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А Н Н О Т А Ц И Я . The main objective of the authors is to characterize strong solva-
bility of optimization problems where convergence of the values to the optimum 
already implies norm-convergence of the approximations to the minimal solution. 
It turns out that strong solvability can be geometrically characterized by the 
local uniform convexity of the corresponding convex functional (local uniform 
convexity being appropriately defined). For bounded functionals we establish 
that in reflexive Banach spaces strong solvability is characterized by the Frechet-
differentiability of the convex conjugate. These results are based in part on a 
paper of Asplund and Rockafellar on the duality of A-differentiability and B-
convexity of conjugate pairs of convex functions, where B is the polar of A. 
Before we apply these results to Orlicz spaces, we turn to E-spaces introduced by 
Fan and Glicksberg. Using the properties of E-spaces we can show that for finite 
not purely atomic measures Frechet differentiability of an Orlicz space already 
implies its reflexivity. The main theorem gives - in 17 equivalent statements 
- a characterization of strong solvability, local uniform convexity, and Frechet 
differentiability of the dual space, in case Լփ is reflexive. It is remarkable that 
all these properties can also be equivalently expressed by the differentiability of 
Փ or the strict convexity of Փ. In particular, Լփ is an E-space, if Լփ is reflexive 
and Փ is strictly convex. 
We discuss applications that refer to 

• Tychonov-regularization: local uniformly convex regularisations are suffici-
ent to ensure convergence. As we have given a complete description of 
local uniform convexity in Orlicz spaces we can state such regularizing 
functionals explicitly. 

• 
ing sequence. Actual convergence of the minimal solutions on each subspace 
is achieved if the original problem is strongly solvable. 

property of E-spaces. 

1. I N T R O D U C T I O N 

In this introductory section we recall some properties of Orlicz spaces necessary 

for what follows. 
27 
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Definition 1. An even, lower semi-continuous, nontrivial convex function Փ : R ^ 

R w i t h Փ(0) = 0, where 0 is an interior point о/Бош(Ф) is called a Young function. 

If Փ(տ) > 0 for s > 0 then Փ is said to be definite. 

Let (T, բ) be an arbitrary measure space and let E be the set of all ^-measurable 

real-valued functions on T. Then for a given Young function Փ we can define a modular 

f փ : E ^ R by 

fф(х) = [ Ф(х)в,բ. 
JT 

Minimization w.r.t. this functional on subsets of ^-measurable functions can be viewed 

as generalizations of ^-minimizations, where Փ(տ) = \s\ p/p. 

The Minkowski functional of the level set Sf փ (1) is defined by рФ : E ^ R where 

Լ Փ ( ^ ) - * 1 } . 
рФ(х) : = inf լ с > 0 

The Orlicz-space Լփ(բ) is given by the subspace of E , where рФ is finite: 

Լփ(բ) := I xeE 3a > 0 : Ф(ах(Ь))йթ < ж > . 
JteT J 

The above рФ defines a norm on Լփ(ր), called Luxemburg-norm, to be denoted by 

|| • ||(Փ). It is well known (s. e.g. [31] that (Լփ(բ), || • ||(Փ)) is a Banach space. 

Special cases: 

• Փ^տ) = \s\P/p then Լփ = W (1 < p< ж ) . 

• Փ ( s ) = \ ж Ъ х \s\ > 1 theTI Լփ = T™ 
• ^ ( s ) : = \ 0 f o r \ s \ < 1 է Խ ո Լ = ' 

By ձ4փ(ր) we denote the closure of the subspace spanned by the step functions with 

finite support in Լփ(ր). 

If Փ is finite, th en f փ : ձ4փ(ր) ^ R is continuous, be cause f փ is bounded on the 

unit sphere of M ^ ) (s. [31], p. 219). 

The proof of the theorem that follows can be obtained by use of the two-norm 

theorem (s. [39]). 

T h e o r e m 1. Let Փ be not finite and /л(Т) < ж, then the following statements hold: 

(1) Լփ(Բ) = Լ 1(Բ), 

(2) || • ||(փ) is equivalenէ to || • ||i, 

(3) Լ^(բ) = Լ~(բ), 

(4) || • ||(փ) is equivalen է to | • | • 
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The following well known growth conditions for Young functions are of central 

importance for our discussion of the properties of Orlicz spaces: 

Definit ion 2. We say that a Young function satisfies the conditions 

(1) Д2-сопЛй'оп if there is AeR, such that VseR; Փ(2տ) < ЛФ(в), 

(2) ДХ-condition if the re is AeR and k > 0 such that Vs > k: Փ(2տ) < ЛФ(в), 

(3) Дз-сопЛй'оп if there is AeR and k > 0 such that V0 < s < k: Փ(2տ) < AФ(s). 

Let £փ denote the Orlicz-sequence space. The following theorem can be found in 

[52]: 

Փ 

statements are equivalent 

(a) Փ satisfies the ^2֊cond,ition, 

(b) £փ = т ф , 

(c) £ф is separabel, 

(d) £ф contains no subspace isomorphic to 0 х . 

For not purely atomic measure spaces the above isomorphy is in fact isometrical 

(see [80]) 

T h e o r e m 3 (Turett). Let Փ be a finite Young function and let (T, S , ^ ) be a not 

Փ 

the ДХ -condition, then Լփ(բ) contains a subspace isometrically isomorphic to I х . 

The following theorem can be found e.g. in [39] (сотр. also [47]): 

T h e o r e m 4. Let (T, S , /л) be a not purely atomic measure space with /л(Т) < ж and 

Փ 

(1) Փ satisfies the ДХ՜ condition, 

(2) Мф = Լփ. 

Փ Д2 

/(T\ճ) = ж, where A denotes the set of atoms in T. 

Փ Д2 

convergence w.r.t. the modular (s. [39]): 
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T h e o r e m 5. If Փ satisfies the A2 ֊condition and (xn)n be a sequence in Լփ(բ), then 

քփ(xn) 0 ^ |խո||(Փ) 0. 
n — n — 

This is also true for finite measure, if Փ is definite and satisfies the A??-condition. 

1.1. Dua l i ty . 

Def ini t ion 3. Let Փ be a Young function, Փ be its convex conjugate. E be the space 

of the equivalence classes of measurable functions. Then we define the functional 

МФ : E ^ R by 

/ v •ud/ 
IT 

Мф(и) : = sup • 

It turns out that МФ is a finite norm on Լ փ ; it is called Orlicz-norm: 

veSf փ ( 1 ^ • 

N$(x) = ||x||$ = sup / x • yd/ 
IT 

|у|(Ф) < ч • 

Thus the Orlicz-norm is the canonical norm of the dual space and (Լփ(/), || • ||փ) is 

isometrically embedded into the dual space of Լ^(ր). 

Luxemburg- and Orlicz-Norm are equivalent. Moreover, Holder's inequality holds 

(s. e.g. [47]): 

T h e o r e m 6. Let Փ be the conjugate of Փ, then the following statements hold 

(1)  | | x | b ) < ИФ <  շխ\\(փ) for all  xeL^ (^ ), 

(2) Holder's inequality: | JT x • yd^\ < ||x|փ • ||У||(Ф). 

As the conjugate of Փ is again Փ, one can exchange the roles of Փ and Փ and 

obtains Լ^(ր) as el subspace of Լփ(բ)*. 

A precise description of the dual space of Мф(/) is given by the following well known 

theorem, the proof of which for finite Lebesgue measure can be found in [47], s. [39]: 

T h e o r e m 7 (Duality). Let (T, S, /л) be a ծ-finite measure space and let Փ be finite, 

then every continuous linear functional f on М ф ( / ) is represented by a function 

у G Լ^(բ) via the formula 

(f,x) = / y ( t ) x ( t ) d x G Լփ• 
JT 

If М ф ( / ) is equipped, with the Luxemburg-norm then f || = ||У||Ф, i.e.: 

(Мф(л), |ի | | (փ)ք = (Լ*(Բ), | ի | | փ ) • 

E x a m p l e s 
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1. For 1 < p < ж and Փ(տ) = | s | p / p we have Փ(տ) = | s | q /q , where 1/p +1/q = 1, 

Փ Д2 

( L p ( / ) , \ \ - \ \ p ) * = L ( л ) , \\-\\,)• 

2. For Փ(տ) = |s| we have Փ(տ) = Փ ^ տ ) and 

( L 1 ( / ) , \\-\Ա)* = ( L x ( / ) , У-Ух )• 

To discuss Freeh et-differentiability and reflexivity we need a duality theorem, which 

states the conditions rendering Luxemburg- and Orlicz-norm changeable: 

T h e o r e m 8. If Փ and Փ are finite and М ф ( / ) = Լփ(/), then 

(1) (M*(/), \\-\\*)* = ( ւ փ ( / ) , у.у(ф)), 

(2) ( М ф ( л ) , \\-\\*) ** = ( ւ փ ( / ) , у-у*). 

