) K, (e, ) gi(y)dy
Wl Ja 2=y
al\fml
1 R, B;x,y xnyQDOQIN) y
-2 *;/ izl ) 2l )Kt(wvy)gi(y)dy
— ol /g |z =y
|z |=m2
1 (CL‘ _ y)oa-i-azDall;l (y)Da?Z)z(y)
K (y)d
* Z 011!062! /n |x_y|m t(‘rvy)g (y) Y

|y |=m1, |az|=ma2

15, Ry (by32,9)
a D K2, y)ha(y)dy

R & —y|™
2 ~
' Ry, (b,
:AtQT ijl J( J )gi
|£L’ — .‘m
1 ng (52;$, )(Jj — .)OélDali)l
_AtQT Z Ckil' |x — |m gz
lag|=m1
1 le (61;.’11, )(x — .)azDOtQBZ
|aa|=ma
1 (x — .)a1+a2Dall~)1Da21~)2
+A, T ( Z olas! z —|m gi
lar|=ma, |az|=m2

H2'—1Rmv+1(l~7j;1'7')
AT [ A= Ay
+Aiq ( o — h;

Further, by Minkowski’s inequality,

0o 1/r oo 1/r
ITs(£) @)l = [Ag To(H) (@)1, | = (Z(Tb(fi)(ff)y) - (Z(AtQTb(fi)(x))r>
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- 1/r
< <Z Ty (fi)(x) — AtQTb(fi)(x)r)

T 1/’!‘
HJ 1Rm](bj§x7') ‘
|:L'— |m g’L

7 - r\ 1/7
N E 1 RnL (bQI )(xi ')alDalbl
T P 2 y 4y '
+ (E ( aq! |:L‘—-‘m gi

la|=ma
i ~ r\ 1/7
oo 1 Ry, (by;z,-)(z — )2 Dby
+(ZT( 2 o — 1" !
i=1 [az|=m2
~ ~ r\ 1/7
00 1 (17 o .)a1+0‘2D0‘1b1DO‘2b2
T .
' (Z ( Z arlag! o — ™ ”
i=1 lar|=m1, |az|=m2

r\ 1/7
- 1 Ry, (bo;,-)(x — )*1 Dby
+ Z A T a! - |z — ™ i
=1 |y |=ma
B 5 r\ 1/7
= 1 Ry, (bi;z,)(z — )2 Dby
> 1 (z—-)mtezDorp Dozp,
T i
+ Z a1!a2! ‘ZE—'|m g
i=1 |a1|_m1 |aa|=ma
2 ~ ry 1/7
i Ry a1(bisx,
+ (Z (T — A, T) (HJI xmjjr(nj )hz> >

=1 x)+ Is(x) + Iy(x) + Is(x) + Ig(z) + I7(x) + Is(z) + Ig(x).

Thus
|22/Q 1T (f)()]r — |Aey, Ty () (z)]] dz

IN

1
+ IQ/ L) de:=L+L+Is+ 1+ I+ I+ It + Is + Io.
Q

1/r

1 1 1 )
|Q/QI1(:E)dx+|Q/sz(l‘)dx—kw/ng(x)dx—i— @/@gl4(x)dx

1 1 1 1
+ |Q/QI5(J:)dx—|—|Q/QIG(x)dsc+|Q/QI7(x)dx—|—@|/QIg(aj)dx

63
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Let us estimate Iy, Ios, I3, 14, I, Ig, I7, Is and Iy separately. First, by lemma 2.1 we
obtain that for any 2z € Q and y € Q

Ry (bjiz,y) < Cle—y[™ > [ID%b;][pao-
laj|=m

Consequently, by the L*-boundedness of T' (lemma 2.2), we get

2
Lo< CII| X IID“bilismo |Q|/|T x)|rdx
J=1 \Jajl=m;
2 1 1/s
< Il X 1pmbilimmo <@| / IT(g)(w)Iidx)
7=1 \Jaj|=m; 8
2 1 1/s
< Il X 1p™bilimmo <|Q| / Ig(:v)lida:)
=1 \lay|=m, !
2 1 1/s
< Il X 1p™bilimmo ( / If(:r)lidx)
3=t \Jay=m; @l /e
2
< I S 1pebilisuo | M@,

.
Il

L \ley|=m;
To estimate Is, we denote s = pg and using lemma 2.2 and Holder’s inequality for
l<p<oo,g>1land1l/q+1/¢ =1, we get

1 .
L < C Y |[D%bllzuo Y @/|T(Dalb19)($)|rd$
Q

|az|=m2 lag|=m

1 - I/P
<0 Y Dbl S <|Q| / |T<Da1blg><x>|zfdx)
[az|=m2 lar |=ma "
. 1/p
< ¢ S ID%hllswo <|Q| |Dmbl<x>|g<:c>|fdz)
|az|=m2 |a1|=m1
1/pq
< ¢ Y ID%bllsmo ( [ 1D @) - (D7) |qux)

|az|=m2 la1|=

Ql
1/Pq 2
(IQI/ |f(z)|Pdx U(I [[D%b;||Bro | Ms(|f]r)(Z).

