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1. Introduction

The study of nontransitive actions of isometry groups of Riemannain manifolds is
an interesting direction in the group theory. The first and most natural case is the
case when the action has an orbit of codimension one, the so called cohomogeneity
one action. Many mathematicians have studied this subject and obtained nice results.
The subject is still an active one, see [1, 2, 7, 8, 10, 11]. In the article we study the
closed Lie subgroups G ⊂ Iso(Rn) acting by cohomogeneity one on Rn and prove
that if there is no singular orbit, then there is a simply connected, solvable and closed
Lie subgroup F ⊂ G which acts by cohomogeneity one and the two actions are orbit
equivalent (see Theorem 3.1 and Corollary 3.5).

2. Preliminaries

Let M be a complete Riemannian manifold of dimension n and G be a connected
closed Lie subgroup of isometries of M . We say that M is of cohomogeneity one
under the action of G, if G has an orbit of codimension one. The results by Mostert
(see [8]), for the compact case (G is compact), and Berard Bergery (see [2]), for the
general case, state that the orbit space M/G, equipped with the quotient topology,
is a topological Hausdorff space homeomorphic to R, S1, [0,+∞) or [0, 1].
Consider the projection map M → M/G to the orbit space. Given a point x ∈ M ,
we say that the orbit G(x) is principal (resp. singular) if the corresponding image
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in the orbit space M/G is an internal (resp. boundary) point. A point x whose orbit
is principal (resp. singular) will be called regular (resp. singular).
Denote by Rn the n-dimensional real vector space with the usual Euclidean inner
product. By Iso(Rn) we denote the group of isometries of Rn, that is O(n)nRn (see
[9, p. 240]). We write the action of an isometry γ ∈ Iso(Rn) as

γ(x) = g(x) + v, x ∈ R3
1,

where g ∈ O(n) is called the linear part and v ∈ Rn is called the translational part of
γ. Denote by

L : G −→ O(n)

the projection on the linear part of O(n) n Rn. If L(G) is trivial then G is called a
pure translation group.

Let M = Rn and G be a connected, closed Lie subgroup of Iso(Rn), which acts
isometrically on M . We recall some facts from the theory of Lie groups.

Theorem 2.1. ([7]) Let M = Rn be of cohomogeneity one under the action of
a connected, closed Lie subgroup G ⊂ Iso(M). Then either each principal orbit
is isometric to Rn−1, and there exists no singular orbit or each principal orbit is
isometric to Sm(c) × Rn−m−1 , 1 6 m 6 n − 1, where m is fixed for all orbits, and
the unique singular orbit is isometric to Rn−m−1.

Lemma 2.2. ([3, p.51]) A simply connected solvable Lie group is diffeomorphic to
Rn, n = dimG.

Lemma 2.3. ([3, p.52]) Let G be a connected Lie group. Then the following conditions
are equivalent:
(i) The Lie group G is diffeomorphic to Rn, n = dimG.
(ii) The maximal compact subgroup of G is trivial.

Lemma 2.4. If G is a compact solvable Lie group, then it is isomorphic to a torus
Tk for some k > 0.

Proof. Since G is compact, it is reductive by Proposition 1.4 of [3, p.131], hence
z(g) = rad(g) = g. Thus G is an Abelian compact group. �

Lemma 2.5. ([6]) If the Lie group G is compact, or connected and semisimple, then
any smooth representation of G by affine transformations of Rn admits a fixed point.



ON GROUPS ACTING BY COHOMOGENEITY ... 43

3. The Main Result

Two isometric actions on a Riemannian manifold M are said to be orbit equivalent
if there exists an isometry of M mapping the orbits of one of these actions onto the
orbits of the other. Suppose that M = Rn is of cohomogeneity one under the action of
a connected, closed Lie subgroup G ⊂ Iso(M). By Theorem 2.1, if there is no singular
orbit, then each orbit is isometric to Rn−1 and the action of G is orbit equivalent to
the action of the pure translation Lie group H = Rn−1 on Rn, with H(0) = G(0).
What we can say about the existence of a simply connected solvable closed Lie
subgroup F of G such that the action of F is orbit equivalent to the action of G

on Rn.

Theorem 3.1. Let Rn be of cohomogeneity one under the action of a connected,
closed Lie subgroup G ⊂ Iso(Rn). If there is no singular orbit, then there exists a
simply connected, solvable, closed Lie subgroup F of G such that acts freely and by
cohomogeneity one on Rn. In particular, the action of F on Rn is orbit equivalent to
the action of G. Furthermore, F has a pure translation normal Lie subgroup T with

dim(T ) > n− [n/2]− 1

and
L(F ) = Tk,

where k > n− dim(T )− 1.