Proof: Let X : = ( M ^ / ) , \\ - \\(փ}), then according to the previous theorem X* = 

(L* ( / ) , \\ - \ \ * ) Let now U : = ( M * ( / ) , \\ - \\*) and f e U*. Due to the equivalence of 

Luxemburg and Orlicz norm there is - according to the duality theorem - a function 

y e L'^(p) = M ф ( / ) with { f , u) = T u - yd/ for all u e U. Hence we obtain 

= sup s { f , u) u e M*, \\u\\* < 1 

( 1 . 1 ) = sup ^ J uy d/ u e M*, \\u\\* < 1 

For շ e Sf փ (1), we construct a sequence 

z \ z ( t ) for |z(t)| < n and t e Bn, 
0 

zn 

as in the proof of the previous theorem, hence zn e M* (ր). Due to the monotonicity 

of the Orlicz norm by Fatou lemma: 

zyd/ < < sup / խո y d / = sup {f , |zn| sign (y)) 
T n T n 

՝ T 
< sup 

n T 

zn \\ * <\\f \ \ \ z \ * 

and hence by equation (1.1), 

\ f\ = sup zyd/ z e L*, \խ\\* < 1 

We define {f,z) := fT zyd/ for z e L*. Because of Holder's inequality, f is a 
L * L * = X * 

n 
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i.e. f G X**. Due to [23] p. 181, theorem 41.1 the canonical mapping I : X ^ X** 

with y -—> fT(• )yd/ is norm-preserving, i.e. f || = ||У||(Ф). Hence 1. holds. Due to 

(Լփ(/), || • ||(Ф))* = ( М Ф ( / ) , || • ||(Ф))* = (Լ*(Բ), || • ||փ) 

we obtain 2. 

1.2. Ref lex iv i ty . Reflexivity is closely related to the the A2-condition. 

Փ Փ 
be not purely atomic. 

(1) If /(T) < ж , then Լփ ( / ) is reflexive if and only if Փ a,nd, Փ satisfy the 

A??-condition, 

(2) if /(T) = <x with /(T\A) = ж (A set of atoms in T), then Լփ(/) is reflexive 

Փ Փ A2 

For sequence spaces a similar, but weaker theorem is available: 

T h e o r e m 10. If Փ a,nd, Փ are finite then £փ is reflexive if and only if Փ a,nd, Փ satisfy 
Հ0 2 the A2-condition. 

1.3. Separab i l i ty . 

T h e o r e m 11 (Lusin). Let T be a compact Hausdorff space, (T,J2,/) the correspon-

ding Bair measure space and let x be a measurable function. Then for every e > 0 

y T 

/ ( { t G T\x(t) - y(t)=0}) < e. 

Furthermore, if ||x|^o < ж then у can be chosen to satisfy | |y||? < ||x|^o. 

The next theorem is a consequence of Lusin's theorem (compare [47]): 

T h e o r e m 12. Let T be a compact Hausdorff space, (T, S, / ) be the corresponding 

Փ Փ T 

dense in М Ф ( / ) . 

Using the Stone-Weierstrafi-theorem we obtain 

T h e o r e m 13. If Փ and Փ are finite, T be a compact sub set of Rm and / be the 

Lebesgue-measure, then МФ(/) is separabel. 
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2. F L A T C O N V E X I T Y 

A N D W E A K D I F F E R E N T I A B I L I T Y 

Let X be a real normed space and f : X ^ R be a continuous convex function, 

then the subdifferential 

df (xо) : = {ф e X* | ф(х - xо) < f (x) - f (x0)} 

is a non-empty convex set (s. e.g. [31])- For ф e df (x0) the graph of [f (x 0) + ф(--x0)] 

is a supporting hyperplain of the epigraph {(x, s) e X x R | f (x) < s } in (x 0, f (x0)), 

and each supporting hyperplain can be represented in such a way. 

The right-handed derivative 

f (x0,x) : = lim  f ( x 0 + t x ) -  f ( x 0 ) 
յ + Հ У 40 t 

always exists and is finite (s.e.g. [31]) and the equation f-(x0,x) = - f + (x0, -x) 

holds. By the theorem of Moreau-Pseheniehnii [31] 

f+ ( x 0 , x ) = max ф(x), f ( x 0 , x ) = min ф(x)• 
+ ^ Ф^д f (xo) ^ '  0> > Փ€Տք (xo) ' 

Definit ion 4. A convex set (with non-empty interior) is called fiat, if every boundary 

point has a unique supporting hyperplain. 

The next theorem (s. ([35]) gives a characterization of flat level sets of a continuous 

convex function: 

T h e o r e m 14. Let X be a real normed space and f : X ^ R be a continuous convex 

function. Then for r > inf { f (x) | x e X} the following statements (a) and (b) are 

equivalent: 

(a) The convex set Sf (r) : = {x e X | f (x) < r} is flat. 

x0 Sf (r) 

(i) ff+ (x0,-) + f-(x0, -)] e X * , 

(ii) there exists a c> 0 with 

f-(x0,x) = cf+ (x0,x) 

for all x with f+ (x0, x) > 0. 

In particular, Sf (r) is flat, if f Gateaux-differentiable in {x e X | f (x) = r}. 

f f Sf (r) 

empty interior, and for every boundary point x 0 of Sf (r) one has f (x0) = r > inf f (x), 

hence 0 e df (x0). 
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(a) ^ (b). Let H be the unique supporting hyperplain of Sf (r) in x0. For every 

ф e df (x 0) , x0 + Ker ф is a supporting hyperplain, hence 

x0 + Ker ф = H. 

If ф0 e X* represents the hyperplain H, then ф = Лф0 for a A e R. The theorem of 

Moreau-Pschenichnii yields 

df Ы = {Aфо | Ai < A < A2}, 

hence 

f+ (x0 ,x ) = Aշфо(x) 
f - ( x 0 , x ) = М ф 0 ( x ) J Ф о ( x ) 0 , 

f'+ ( x 0 , x ) = A ^ 0 ( x ) l „ J , ( ) ^ 0 
+ Հ w , Հ \ for ф о И < 0 . f-(x0,x) = Aշфо(x) J 

We conclude (i): 

f ' + (x0,-) + f-(x0, -)] = (Ai + A2) - фо(-) e X * 

It remains to verify (ii): as 0 e df(x0), ^^e relation sign A1 = sign A2 = 0 holds, 

consequently 

f-(x0,x) = (AiA- 1) 8 ' 8" A l f'+ (x0,x) 

for x with f _ ( x 0 , x ) > 0. 

(b) ^ (a). For ф e df (x0) we have 

(2.2) Д (x0,x) > ф(x) > f-(x0,x) 

for all x e X and because of (ii) 

(2.3) f[_(x0,x) > ф ^ ) > cf'+ (x0,x) = f-(x0,x) 

for those x with f'+ (x0,x) > ^ 0 1 1 1 ф(x) = ^ ^ 2 ) , f'+ (x0,x) > 0 and (2.3) it 

follows 

(x0,x) = f-(x0,x) = 0, 

i.e. 

Ker ф С Ker (f'+ + f - ) : = Но. 

As f'+ (x0, -) > f-(x0, -) and 0 e df (x 0) it follows from (2.3) H 0 = X and hence 

Ker ф = H 0 . 
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Let now H be a support hyperplain of Sf (r) in xo. Due to the Theorem of Mazur 

[31] the affine supporting set H x {f (x 0 ) } of the epigraph of f in (x0, f (x0)) can be 

extended to a support hyperplain in X x R, thus there exists ф G df (x0) with 

x {f (x0)} С {(x, f (x0) + ф(x — x0)) \ x G X } . 

Hence 

H С {x \ ф^ — x0) = 0 } = x0 + Ker ф = x0 + H0, 

consequently 

H = x0 + H0 • 

Of particular interest is the positive homogeneous case (s. [35]): 

T h e o r e m 15. If f is nonnegativ and positively homogeneous, then Sf (r) is flat 

f {x G X \ f(x) > 0} 

Proof: If Sf (r) is flat convex for an r > 0, then, because f is positive homogeneous, 

S f ( r ) 

r, ( ) у  f  ( x0 +  t x 0 )  —  f  ( x 0 ) ք( ) f+ (x0,x0) = lim 1 = f (x0) 

= h r n  f  ( x 0  —  t x 0 )  —  f  ( x 0 ) = f , 0 x0) 

ti0 —t  J—  0  0  

Hence с = 1 in (ii) and էhus (x0,x) = f'_(x0,x) for f'+ (x0,x) > 0. 
f+ , (x0, x) < 0 

f+ , (x0, —x) > f  , (x0, —x) = —f+ , (x0, x) > 0, 

and with с = 1 in (ii) it follows that 

f[_ (x0, —x) = f'_ (x0, x) • 

Therefore we obtain using (i): 

2 Д (x0,x) = —2f'_ (x0, —x) = —(f[_ (x0, —x) + f'_ (x0, —x)) 

= f'+ (x0,x) + f'_ (x0,x)• 

f  , (x0, x) = f  , (x0, x) 

Definit ion 5. A normed space is called flat convex, if the closed unit ball is flat. 
f 

X 

Gateaux-differentiable in X \ {0} . 
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3. F L A T C O N V E X I T Y A N D G A T E A U X - D I F F E R N T I A B I L I T Y 

O F O R L I C Z S P A C E S 

Let Փ : R ^ R a finite Young function. Let (T, E, բ) be a a-finite measure space, 

and Լփ(բ) be the Orlicz space determined via Փ and բ, equipped with the Luxemburg 

norm || • || (ф). 

We consider the unit ball in М ф ( ^ ) . If x e Мф(^), then 

(3.1) | |х|(ф) = 1 if and only if / Փ(x)dթ = 1. 
JT 

According to Theorem 14 the level set Sf (r) is flat, if f is Gateaux-differentiable in 

{x e X | f (x) = r}. 

L e m m a 1 ([41]). The right and left-sided derivatives of the modular f ф : Мф(р) ^ R 

defined by 

f Ф Н = [ Փ^)ժբ 
JT 

for x0 e Мф(р) can be represented as follows: 

( f ^ + ( x o , x ) = / xՓ+ (xo)dբ + / xՓ'_(xօ)dբ 
(3 2) J{x>0} J{x<0} 

( f Ф ) / ֊ ( x o , x) = / x^'_(xo)d,^ + / xՓ+ (xo)dp. 
J{x>0} J{x<o} 

If Փ is differentiable, then f ф is Gateaux-differentiable and 

(3.3) ( f ^ ' ( x o , x ) = f xՓ /(xo)dբ. 