In the same way, we obtain

_CH Z [|1D%b;||Bao | Ms(|flr)(E).

J=1 \Ja|=m
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Similarly, denoting s = pgs for 1 < p < 00, q1,q2,q93 > 1 and 1/¢1 +1/g2 + 1/q3 = 1,

for Iy we obtain

1 a1 T as T
L<c Y @'/Q|T(D 1By DBy g) () d

lai|=m1,|az|=m

¢ Z ( . /n |T(Da151Da2529)($)fdfﬂ)l/p

< i

|y |=m1,|az|=m2 |Q| R

1 a1l asT D tr

< c Y 0 [ 1P @D b (@) lg(@) Fd

|t |=ma,|az|=m2 "

1 ~ 1/pq1 1 B /pqz
< ! / |D°‘1b1(x)”q1da:> ( / Da2b2(x)|pq2dxj
2 (IQ ) Ql Jo

la1|=m1,|az|=m2

1 s 1/17(13
x(@' JALCE i) <c

For I5, Ig, I7 and Ig, we use lemma 2.3 and similar to Iy, I, I3, 14, we get

I[I| X 1Ipbilisao | Molf1)(@).

2
ji=

L \lee|=m;

2

1 ) 1/s
ECIT| X 10%bllavo | (o [ r@)@s)

1 \ley|=m;

2 ) 1 1/s
<CII| X 10blisuo (@/andx)

=1 \Jajl=m;

SCH Z [|1DYb;||Bamo | Ms(|fl)(2),

J

1 - 1/p
LsC Y Do X (i [ 0o b))

2

L \lejl=m;

|z [=ms [ar]|=m1

1 ~ 1/1)
<c ¥ Iptlmo ¥ (g [ D h@lsas)

|az[=ma |y [=ma

2
<cI| X ID°bllsuo | M(71)@),

J=1 \la|=m;

i=1 \Jal=m,
1 ~ ~ 1/p
rse Y (i [ ronhe )

|a1|=ma,|az|=m2
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<< (gl |Da1z31<x>m252<x>|g<x>|f:dx)1/p

|ar|=m1,|az|=m

2
H ( Z ||Dabj||BMo) M (] f]-)(Z)-

lar|=m;
r> 1/7‘

(K(z,y) — Ki(z,9))hi(y)

To estimate Iy, we write

(i (T~ 44, T) (Hj:l Rm'jﬂ(bj;x")hi>

. o — P
=1

(), W)
& 2

+(Z Z_: ai Dalbl(y)(x — y)o‘lRm2 (b2, 1‘,y) (K(aj,y) B Kt(x, y))hl(y)

n |z —y|™

1521 B, 41(bj: 2, y)

|z —y|™

Hj 1Rm7 b]"T y)

lz —y[™

(K(z,y) — Ki(z,y))hi(y)

+ i 1/ D°2by(y)(x — )2 Ryn, (b1 2,y)
R'n.

— m
=1 |as|=ms 2 ==yl

(K(z,y) — Ke(z,y))hi(y)

+<i21

; 011!(12!
=1 |ay|=m1, |az|=m2

Dot bl (y)Da;b2(z|)7£L$ — y)oq-‘roéz (K($7 y) _ Kt(ma y))hl(y>

<[

r 1/r
dy)

IV + 1P + 18 + 1.
Then, we observe that lemma 2.1 and the inequality
bq, — bq,| < Clog(|Q2|/|Q1)IIbl|Baro for Q1 C Qs
(see [16]) imply that for any z € Q and y € 2871Q \ 2*Q,

[ B (b5, )|

IN

Cla —y|™ Y (ID*l|sxo + (D) g,y — (D*B)g])

lee|=m

Cklz —y[™ Y |ID*bllzmo-

loe|=m

IN
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Note that |z —y| > d = tY/2 and |z — y| ~ |zg — y| for € Q and y € R"\ Q.
Therefore, by the conditions on K and K; and Minkowski’s inequality

= [Ty | R, (b2, )
B = 3 T e ) — Kate )10y
k=0 )
2 e} d
< C Db, / k> d
= JZHI |a§| J||BMO ’;) 2k+1@\2k@ |l’07 |n+§|f( )‘ Y
2 e} 1
< c 1Dt llmro | S w2 —e [ 100
Jl;[1 Iagmj ’ I; |2kQ‘ 26Q
2
< cII[ 2 1pobilisuo | M051) ).
i=1 \|a|=m;
For Ié2)7 we get
1 <o 3 1hllswo > i / R st ()1 ()l
la|]=ms la|=m1 k= k+1@\2k@ |x0— |
oo _ , 1/7'/
< 0| X inlao) ¥ 3ok -“( L[ p alfn(y)rdy)
la|=m2 1 k= |2 Q| 2*Q
1/s 2
(5a Lo |dy) <cIT{ X 10°0lauo | 051
i=1 \lal=m;