Proof. Let G = SnR be a Levi decomposition of G. By Lemma 2.5 each semisimple
subgroup of G fixes a point x◦ ∈ Rn, hence S ⊂ Gx◦ which shows that R acts on
G(x◦) transitively. Therefore R acts on Rn by cohomogeneity one and by Theorem
2.1 R(x) is not singular orbit for each x ∈ Rn. If K is the maximal compact subgroup
of R then by Lemma 2.4 it is isomorphic to a torus Tk for some k > 0. By Theorem
7.1 of [3, p.66] there exists a simply-connected solvable normal Lie subgroup F of R
such that R = TknF . Since Tk is a compact Lie subgroup of G by Lemma 2.5 it fixes
some point y ∈ Rn, i.e. Tk = Ry, hence F acts on R(y) transitively. Since R(y) is not
singular orbit, F acts on Rn by cohomogeneity one . Because F is simply connected
and solvable, the maximal compact Lie subgroup of F is trivial by Lemmas 2.2 and
2.3, and each isotropy subgroup is Fx = {I} which shows that the action of F is free.

Now we show that F has a pure translation normal Lie subgroup T with the
mentioned conditions. Consider the homomorphism L : F → SO(n). Since ker(L) is
a pure translation normal Lie subgroup of G, then F/ker(L) is solvable. Thus L(F )

(so L(F )) is solvable (see [4, p.56]) and L(F ) is a compact solvable Lie subgroup of
SO(n). Therefore, by Lemma 2.4 it is isomorphic to Tk for some k > 0. Each maximal
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torus in SO(n) is conjugate to T[n/2] (see [5, p.252]), so dim(L(F )) 6 k 6 [n/2]. Since
F acts by cohomogeneity one and freely on Rn, dim(F ) = n−1. Thus, by the following
relations

dim(L(F )) 6 [n/2],
dim(ker(L)) + dim(L(F )) = n− 1

we have
dim(ker(L)) > n− [n/2]− 1.

Thus ker(L) is the pure translation normal Lie subgroup of F , which we were looking
for. �

Example 3.2. We give an example, that shows that L(F ) may be not closed in
SO(n). Let α be an irrational number and

G =




1 0 0 0 0 0
0 cos t sin t 0 0 0
0 − sin t cos t 0 0 0
0 0 0 cosαt sinαt 0
0 0 0 − sinαt cosαt 0
0 0 0 0 0 1

 ,


0
x1

x2

x3

x4

t


∣∣∣∣∣ t, xi ∈ R


.

Then G is a closed, simply connected and solvable subgroup of Iso(R6) acting by
cohomogeneity one on R6 (hence F = G), but L(G) is not closed in SO(6).

The following example shows that the simply connected, closed and solvable Lie
subgroup F introduced in Theorem 3.1 is not unique up to isomorphism.

Example 3.3. Consider the usual isometric action of the Lie subgroup

G =

{([
1

SO(n− 1)

]
,

[
0
X

])
| X ∈ Rn−1

}
⊂ Iso(Rn)

on Rn. Each of the following Lie subgroups of G is simply connected, closed and
solvable and its action is orbit equivalent to that of G. Further,

F1 =

{(
I(n−1)×(n−1),

[
0
X

])
| X ∈ Rn−1

}

F2=






I(n−2k)×(n−2k)

Rθ1

. . .
Rθk

,


0
Θ

X




∣∣∣∣∣Θ=
 θ1

...
θk

∈ Rk, X ∈ Rn−k−1
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F3 =





I(n−4)×(n−4)

Rθ

Rαθ

 ,


0
θ
X




∣∣∣∣∣θ ∈ R, X ∈ Rn−2

 ,

where α is a fixed irrational number, k 6 n−1
3 and

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Each of the Lie groups F1, F2 and F3 is diffeomorphic to Rn−1, so they are simply
connected and act freely on Rn. By Lemma 2.5 it implies that the Levi factor of each
of them is trivial so they are solvable. We also have G(x) = F1(x) = F2(x) = F3(x) ∼=
Rn−1 for each x ∈ Rn, so their actions are orbit equivalent.

The proof of the following two corollaries are similar to that of Theorem 3.1 and we
leave it to the reader.

Corollary 3.4. Let M = Rn and G be a closed Lie subgroup of Iso(Rn). If the
action of G on M is transitive, then there exists a simply-connected, solvable, closed
Lie subgroup F of G acting freely and transitively on Rn. Furthermore, F has a pure
translation Lie subgroup T with

dim(T ) > n− [n/2]

and

L(F ) = Tk,

where k > n− dim(T ).

Corollary 3.5. Let Rn be of cohomogeneity one under the action of a connected,
closed Lie subgroup G ⊂ Iso(Rn). If there is a singular orbit B = Rn−m−1, then
G has a simply-connected, solvable Lie subgroup F acting freely and transitively on
Rn−m−1. Furthermore, F has a pure translation Lie subgroup T with

dim(T ) > n−m− [n/2]− 1

and

L(F ) = Tk,

where k > n−m− dim(T ).
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