JT 

Proof: For the difference quotient we obtain: 

f ^ x o + TX) - ^(xo) Г Փ(xo(t) + Tx(t)) - Փ ^ ( է ) ) т 
dբ 

= / Փ ( x o ( t ) + T x ( t ) )  - Փ ( ^ ( է ) ) x ( t ) d , 
JxJt)>0  T x ( t )  

+ / Փ ( x o ( t ) + T x ( t ) )  - Փ ( x o ( t ) ) x ( t w . 
Jx(t)<0  T x ( t )  

T 

Փ(տ0 + TS) - Փ(տ0) 
T 

for all s 0 , S e R, the above representation (3.2) of and ( f ^ - f o l l o w s . Let Փ be 

differentiable. According to (3.2) f ' ( x 0 , x ) exists and we have (3.3). 
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L e m m a 2 ([41]). Let T0,T\ and T2 G S be disjoint sets with 0 < /(T) < ж for 

i = 0,1, 2. If there exists an s0 > 0 for which Փ + (s0) = (s0) and Փ(տ0) • /(T0) < 1, 

then МФ(/) is not flat convex. 

Proof: The set of discontinuities of a function, monotonically increasing on [a, b] is 

at most countable (s. [64], S. 229). Hence there exists s i > 0 with Փ+ (si) = Փ'_(si) 

and 

1 — Փ(տ0)բ(Ո) — Փ(տւ)բ(Ո) > 0^ 

Փ s2 G R 

Փ(տ0) • /('.T0) + Փ(տւ) • /(Ti) + Փ(տշ) • /(T2) = 1 

For the functions 

x0 = S0XT0 + siXTi + S2XT2, 

xi = XTo, 

x2 = XT1 

we have 

0 < (fփ) + (x0,xi) = /(T0) • Փ + (s0) = (fФ)'_(x0,xi) = /(T0) • Փ'_(s0), 

0 < (fփ) + (x0,x2) = /(Ti) • Փ + (si) = /(Ti) • Փ'_(si) = (fփ)'_(x0x)-

Hence condition (ii) of Theorem 14 is not satisfied, and thus МФ(/) not flat convex. 

T h e o r e m 17 ([41]). Let / be not purely atomic. Then МФ(/) is flat convex if and 

Փ 

Proof: follows from Lemma 2 and Theorem 1. 

The derivative of the norm || -||(Ф) is defined ж follows. Let x0 G МФ ( / ) ԱՈd ||x0 ||(Ф) = 

1. The graph of the fu nction x ^ (f  փ)'^0^ — x0)+f փ ^ 0 ) is a supporting hyperplain 

of the epigraph of f փ in (x0, ^(x0)) = (x0, 1) G МФ x R. This means that the 

hyperplain {x G МФ \ (f  փ)'^0, x — x0) = 0} supports the unit ball of МФ in x0. If 

we denote || • ||(Ф) by рФ then p'^,(x0,x0) = 1 ( compare proof of Theorem 15) and 

p'<s>(x0, •) is a multiple of (fփ)'(x0, •). Taking into account that 

Փ'(x0)x0d/ > Փ(xo)dբ = 1, 
JT 
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we obtain that 

/ xՓ /(xo)d/ 
(3.4) x ^ ^ -I , | | xo | | w = 1, 

/ xoՓ /(xo)dբ 

is the derivative of || • ||(Փ) (in М ф ) . 

If the measure / is purely atomic, then the differentiability of Փ is not a necessary 

condition for flat convexity of М ф ( / ) . 

In the sequel let S = { s G R | Փ in s not differentiable}. 

T h e o r e m 18 ([41]). Let (T, E, / ) be purely atomic and consist of more than 2 atoms. 

Then М ф ( / ) is flat convex if and only if for all s G S and all atoms A G E 

Փ(տ) • / ( A ) > 1. 

Proof: Necessity follows immediately from Lemma 2. 

Let x 0 G М ф ( / ) and | |x0 | | (^ = 1. According to Lemma 1 and the condition 

Փ(տ) • / ( A ) > 1, it is sufficient to consider x 0 = rxA for an atom A G E and r G S. 

As Փ ^ ) • / ( A ) = 1 we have Փ + (r) = 0. 

As 0 G S and Փ /(0) = 0 it follows from Lemma 1 that 

(fф)+(xo,x)= / xՓ+ (xo )d/ + / x Փ - ( x o ) d / 
J{x>0} J{x<0} 

= Փ + (r) x • XAd/ + Փ—^) x • XAd 
{x>o} {x<o} 

and in in the same way 

(f^-(xo,x) = Փ- (r) xxAd/ + Փ + (r) xxAd/ 
{x>o} {x<o} 

Hence we obtain (i) with f/(x0, x) + f-(x0, x) = / ( A ) ^ + (r) + Փ - ^ ) խ where A 

x A 

x f ; ( x o , x ) + f- (xo, x) = / ( A ) [Փ + (r) + Փ - ^ ^ x | a G ( M փ ) * . 

Փ՛ ( r) 
(ii) If x > 0 on A, then f-(x0, x) = ф+( г) f . (x0, x), because in that case 

/ x • XAd/ = 0 and Փ + (r) > 0. 
{x<o} 

Փ' ( r) 

If, however, x < 0 on A, a suitable multiplyer is ф + (r) with Փ + (r) < 0. From Theorem 

14 it then follows that М ф ( / ) is flat convex, and the proof is complete. 
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4. L O C A L U N I F O R M C O N V E X I T Y , S T R O N G S O L V A B I L I T Y A N D 

F R E C H E T - D I F F E R E N T I A B I L I T Y O F T H E C O N J U G A T E 

There are several different ways to generalize the notion of uniform convexity of 

functions [50] by allowing for different convexity modules at different points of the 

space. 

Def ini t ion 6. A monotonically increasing function т : R + ^ R + with т(0) = 0, 

т(s) > 0 for s > 0 and т(s)/s—^ж is called a convexity module. A continuous 

function f : X ^ R, where X is a normed space, is called locally uniformly convex if 

(a) for all x G X a convexity module тх exists, such that for all y G X 

2 (f (y) + f(x)) > f ( ֊ ) + тх№ — уЦ); 

(b) for all x G X and all x* G df (x) a convexity module тх,х* exists, such that 

y G X 

f  (У )  —  f  ( x ) > { y  —  x , x * ) +  т х , х * ( | | x — УЮ; 

x G X тх y G X 

1(f (x + y) + f (x — y)) > f (x)+ тх^уИУ 

It is easily seen that: a) ^ b) and b) ^ c). If the function f satisfies a), then by 

the subgradient inequality 

2 (f (x) + f (y)) > f ( ֊ ) + т х ^ — yH ) 

> f (x) + ^ — + тх(Ux — yD 

defining тх,х* (s) := 2тх^), and the property b) follows. If a function f satisfies b), 

then by the subgradient inequality: 

1 f (x + y) > 1 «y,x*) + f (x)+ тх,х* (||y||)) 

> 2 ( f (x) — f (x — y) + f (x)+ тх,х* (||y||)), 

hence the property (c) for тх(s) := тх,х* (s)/2. 

The converse, however is not true, because the function f (x) = ех satisfies (c) using 

the convexity module тх(s) := е х(со8Ь(s) — 1), yet does not have bounded level sets, 

hence cannot satisfy b). 
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The strictly convex function f (x) := (x + 1)log(x + 1) — x satisfies property (b), 

because for h > 0 due to the strict convexity of f 

0 <h f (x + h) — f (x) — f '(x)h) 

1 ( ( + 1 ) i x + h + 1 ( x + h + 1 \ \ 
= т (x + 1 ) l o g — + h l o g — л 1 ^—' 

h \ x + 1 \ x + 1 J J h—<x> 
However, it violates (a) at the origin, because 

К 1  f ( y ) — f ® ) = 2 l o g 2 < 
In the sequel we will mean by locally uniformly convex functions always those with 

property (b). 

R e m a r k 2. Lovaglia in [53] investigates locally another lass of uniformly convex 
norms. The squares of these norms are, however, locally uniformly convex in the 
sense of (b), [45]. 

Definition 7. A function f has a strong minimum ко on a sub set K of a Banach 
space X, if the set of minimal solutions M(f, K) of f on K consists of {к 0 } and if 
for every sequence {kn} x=1 С K with 

lim f (kn) = f (k0) it follows that: lim kn = k0. n — n — 
f K 

L e m m a 3 ([45]). Let X be a reflexive Banach space and let f : X ^ R be convex 
and continuous then the following statements are equivalent: 

f X 

f X 
f X 

Proof: Without loosing generality we can assume that f (0) = 0 and f (x) > 0 
for x = 0. Otherwise we can consider g(x) : = f (x0 — x) — f(x0), where f (x0) = 
min{f (x)\x e X}. 

1. ^ 2. Let Ga := {x\{x0,x) > a } . If 0 e Ga, then g0 = 0 is the strong minimum 

of f on G a . If 0 e G a , then it follows that a = 0. Let x be an interior point 

of Ga, then f (x) > 0 and with x\ : = (1 — A) • 0 + Xx for A e (0,1) it follows 

that f (xx) < Af (x) < f (x). Hence x cannot be a minimum of f on G a . Let g0 be 

the strong minimum of f on Ha := {x\{x%,x) = a}. Then by reasoning as above 

f (go) = inf {f (g)\geGa}. 
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Let now f (gn) ^ f (go) with gn G Ga. Then (x*,gn) ^ a. To prove it assume 

there is e > 0 and a subsequenee (x*, gnk) > a + e. Then gnk G Ga+E, but we have 

for every e > 0 

m i n { f ( x ) \ ( x * Q , x ) > a + e) > f(go). 