Similarly,

2
Ié?’)SCH Z [|[Db;||Brmo | Ms(|flr)(Z).

=1 \Jal=m;

For 19(4), taking g1, g2 > 1 such that 1/s+ 1/¢1 + 1/¢g2 = 1, we obtain

J=1 \la|=m

0 )
(4) d a1 T as 1
1 < ¢ [ D B )P0y
a1|_m¥|a2_m2kz—o 2k+1Q\2FQ |xo — | +o
[} 1 1/s
<o Y Yo ( / ~|f(y)|idy>
lai|=m1,|az|=mg k=1 |2kQ| 2FQ
1 . a 1 - /a2
(L[ i <y>|‘“dy) ( |D“2b2<y>|q2dy)
<2kQ| o' 0 125Q] Jara
2
< I 3 1D°bllmno | Mo(1£1)(@):
J
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Thus,
2
Iy <C H Z 1D“bj||Bamo | Ms(|f]-)(Z).
J=1 \la|=m;
This completes the proof of Theorem 1.3. O
Proof of Theorem 1.4. In Theorem 1, we choose 1 < s < p and using lemma 2.2,
we get
NTs(A)lrllze < IMATo ()2 < CIME (To(f)])] 20
l
<cII| X Ip*bsliaco | IMs(If1)]]2r <
J=1 \laf=m;
1
<cII| X 1Ipvslaco 111l
J=1 \la|=m;
This finishes the proof. O

4. APPLICATIONS

In this section, Theorems 1.3 and 1.4 are applied to holomorphic functional calculus
of linear elliptic operators. First, we review some definitions of holomorphic functional

calculus (see [11]). Given 0 < 0 < 7, introduce the domain

Sop={z€ C:|arg(z)| <6} U{O}

and denote its interior by S9. Set Sp = Sp\ {0}. A closed operator L on some Banach
space E is said to be of type 6 if its spectrum o(L) C Sy and for every v € (0, 7],

there exists a constant C,, such that
mlll(n] = L)~ < Gy ¢ So.
For v € (0, 7], we set
Hoo(S)) ={f:S5p = C: [ is holomorphic and ||f||r~ < oo},
where || f||z~ = sup{|f(2)| : z € S}}. Further, set
\Il(Sg) = {g € HOO(SS) : 3s > 0,3c > 0 such that |g(z)] < Cl—||—z||z|25}
For L of type 6 and g € Ho(S}), define g(L) € L(E) as

g(L) = —(2mi)~! /F(nf — L) g(n)dn,



SHARP FUNCTION BOUNDEDNESS FOR VECTOR-VALUED MULTILINEAR ... 69

where T is the contour {¢ = re**® : r > 0} parameterized clockwise around Sy

by 8 < ¢ < p. If, in addition, L is one-one and its range is dense, then for any
f e Hy(S))

F(L) = [HD) (L),

where h(z) = z(1+2)~2. Besides, L is said to have a bounded holomorphic functional

calculus on the sector S, if

lg(D)I| < Nllgl[ e

for some N > 0 and all g € Hoo(S}).

Now, let L be a linear operator on L?(R"™) with § < 7/2 such that (—L) generates a
holomorphic semigroup e~*, 0 < |arg(z)| < 7/2 — 6. Then, applying theorem 6 of
[8] and theorem 1.4, we arrive at the following statement.

Theorem 4.1. Given 1 < r < oo let the following conditions be satisfied:
(i) The holomorphic semigroup e=*L, 0 < |arg(z)| < /2 —0 is represented by kernels
a(x,y) which satisfy the upper bound

|az(x,y)| < Cuh\z|(x7y)7 v>0

for x,y € R", and 0 < |arg(2)| < /2 — 0, where hy(z,y) = Ct~"/%s(|x — y|?/t) and

s is a positive, bounded and decreasing function such that

lim 7" *¢s(r?) = 0.

T—00
(ii) The operator L has a bounded holomorphic functional calculus in L?(R"™), that
is, for allv > 0 and g € Hy(S)), the operator g(L) is such that

Hg(L)(IF 1)z < cullgllpee |l fIrl]L2-

Then, for D*b; € BMO(R™) for all o with || =m; and j =1,---,1, the multilinear
operator g(L)y associated to g(L) and b; satisfies the conditions:
(a) For1 < s < oo and & € R",

ME (lg(L)o(f <CH > 1ID%bsllsamo | My(If10)(@);

=1 \Jajl=m;

(b) For any 1 < p < 00, |g(L)slr is bounded on LP(R™), that is

l
Ng((Alelle <CTT 1 D2 11D%05l1as0 | 1£1]]2r-

J=1 \laj|=m;
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