Let f (gE) = inf { f (g)\g G Ga+E, then we obtain in the same way as above (x*,gE) = 

a + e. As 0 is the strong minimum of f on X , the mapping Л ^ f (XgE) is strictly 

monotonically increasing on [0,1^. The mapping Л ^ ф(Л) = (x*^gE) is continuous 

on [0,1] and we have: ф(0) = 0 and ф(1) = a + e. Hence there is а Ла G (0,1) with 

Ф(Ла) = a , i.e. ga := ЛagE G Ha. Therefore we obtain 

f(go) < f ( g a ) < f(gE) = m i n { f ( x ) \ ( x * , x ) > a + e } 

hence f (gnk) > f (gE), a contradiction. 

Since a/(x* ,gn) < 1 we have 

Moreover 

f ( M g ) ) g N ) <1x0^) f ( g N ) ^  f ( g O ) 

-gn G {x\(x*,x) = a}, ( x o * , gn ) 

and hence f (go) < f ((х аЯп) g n ) . We conclude t hat | (х адп) gn} is a minimizing 

sequence of f on Ha, and hence 

a 

- x g ; g n ^ g o  

thus gn ^ go-

2. ^ 3. If K is ^ ^ ^ ^ ^ and closed, 0 G K and r := inf f (K), then r > 0 and the 

interior of Sf (r) is non empty. According to the separation theorem of Eidelheit [31], 

there is a half space Ga with K с Ga and Ga Ո Int (Sf (r)) = 0. If go is the strong 

minimum of f on Ga, then f (go) < r, but f (go) < r is impossible, because in that 

go Sf (r) go f 

K and because K с Ga it is also the strong minimum. 

If 0 G K and (kn) is a sequence in K with f (kn) ^ 0, we can assume that K is a 

G 

f G f K 

a 

Definit ion 8. A convex function is called bounded, if the image of every bounded set 

is bounded. 
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In order to establish a relation between strong solvability and local uniform conve-

xity, we need 

L e m m a 4. Let X be a reflexive Banach space and f : X ^ R к convex and 

continuous. 
f(x) 

Then —л- —> ж holds, if and only if the convex conjugate f * is bounded. 
||x|| ||жn —•̂ o 

Proof: Let f* be bounded. Suppose there is a sequence { x n w i t h "xn" ж 

for which always f (x n ) / | |x n | | < M for some M e R . Then there is a sequence 

However 

{x*n}n=i С X* with ||xn|| = 1 and (x*n,xn) = ||xn||. 

f * (2Mx*n) = s u p { 2 M ( x * n , x ) — f ( x ) } 
xex 

2 M ( x ! , ֊ ) - f e ) 1 > 

f* 

Conversely let ||x*|| < r, then there is Q e R, such that f(x)/||x|| > r for ||x|| > Q. 

Therefore 

f *(x*) = sup {(x,x*) — f (x)} < sup ( (r — ֊ Л ||x| 
xex xex LV Ի " J 

< i M L { ( r — w M + . x u d ( r — w ) | w 

< sup {r||x|| — f (x ) } < rQ — inf f {{x \ ||x|| < Q ^ . 
| x | < e 

In order to estimate — inf f {{x \ ||x|| < Q^) from above, let finally x* e df (0), then 

f (x) > f (0) — ||x||||x0|| > f (0) — p"x**" and thus 

— inf f {{x \ ||x|| < Q}) < p||x*|| — f (0). 

L e m m a 5. If X is a reflexive Banach space, f : X ^ R is continuous and convex, 
f * K 

M(f, K)= 0. 

f * f 

So due to the theorem of Mazur-Schauder (s. e.g. [31]) M(f, K) = 0 for an arbitrary 

K 

The following lemma can be found in [74]: 

x n x x n n 
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L e m m a 6. Let f : X ^ R be convex and bounded, then f is Lipschitz-continuous on 

bounded sets. 

Proof: Let B be the unit ball in X , e > 0, and S be a bounded subset of X. Then 

S + eB is bounded. Let a ^ d a 2 be lower and upper bounds of f on S + eB. Let 

x, y e S with x = y and A := £ • Writting further z := y + «,, £x« (y — x), then £ ՜է՜ | | y x H | | y x H 

z e S + eB and y = (1 — A)x + Az. from the convexity of f we obtain: 

f (y) < (1 — A)f (x) + Af(z) = f (x) + A{f (z) — f (x)), 

and hence 

f ( y ) —  f ( x ) < A ( a 2 — a i ) = " 2 e " 1 e + i^y — x " "y  — x " < " 2 e " 1 "y  — x " . 

Exchanges the roles of x and y, one obtains the Lipschitz-continuity f on S. 

T h e o r e m 19. Let X be a reflexive Banach space and f : X ^ R a strictly convex and 
f * f 

f* 

f* 

f X f *  

Frechet-differentiable at x* , if ^ d only if the fu nction f —(x*, •) has a strong minimum 

X f * f X 

Let H : = {x\(x*,x) = r} for x0 = 0. By Lemma 5 we have M(f,H) = 0. Let 

h0 e M(f,H). According to [31] there is a x* e df (h0) with (x*, h — h0) = 0 for 

all h e H. Due to the subgradient in equality (x*,x — h0) < f (x) — f (h0). Setting 

f * := f — ( x • ) , it follows է hat f * (x ) > f * (h 0 ) for all x e X. As f * is differentiable 

at x*, h0 is ^^e the strong mini mum of f * on X . In particular h0 is also the strong 

f H 

f\H = ( f i + (x*,ho))\H 

because for all h e H we have: 

f i (h) + (x*i, ho) = f (h) — (x*, h) + (x*, ho) = f (h) — (x*, h — ho) = f (h). 

In order to prove the converse let x* e X*. According to [3] we have to show that 

f i : = f — (x**, •) has a strong minimum on X . As f * ( x * ) = f *(x0 + x* ) for all x* e X*, 

f i * f i xo 

on X . If x** = 0, then f i = f and hence x 0 is the strong minimum of f ^ n X. 
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Let x* = 0 and fi(xn) ^ fi(xo). For e > 0, 

Ki := { x G X\(xo, x) > (x*, xo) + e}, K2 := {x G X\(xo, x) < (x*o, xo) — e}, 

f i 

It follows (x*o,xn) ^ (x*, xo) (otherwise there is a subsequence {xnk} in ^ or K2, 

contradicting fi(xn) ^ fi(xo))-

For H := {h\(x*,xo) = (x*, h)} by Ascoli formula [31] 

For hn G M(\\xn — •\,H) we conclude that xn — hn ^ 0. The level sets of f 1 are 

bounded due to Lemma 4, hence so are the sequences (xn) and (hn). 

f 

constant L such that 

We obtain: 

fi(hn) = f (hn) — (x*o, hn) 

= ( f (hn) — f (xn)) + f (xn) — (x*, xn)) — (x*o, hn — xn) ^ fi(xo). 

H f fi f 

on H, this also holds for fo, hence hn ^ xo and thus xn ^ xo. This completes the 

proof. 

X f 

X f f * f 

strong minimum on every closed convex set. 

f f *  

4 all level sets of f are bounded and hence according to Lemma 5 M(f, K) = 0 for an 

arbitrary closed convex set K. Let now ko G M(f,K), then by the characterization 

theorem of convex optimization [31] and the theorem of Moreau-Pschenitschnii there 

exists 

min{min(fi,Ki), min(fi ,K^)} > fi (xo). 

\f (xn) — f (hn)\< L\xn — hn\ ^ 0 . 

x* G df (ko) with (k — ko, x*o) > 0 for al 1 k G K. 
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If т is the convexity module of / belonging to k0 and x%, then for an arbitrary 

minimizing sequence {kn} we have 

/(kn) - /(k0) > {kn - k0,x*0) + т(\\kn - k0II) > т(\\kn - koH)-

Thus limn^T O kn = k0, and the proof is complete. 

Corollary 1. Let X be a reflexive Вanach space and / a,nd, g be continuous convex 

functions on X. If / is locally uniformly convex and /* is bounded, then / + g is 

locally uniformly convex and has a strong minimum on every closed convex set. 

Proof: First we show that / + g is locally uniformly convex. Let x e X and 

x* e д/(x), then there is a convexity module тх,х*, such that for all y e X : 

/ ( y )  -  / ( x ) > { y  -  x , x * ) +  тх,х* ( \ x - y H ) -

If x* e dg(x), then by the subgradient inequality: 

/ ( y ) + g (y )  -  ( / ( x ) + g ( x ) ) >  {y  -  x , x * +  x* ) +  тх,х*(\\x - y\\)-

Having established the local uniform convexity of / + g we now show that (/ + g)* is 

bounded. According to Theorem 4 this happens if and only if 

/ (x) + g(x)) ^ 
\\x\\ II х П —•̂ O 

Now for x* e dg(0) we have g(x) - g(0) > {x - 0,x*) > —HxHHx* \\, hence ց(x)/HxH > 

g(0)/\\x\\ - \\x*g\\ > с e R for \\x\\ > r > 0. Therefore 

/ (x)+ g(x)) / (x) + 
Л—й > "П—TT + с > ж, 

and the proof is complete. 

In [45] the main statement of the theorem that follows is proved for / 2 , without 
/* 

/ 

T h e o r e m 21. Let X be a reflexive В anach space, and / : X ^ R be a bounded, 
/ * / 

/ 

x x х 

/ 

20. 
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Conversely, let f have the strong minimum property. Then by Theorem 19 f * is 

Frechet-differentiable. If x** is the Frechet-gradient of ^ n x ^ e n f (•) — (^x*) has 
x o 

т(s) : = inf {f(xo + y) — f(xo) — (y,x*,)}. | |y | |= s 

In fat т(0) = 0 and т(s) > 0 for s > 0, and т is monotonically increasing. Let 

s 2 > s i > 0 and ||z|| = s i 5 and y : = S՜2z due to the monotonicity of the difference 

quotient 
f (xo + ^ y) — f (xo) 

o  S 2 < f (xo + y) — f (xo), 
s i / s2 

hence 

f (xo + z) — f (xo) — (z,x*o) < — (f(xo + y) — f(xo) — (y,x*)) 
0 s2 0 

<  f ( x o + y ) —  f ( x o ) —  (y, x*0՝). 

Finally, using Theorem 4 

т ( s ) =  f ( x o ) f I' f ( x o + y ) , y „ 

~ = — ~ + | | У П = . { П Я Т — ( M ' x o ) 

> — / М — խ ° " + mf { « Գ + Հ } 
s | | y | = s I "y" J s 

On a reflexive Banach space the conjugate of a bounded convex function does not 

have to be bounded. 

Example 1. Let f : l2 ^ R be defined by f (x) = J2i=i yi(x ( i՝ )), where уi : R ^ R is 

given by 
( s 2 

for \s\ < 1. 
yi(s) : = ^ 2 i |5±1 1 — i r I , ֊, 

\s\ * + TZT- ГТ for \s\ > 1. i + 1՛ ' 2(i + 1 ) 

f is bounded, because f (x) < ||x"2 for all x e l 2 . The conjugate function of f is 

i (s2/2 for \s\ < 1 
f * ( x ) = V * i ( x ( i ) ) , where ВД := { \s\ i+ i i — 1 . . l 

^ 1 T T T + 2JTT) f o r И > 1 . 

Writing e-լ for the i-th unit vector in l2, we obtain 

2 i + i i — 1 
f * ( 2 e i ) = + - _ _ - _ 

i + 1 2(i + 1 ) i ^ i 

f * l2 
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4.1. E-Spaces . Following Holmes [26], we summarize a number of characterizations 

of a particular class of Banach spaces, the so-called E-spaces, where all convex norm-

minimization problems are strongly solvable. 

Definition 9. Let (Q.,d) be a metric space and Ո0 be a subset of Ո. Ո0 is called 
approximateely compact, if for each x e Ո every minimizing sequence in Ո0 (i.e. 
every sequence {xn} С Q.0, for which d(x,xn) ^ d(x, Ո0) holds) has a point of 
accumulation in Ո0. 

X X 

weakly closed subset is approximatively compact. 

Such spaces were originally introduced by Fan and Glicksberg [18]. 

The next theorems can be found in [26]: 

X X 

convex and from xn, x e S(X) with xn ^ x it follows that \\xn - x\\ ^ 0. 

The E-space property is closely related to the Kadec-Klee property: 

Definition 11. The Banach space X has the Kadec-Klee property, if from xn ^ x 
and \\xn\\ ^ \\x\\ it follows that \\xn - x\\ ^ 0. 

A strictly convex and reflexive Banach space with Kadec-Klee property is thus an 

E-space. The E-space property can be characterized by the strong differentiability of 

the dual space. 

X X * 

Frechet-differentiahle. 

X 
set К the problem min(\\ • \\,K) is strongly solvable. 

5. F R E C H E T - D I F F E R E N T I A B I L I T Y AND L O C A L UNIFORM 

C O N V E X I T Y IN ORLICZ S P A C E S 

In this section we prove that in a reflexive Orlicz space strong and weak differentia-

bility of Luxemburg and Orlicz norm, as well as strict and local uniform convexity 

coincide. 
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5.1. Frechet-Dif ferent iabi l i ty of M o d u l a r a n d L u x e m b u r g norm. If Փ is dif-

ferentiable, then f ф and || • ||(Ф) are Gateaux-differentiable and for the Gateaux-

derivatives we have (s. Lemma 1): 

< ( f Ф ) ' ( хо ) , х ) = f x Ф / ( x o ) d / , 
JT 

and (see (3.4)) 

/11Xn11' x \ _ ( f i ( y o ) > x ) 
\ " Х 0 " ( Ф > X ՜ ( f i Ы ) у ) ' 

where y0 : = х 0 / | х 0 | ( Ф ) for x 0 = 0. If the conjugate function of Փ satisfies the Д 2 -

condition we can prove the continuity of the above Gateaux-derivatives. 

The following theorem was proved in a different way by Krasnosielskij [47] for the 

Lebesgue measure on a compact subset of the R n . 

T h e o r e m 25. Let (T, S , /л) be a a-finite measure space, Փ a differentiable Young 

function. If its conjugate function Փ satisfies the Д'2-condition, then the Gateaux-

derivatives of f Ф and, || • ||(ф) are continuous mappings from 

М ф ( / ) resp. М ф ( / ) \ { 0 } to Լփ(/). 

Proof: Let (xn) x=1 be a sequence in М ф ( / ) with l i m x n = x 0 . First we show-

that in Լփ ( / ) the relation limn — T O Փ / (x n ) = Փ / (x 0 ) holds. As Փ satisfies the Д 2 -

condition, convergence in the norm is equivalent to convergence w.r.t. the modular 

f փ (s. Theorem 5), i.e. we have to show that 

lim f փ ( Փ ' ^ ո ) - Ф ' Ы ) = 0 . n— 

Let now T be represented as a countable union of pairwise disjoint sets Ti, i = 1, 2 , . . . , 

of finite positive measure. 

We define 
к 

Sk : = U Ti, Sk : = {teT | |x0(t)| < k}, Dk : = Sk Ո Sk, 
i=1 

and finally 

Rk : =  T \  D k • 

We show that JRk x^'(x0)d/ 0. As |x0(t)| > k on Rk we obtain: 

ж > x^'(x0)d/ > x^'(x0)d/ > /(К^кФ' (k). 
JT J R k 

Since кФ'(к) > Ф ( к ) ^ , it follows that / ( R k 0 . As Dk с D k + 1 , the sequence 

{ x 0 Ф / ( x 0 ) x в k } converges monotonically increasing pointwise almost everywhere to 
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x0&(x0). With JDk x^(x0)d—^^ fT x0Ф'(x0)dթ it follows that JRk x0^'(x0)d-k^ 

0. For given e > 0 we now ehoose к large enough to have 

(5.1) / x0&'(x0)di < e and -(Dk) > 0-

j R k 

As Ф' is uniformly continuous on I := [-к - 1,к + 1], there exists а б e (0,1), such 

that 

for |s - r\ < б and s , r e I. 

According to [47], p. 71, the sequence {xn}'^'=1 converges to x0 in measure, i.e. there 

is a sequence of sets (Qn)^=1 with l imn^T O -(Qn) = 0, such that 

lim sup |x0(t) - xn(t)\ = 0-
П^Ж tET\QN 

In particular there is a natural number N, such that for n > N 

\xn(t) - x0(t)| < б for t e T \ Qn 

and 
e 

(5.2) i(Qn) < 
кФ'(к)' 

Thus we obtain 

f Փ(Փ'(xn) - Փ'(xo))d- <( - D - ) ) d-
JT\(QnURk) JT\(QnURk) V \ - ( D k ) / J 

( , = -( T\(Qn  U Rk) 
( 5 ' 3 ) = -(Dk)  e < e -

According to [82] the derivative of a continuous convex function is semi-continuous 

if the sequence {wn}^==1 converges to w0 in { Փ ^ ^ } c o n v e r g e s 

*-weak to Փ /(w0). According to the uniform boundedness theorem of Banach (s. e.g. 

[31]) the sequence { Փ ^ ^ } i s bounded in Լփ(—), and we obtain 

/ w^ /(wn)d-- woՓ /(wo)d-
JT JT 

= (wn - w0^(wn)d- + / wo (Փ '(wn) - Փ ^ 0 ) ) d - -
T T 

By Holder's inequality 

Փ /(wn)d- - woՓ /(w0)d-
T 

/ WnՓ (wn 
T 

< \\wn - wo\\ (փ) \\Փ /(wn) \ \ փ 

+ I wo(Փ /(֊>^Ո) - Փ /^0))d-
\ T 
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where the last expression on the right hand side converges to zero because of the weak 

convergence of Փ'(՜աո) to Ф'(ад0). In this way we obtain the relation 

(5.4) lim / w^ (wn)d/ = w^'(w0)d/ . 
n—™ JT JT 

If wn : = XQNURK • xn, w0 : = XRk • xo, and Vn : = XQnuRk • xo- Then we obtain: 

wn - w0 = wn - Vn + Vn - w0 = (xn - x0)XQnURk + x 0 (XQnuRk - XRk). 

We have XN - x 0 | > XN - X^XQ^J^, SO using the monotonicity of the Luxemburg 

norm, we obtain xn - xoXQnuRk 0՛ Using (5.2) 
£ £ 

К  - w ° =  XQN\RK | x o | <  XQN •  k < ф / Щ < Ф к / к Г—О 0 , 

as Փ is in particular finite. We conclude that wn w0. Taking into account 

/ x^'(xn)d/ - xoФ /(xo)dл + xoФ /(xo)dբ - xoФ /(xo)d/ 
JQ^UR, J R, J r , J QnURk 

= ( I (wn)d/ - J woФ / (wo)d^ + ^J woФ /(wo)dբ - J VnФ /(vn)dբ Sj 

it follows using (5.4) 

lim I / xnФ /(xn)dթ - x0Ф /(x0)dբ) = 0. 
n — x \jQnURk JQnURk J 

Д2 Փ 

ф(ф / (xn) - Ф /(xo)) < 1 (Փ(2Փ /(xn)) + Փ(2Ф /(xo)) 

< ֊ ( ф ( ф / ( x n ) ) + ф(ф /(x0)) 

< ֊ ( x n Ф / ^ п ) + xoФ /(xo)). 

Therefore for n sufficiently large 

f Փ ( ф / ( x n ) - Ф / (xo) )d/ 
jQNURK 

< 72 ( [ xnФ /(xn)dբ + f xoФ /(xo)dբ\ 
2 \jQNURK JQnURk J 

< ճ( x^(x0)d/ + Л . 

\JQNURK J 

Using (5.1) and (5.2), we obtain 

/ xoФ /(xo)dл = xoФ /(xo)dբ + xoФ /(xo)dբ < 2e. 
J QNUR, JRK J QN\R, 

Together with (5.3) the first part of the statement follows. 
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Let now x0 G МФ(բ) \ { 0 ^ d (xn)?= i be a sequence that converges in МФ(բ) to 

x0. 

Writing yn := Хп/||Хп||(ф) for n G N U {0 } , then (yn)^L 1 converges to y0, i.e. 

l imn^T O Ф'(уп) = Ф'(у0) and, because of (5.4) we get 

R e m a r k 3. To prove in a similar way the above Theorem, 25 for the sequence space 

1Ф, only the A^-condition for Փ is required. 

R e m a r k 4. If T in Theorem 25 has finite measure, only the A??-condition for Փ is 

needed. 

Proof: Փ is differentiable, hence Փ is strict convex, and in particular definite. 

Let now Փ(2տ) < ЛФ(в) for all s > so > 0. For Dk := S'k and к large enough 
£ 

»( RK) < 2 W 2 S 0 7 T I ) 

furthermore fRk х0Ф'(x0)d^ < £ and Ф(2s0)/kՓ'(k) < 1. 

If we set 

Pn : = {t G Qn U Rk \ \Ф'(ХПШ < s o } , 

Pn : = {t G Qn U Rk \ \Ф'(хо(Щ < so}, n 

n 

< շ №(2so)(^(Pn) + n(P'n)) 
1 

This completes the proof. 
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Now our purpose is to demonstrate that for a finite, not purely atomic measure 

space the following statement holds: if (Լփ(ր}, || • ||(փ)} is Frechet-differentiable, then 

(Լփ(ր}, || • ||(Փ)} is already reflexive. 

L e m m a 7. Let (T, E, բ} be a a-finite, not purely atomic measure space. If (Լփ(բ}, || • 

||(փ)) is Frechet-differentiable, then Փ is finite. 

Proof: Let Փ not be finite, then Փ' is bounded on R, i.e. there are positive numbers 

a, b, c such that a(s — c} < Փ(տ} < bs for s > c.IfT has finite measure, then Theorem 

1 implies 

(1) Լփ(ր} = Լ 1(ր}, and the norms || • ||1 and || • ||(Փ) are equivalent; 

(2) Լփ(բ = Լ^(բ}, and the norms || • ||TO and || • ||փ are equivalent. 

Clearly Փ satisfies the A^-condition, he nee ձ4փ(ր} = Լփ(ր} (see Theorem 4). 

Therefore 

(Լ փ (^ } , || • | փ ) = ( Լ փ Ы , || • | (Փ ) ) * . 

Let now A be the set of atoms in T and let Л : = ц(Т \ A}, then we choose disjoint 

sets Gk in T\A with n(Gk} = 2 - k - 1 Л for k = 1 , 2 , . . . [85]. We take so e R + large 

enough 

Փ I ֊ 7 ֊ — I > 0, ^ е 2 ф - 1 ( ( I + KA})-1) 

and define the functions xn on T by 

X n ( t } : = m — 1 }nso for teGK,K = 1 , շ , . . . ,  

n 1 

for n = 1 , 2,... and put 

x ( t} : ( o for teGK, k = 1 , 2 , . . . , 
1 

The sequence {xn} converges to x 0 in the Լ1-ոօրտ. To see this we observe 

/

Ж ~ Ж , 1 N Ո 

|xo — xN\dբ = ^ 2 |xo — xN\dբ = Ляо ^ ^ 2 - k - 1 ( 1 — . k = 1 G k k = 1 ՝• ' 

Given e > 0, we choose a natural number r such that J2'^=R+1 2 - k - 1 < e/2. Then =r+ 

J \xo — xnW < Л я ^ — ^ ] է 2 - k - 1 + < яоЛе 

for sufficiently large n, hence xn ^ xo in the Լ1-ոօրտ. 
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Thus the number sequence {| | жп 11 (Փ)} conwrges to У xo У (Փ). Sinee xo is the characte-

ristic function of T\Wf= 1 we obtain, because of ц(Ок) = ^/2, 

ь ы 1 

Փ -Վ (А + KA)) - 1У 

We now set уп ՝•= х п / | х п | ( ф ) for n = 0,1,2, The Gateaux-gradient of || • |(ф) at 

x n IS 
yn 

f T УпФ'(Уп) dԲ՛ 

We first consider the sequence {Ф' (уп)}?==1 in Լ?(բ). Because of the monotonicity 

of Ф' and the choice of s o , for n sufficiently large we obtain 
\\Ф'{Уп) - Ф ' { У o ) L > ess sup |Ф'(уп{*)) - Ф'Ы^) | 

teGN 

Ф՛ ( { 1 - U Ф՛ ( ք ֆ ւ , > օ. 
1 х п у ( Ф ) J V ^ ^ Փ ) 

But 

/ УпФ'{Уп)(3^ \ converges to / yoФ'(yo)dբ, 
IT ) n= i JT 

because apparently { Ф ' ( у п ) \ п G N } is uniformly bounded in Land we have 

/ Уo (Ф'{Уn) - Ф'{yo) )dբ = i Уo (Ф'{Уп) - Ф'{Уo))d^ 
JT JT \ ( = 1 G k 

= Ы Ы Ы ф )  - Խ Խ ) ) ) ե  + ՚ 

Thus the Gateaux-derivative of || • ||(Փ) is not continuous in yo and therefore || • |(Փ) 

T 

To T 

If £0 is the subalgebra of that consists of the elements of £ contained in To, 

then we denote the restriction of ^ to £ 0 by բ0. In the same way as above we can 

construct a sequence (уп) of elements of the unit sphere of ԼՓ(ր0) converging to yo 

in ԼՓ(բ0), for which the sequence { Ф ' ( У п ) } does not converge to Ф'(УО) in Լ^(բ0). In 

fact ԼՓ(ր0) and Լ փ (ր0) are subspaces of ԼՓ(ր) and Լ փ (ր) resp., so the restriction of 

the Luxemburg norm of ԼՓ(բ) to ԼՓ(ր0) and of the Orlicz norm of Լ^(բ) to Լ^(բ0) 

is equal to the Luxemburg norm on ԼՓ(ր0) and equal to the Orlicz norm on Լ^(ր0) 

resp. Thus for Փ not finite and ц(Т) = ж the Luxemburg norm || • ||(Փ) is also not 

Frechet-differentiable on ԼՓ(ր) \ {0} , and the proof is complete. 

T h e o r e m 26. Let (T, բ) be a a-finite, not purely-atomic measure space. If (ԼՓ(բ), 

|| • H(^)) is Frechet-differentiable, then Ф satisfies A??-condition. 

CXJ 
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Proof: Assume that Փ does not satisfy the A^0-condition, է hen Լ փ contains accor-

ding to Theorem 3 a subspace, which is isometrically isomorphic to Buէ I х is 

not Frechet-differentiable, because otherwise t1 (according Anderson's Theorem 23) 

is an E-space, hence in particular is reflexive. We came to a contradiction. 

T h e o r e m 27. Let (T, E, /} be a finite, not purely-atomic measure space. 1ք(Լփ(բ}, | 

||(փ)} is Frechet-differentiable, then (Լփ(/}, || • ||(փ)} is reflexive. 

Proof: According to Theorem 26 Փ satisfies the A!f-condition. Then, due to Theo-

rem 4 we have Լ փ ( / } = ձ4փ(ր}. Therefore, if || • ||(փ) is Frechet-differentiable on 

Լփ(ր} \ {0 } , then Փ is finite, according to Lemma 7, hence by Theorem 8 ( М Ф ( / } , || • 

||փ}* = ( Լ փ ( / } , ||^|(փ)} and thus, according to the theorem of Anderson 23, ( М Ф ( / } , | 

||փ} is an E-space, hence in particular reflexive. Using Holder's inequality we obtain 

( Լ փ ( / } , || • ||փ) С ( Լ փ ( / } , || • |(փ))փ = ( М Ф Ы , || • ||փ) 

and so we conclude Լ փ ( / } = МФ (ր}. 

We are now in the position to characterize the Frechet-differentiable Luxemburg 

norms. 

Def ini t ion 12. Let A be the set of atoms. We call the measure space (T, E, /} 

essentially not purely-atomic, if /(T\A} > 0, and for /(T} = ж holds /(T\A} = ж. 

T h e o r e m 28. Let (T, E, /} be a a-finite, essentially not purely-atomic measure space, 

and ( Լ փ ( / } , || • ||(փ)} be reflexive. Then the following statement are equivalent 

(a) ( Լ փ ( / } , || • ||(փ)) is flat convex; 

(b) քփ is continuously Frichet-differentiable on Լ փ ( / } ; 

( c ) || • || (փ) i s continuously Frichet-differentiable on Լ փ ( / } \ { 0 } ; 

Փ 

Proof: a ) ^ b) and c). According to Theorem 17 flat convexity for a not purely-

Փ 

Gateaux-differentiability of || • ||(փ). 

By Theorem 9, reflexivity of (Լփ(ր}, || • ||(փ)) implies A 2 or A X condition for Փ 

Փ T Լփ  

(closed) subspace, isomorphic to I х , which according to [25] is also reflexive, meaning 

a contradiction. We conclude, using Theorem 4 ձ4փ(ր} = Լփ(ր}. 
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By A 2 or A ? for Փ and Theorem 25 and Remark 4 it follows that the Gateaux-

derivative of f Փ is continuous on ձ4Փ(ր), and as in Theorem 25, the corresponding 

property for || • ||(Փ) holds. By [66] continuous Gateaux-differentiability and continuous 

Frechet-differentiability are equivalent. 

(a) ^ ^ (d). According to Theorem 17 flat convexity for a not purely atomic 

Ф 

(b) (a). Due to Theorem 14 the level set Sf փ (1) is flat convex. On the other 

hand Sf փ (1) is identical to the unit s phere of Мф = ԼՓ. Henc e (ԼՓ, || • ||(Փ)) is flat 

convex. 

(c) (a). If || • ||(Փ) is Frechet-differentiable on ԼՓ(բ) \ { 0 } , then (ԼՓ(բ), || • | | ( Փ ) ) 

is flat convex due to Mazur's Theorem 16. 

For the sequence space 1Փ the above theorem can be proved in somewhat weaker form. 

T h e o r e m 29. Let the Young function Ф be finite and 1Փ be reflexive. Then the 

following statements are equivalent 

(a) (1Փ, || • | | ( Փ ) ) is flat convex; 

(k) || • Ц(Ф) is FrSchet-differentia,ble on 1Փ \ { 0 } ; 

(с) Ф is differentiable for all s with \s\ < Ф - 1 ( 1 ) . 

Proof. The equivalence of (a) and (c) follows from Theorems 18 and 10. Let now 

(1Փ, || • ||(Փ)) be flat convex. The left-sided derivative Ф- of Ф in Ф - 1 ( 1 ) is finite. If 

we continue Ф - in a continuous, linear, and strictly increasing way beyond Ф - 1 ( 1 ) , 

and denote that primitive function which is zero at the origin by Ф, then Ф is a 

differentiable Young function. Apparently 1Փ = 1Փ and || • 11(ՓՓ) = || • ||(Ф)- К Փ the 

convex conjugate of Ф then by construction ՛Փ is finite. Ф and hence Ф satisfies the 

A2-condition, because otherwise (1Փ, || • ||(Փ)) contains, according to the theorem of 

Lindenstrauss-Tsafriri a subspace isomorphic to in contradiction to the reflexivity 

of (1Փ, |ի | | ( Փ )). It follows է hat тФ = 8 we have (1Փ, || Հկ )* = (1ֆ, || • 

||(փ)^. ^ ^ e equivalence of the norms implies that (1Փ, || • ||ф) is also reflexive. Hence 

(lФ, || • ||(փ))> the dual space of a reflexive space, is also reflexive. As demonstrated 

above the A°-condition for Փ follows. Using Remark 3 we obtain (b). By Theorem 

15 a) follows from (b). 

5.2. Frechet-di f ferent iabi l i ty and local un i form convexity of Orlicz space s . 

We need a characterization of strict convexity of the Luxemburg norm on ձ4Փ(ր). 
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T h e o r e m 30. Let (T, / ) be a not purely atomic measure space and let Փ a finite 

Young function. Then Փ is strictly convex, if and only if ( М ф ( / ) , || • ||(փ}) is strictly 

Proof: Let A be the set of atoms of T. If Փ is not strictly convex, then there are 

different positive numbers s and t, such that 

' s + Л 1 
"2" 

We choose pairwise disjoint sets T1,T2,T3 G £ of finite measure with 

փ ( = 2 (Փ(տ) + Փ(է)). 

0 < / ( T i ) = / ( T 2 ) < m m ' / ( T \ A ) 1 

V 3 '2(Փ(տ) + Փ(է)) 
and 

0 < / ( T s ) < /(T \ A) ֊ 2 / (Ti ) . 

We put 
: = Փ - ւ ( 1 ֊ /(^)(Փ(տ)+Փ(է))\ 
՝ V /(T3) ) . 

The functions x : = sxTi + txr2 +  иХт3 and y : = t\Tl + SXT2 +  иХт3 are then elements 

of the unit sphere, because we have 
f Փխ^/ = / (Tl )Փ ( s ) + /(^)Փ(է) + /(T3)Փ(ս) 

JT 

= / ( T 2 ^ ( s ) + / ( T i ^ ( t ) + /i,(T3Mu)= f ФШ/ = 1 . 
JT 

Now, the properties of s, t, T1 and T2 imply 

f ф ( d / = / (T i )Փ ( ^ + / (T 2 )Փ ( ^ + ^)Փ(ս) = 1. 

Conversely, let Փ be strictly convex, and x 1 ; x 2 be elements of the unit sphere 

||(xi + х2)/2|(ф} = 1 Then 

1 = J Ф(x 1 )d / = J Ф(x2)d/ = J Փ ^ d / . 

Փ 

Ф((xl + x2)/2) ֊ Ф(xl) ֊ Փ ^ 2 ) = 0 

xi = x2 

Luxemburg norm is strictly convex on Мф(/) . 

Corollary 2. Let (T, £ , / ) a not purely atomic measure space and Փ be a finite Young 

function. If f փ strictly convex, then Փ is strictly convex (because then also Мф is 

strictly convex). 
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The next theorem (compare with [30] p. 350) describes the duality between strict 

and flat convexity: 

T h e o r e m 31. If the dual space X* of a normed space X is strict or flat convex, then 

X itself is flat or strict convex respectively. 

X 

X 

R e m a r k 5. f[31]J Let Փ : R ^ R be convex with Փ(0) = 0 and (X, || • ||) be a normed 

space. We consider the convex function f : X ^ R, given by f (x) := Փ(|խ||). Its 

conjugate f * : (X*, || • ||d) ^ R is given by 

Conjugate Young functions lead to conjugate modulars as is stated in the next 

theorem (see [39]): 

T h e o r e m 32. Let Փ be a Young function and Փ its conjugate. Then for arbitrary 

x € ԼՓ(բ) 

yeb^(^) 

The modulars f ф is bounded if Փ satisfies a A2-conditions (see [39]): 

T h e o r e m 33. If Փ satisfies Д 2 condition (or for /л(Т) < ж էհe Aշ° condition), then 

f Փ : ԼՓ(բ) ^ R is a bounded function. 

Proof: Let Փ satisfy the Д 2 condition, M > 0 and x € К(Ф)(0,М). If 2n > M, 

Let now T be of finite measure and Փ satisfy merely the Д22 condition. We set 

f *ы = Ф*(|ыи), 

in particular 

f Փ ( ^ ) = sup 

then 

to obtain 
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A similar statement holds for sequence spaces: 

T h e o r e m 34. If Փ is finite and, Փ satisfies the Д 0 condition, then f ф : £ф ^ R is a 

bounded, function. 

Proof: Let Փ satisfy the Д 0 condition от every interval [0, a] let M > 0 and 

x G К(Ф}(0,М). Then Е г ? = 1 Ф(xi /M) < 1 and hence \xi\/M < Փ - 1 (1). Let further 

2" > M, then for a : = 2 " Փ - 1 ( 1 ) 
/ 2" 

բՓ / ™ \ ^ քФ 
f  Փ(^ < f Վ MM x) < f £ ) <л" M 

and the proof is complete. 

We are going to characterize reflexive and locally uniformly convex Orlicz spaces 

w.r.t. the Orlicz norm. 

T h e o r e m 35. Let (T, £ , / ) a Ծ-finite, essentially not purely atomic measure space 

and ԼՓ(/) be reflexive. Then the following statements are equivalent: 

Փ 

(b) ( Լ Փ ( / ) , || • ||ф) is strictly convex; 

(c) || • ||ф is locally uniformly convex; 

(d) f ф is locally uniformly convex. 

Proof: The reflexivity implies in particular that Փ and Փ are finite. 

(a) b): If Փ is strictly convex, then its conjugate Փ is differentiable. Then due 

to Theorem 17 ( Լ փ ( / ) , || • ||(Փ}) is flat convex, hence ( L Ф ( / ) , || • ||ф) is strictly convex 

(see Theorem 31). 

(b) ^ ^ (c): If ( L ^ / ) , || • ||ф) is strictly convex, then ( Լ փ ( / ) , || • ||(փ)) is flat convex (see 

Theorem 31). Hence due to Theorem 28 || • ||(Փ}/2 is frechet-differentiable. As || • ||ф/2 

is the conjugate function of || • | | ( փ շ } / 2 (see Remark 5), then, according to Theorems 

19 and 21 || • ||ф is locally uniformly convex. Apparently (c) follows immediately from 

(b). 

(b) ^ ^ m flat convexity of ( Լ փ ( / ) , || • ||(Փ}) and reflexivity it follows by 

Theorem 28 that f փ is frechet-differentiable. Փ and Փ satisfy the Д 2 от the Дх  

/ ( T) 

Thus f փ and its conjugate f ф are bounded (see Theorems 32 and 33). Due to 

Theorems 19 and 21 this implies the local uniform convexity of f ф . 

(d) (a): This follows immediately from Corollary 2. 
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R e m a r k 6. Milnes in [60], page Ц82) gives an example of a reflexive and strictly 

convex Orlicz space w.r.t. the Orlicz norm, which is not uniformly convex (compare. 

For the sequence space 1Փ the above theorem can be proved in a somewhat weaker 

version. 

T h e o r e m 36. Let Փ a,nd, Փ be finite and let 1Փ be reflexive. Then the following 

statements are equivalent: 

(a) (1Փ, || • ||ф) is strictly convex; 

(b) || • ||ф is locally uniformly convex. 

Proof: As in Theorem 35 by use of Theorem 29. 

5.3. Frechet-Dif ferent iabi l i ty of the Orlicz n o r m a n d local un i form convexi-

ty of L u x e m b u r g norm. Using the relationships between Frechet-differentiability, 

local uniform convexity and strong solvability presented in the previous section, we 

describe the Frechet-differentiability of the Orlicz norm. 

T h e o r e m 37. Let (T, ՝ £ , բ ) be an essentially not purely atomic, a-finite measure 

space, and let ԼՓ(բ) be reflexive. Then the following statements are equivalent: 

(a) (ԼՓ(բ), || • ||ф) is flat convex; 

Ф 

c) || • ||փ is Frechet-differentiable on ԼՓ(բ) \ {0},՛ 

(c) || • ||ф is Frechet-differentiaЫе on ԼՓ(բ) \ {0 } . 

Proof: (a) (b): Let Փ be the conjugate of Փ. If ( Լ Փ ( ր ) , || • ||Փ) is flat convex, 

then (Լփ(բ), || • ||( փ )) is strictly convex. Due to Theorem 30 Փ is strictly convex and 

Ф 

(b) (c): from the differentiability of Փ it follows by Theorem 28 that f ф is Frechet-

f 

follows. Strong and weak sequential convergence agree on the set S := {x | f փ (x) = 1} 

because from xn ^ x for xn, x € S it follows for x* € df փ (x): 

0 = f փ ( x n ) - f փ ( x ) > (xn - x,x*) + T(իո - x||(փ )), 

where T is ^^e convexity module of f փ belonging to x and x*, and thus xn ^ ^ s S 

is the unit sphere of Լփw.r.t. the Luxemburg norm, (Լփ(բ), || • ||(փ )) is an E-space 

according to Theorem 22, hence || • ||(փ) has a strong minimum on every closed convex 



60 P E T E R K O S M O L AND D I E T E R MULLER-WICHARDS 

set due to Theorem 24. Apparently, this also holds for || • ||(Փ}/2. Theorems 19 and 21 

then imply the Frechet-differentiability of || • ||ф/2 and hence of || • ||ф in Lф(ր) \ {0} . 

(c) (a): Follows from the theorem of Mazur, and the proof is complete. 

It is now a simple task to characterize the locally uniformly convex, reflexive Orlicz 

spaces w.r.t. the Luxemburg norm. 

T h e o r e m 38. Let (T, / ) be Ծ-finite, essentially not purely atomic measure space 

and, LФ(/) be reflexive. Then the following statements are equivalent: 

Փ 

(b) ( Х ф ( / ) , || • ||(ф}) is strictly convex; 

( c) || • ||(ф} locally uniformly convex. 

Proof: Because of М ф ( / ) = Lф(ր) the equivalence of a) and b) follows from 

Theorem 30. If ( Լ ^ / ) , || • ||(ф}) is strictly convex, then ( Լ փ ( / ) , || • ||փ) is flat convex 

and therefore due to Theorem 37 || • ||փ is Frechet-differentiable. Theorems 19 and 21 

now imply (c). 

(c) (b) is obvious. This completes the proof. 

The theorems corresponding to Theorems 37 and 38 for 1ф can be stated in the weaker 

form. 

T h e o r e m 39. Let 1ф be reflexive, Փ differentiable and Փ finite, then || • ||ф is Frechet-

differentiable on 1ф \ {0 } . 

Proof: Because of Theorem 10 Փ satisfies the Д 0 condition. Hence f ф is, due 

to Remark 3, Frechet-differentiable. The remaining reasoning follows the lines of 

Theorem 37, (b) (c). 

R e m a r k 7. If the conditions of Theorem, 39 are satisfied, then strong and weak 

differentiability of the Orlicz norm on 1ф agree. 

T h e o r e m 40. Let 1ф be reflexive, Փ be strictly convex and Փ be finite. Then || • ||(ф} 

is locally uniformly convex. 

Proof: Փ is differentiable and hence || • ||փ according to Theorem 39 Frechet-

differentiable. By Theorems 19 and 21 the statement follows. 
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5.4. S u m m a r y . We now describe Frechet-differentiability and local uniform conve-

xity by a list of equivalent statements. 

T h e o r e m 41. Let (T, S, /л) be a a-finite essentially not purely atomic measure space, 

Փ be a Young function and Փ its conjugate, and ԼՓ (л) be reflexive. If К is a closed 

convex subset of Լփ (л), then the following statements are equivalent: 

Ф 

(b) (ԼՓ(л), || • ||ф) is flat convex; 

(c) (ԼՓ(л), || • ||(ф)) is flat convex; 

(d) || • ||Փ is continuously Frichet-differentiable on ԼՓ(л) \ {0},՛ 

( e) || • ||(Փ) continuously Frichet-differentiable on ԼՓ(л) \ {0},՛ 

(f) fփ is continuously Frichet-differentiable on ԼՓ(л); 

Փ 

(h) Լփ(л), || • ||փ) is strictly convex; 

(i) Լփ(л), || • ||(փ)) is strictly convex; 

(j) || • |փ is locally uniformly convex; 

(k) || • ||2փ) is locally uniformly convex; 

(1) f փ is locally uniformly convex; 

(m) || • ||փ has a strong minimum on K; 

( n ) || • ||(փ) has a strong minimum on K; 

(o) f փ has a strong minimum on К; 

(p) Լփ(л), || • ||(փ)) is an E-space; 

(q) Լփ(/), || • ||փ) is an E-space. 

Proof: (a), (c), (e) (f) are equivalent according to Theorem 28; (a), (b), (d) 

according to Theorem 37; (g), (h), (j), (1) according to Theorem 35; (g), (i), (k) 

according to Theorem 38. The equivalence of (a) and (g) is well known, the equivalence 

of (j) and (m), (k) and (n) as well as of (1) and (o) follow from Theorem 21. Equivalence 

of (m) and (q) and of (n) and (p) follows from Theorem 24, and the proof is complete. 

T h e o r e m 42. Let Փ be differentiable, Փ finite and let 1Փ be reflexive. Then the 

following statements hold: 

(a) || • ||ф is continuously Frichet-differe ntiable on 1Փ \ {0},՛ 

(K) || • ||(Փ) is continuously Frichet-differe ntiable on 1Փ \ {0},՛ 

(c) f ф is continuously Frichet-differentiable; 

(d) || • ||փ is locally uniformly convex; 
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( e) || • ||(փ} locally uniformly convex; 

(f) f փ is locally uniformly convex; 

(g) Ц • ЦФ has a strong minimum on K; 

(h) || • ||(փ} has a strong minimum on K; 

(i) f փ has a strong minimum on К 

for every closed convex subset К of 1Փ. 

Proof: (b) follows from Theorem 29, (d) by Theorem 40, (a) by Theorem 39. From 

reflexivity we obtain using Remark 3 (namely, its statement (c)) and using Theorems 

19 and 21 thereby (f). Finally (e) follows from (a). The statements (g), (h) and (i) 

follow from Theorems 19 and 21. 

6. A P P L I C A T I O N S 

We discuss 

• Tychonov-regularization: this method was introduced for the treatment of ill-

posed problems. The convergence of the method was proved by Levitin and 

Polyak for uniformly convex regularizing functionals. We show that locally 

uniformly convex regularizations are sufficient for that purpose. As we have 

given a complete description of local uniform convexity in Orlicz spaces we 

propose such regularizing functionals explicitly. 

• 

(e.g. in FEM-methods). It is well known that the Ritz procedure generates 

a minimizing sequence. Actual convergence of the minimal solutions on each 

subspace is only achieved if the original problem is strongly solvable. 

• 

development in recent years (see e.g. Temlyakov). The aim is to arrive at a 

'compressed' representation of a function in terms of its dominating "frequen-

cies". 

In the convergence proof of the Tychonov regularization method we make explicit use 

of local uniform convexity. The convergence of the Ritz method follows from strong 

solvability, whereas the convergence proof of the greedy algorithm follows from the 

Kadec-Klee property. So three different aspects of E-spaces come into play. 

6.1. R e g u l a r i s a t i o n of Tychonov T y p e . 
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L e m m a 8. Let X be a Banach space, f : X ^ M a continuous locally uniformly 
convex function, then for all x,y G X, all x* G df (x) and all y* G df (y).-

Tx,x* (Ух - y | | ) < { x - y,x* - y*) 

where Tx X* denotes the convexity module belonging to f at x, x*. 
f 

TX,X*(||x - y y ) + {y  -  x , x * ) <  f ( y ) -  f ( x ) . 

On the other hand the subgradient inequality yields: {x - y, y*) < f (x) - f (y), i.e. 

TX,X*(||x - y y ) +  {y  -  x , x * ) <  {y  -  x ,y*) 

as claimed. 

T h e o r e m 43. Let X be a reflexive Banach space and f a,nd, g be continuous, Gateaux-

X f 
bounded conjugate f * and S : = M(g,X) = 0. 

Let now an be a positive sequence tending է о zero and f n := anf + g. Let finally xn 

be the (uniquely determined) minimal solution of f n on X. Then the sequence {xn} 

f S 

fn fn*  

M ( f n , X ) consists of the unique element xn. 

For x G S, because of monotonicity of the derivative of g 

{xn - x, g'(xn) - g'(x))^ + a>n(xn - x, f '(xn)) 

= {xn - x, anf '(xn) + g'(xn) - g'(x)) = 0. 
>0 

It follows 

{x n  x , f  ( x n )) < 0. 

For x G S arbitrary 

0 > fn (xn) - fn(x) = g(xn) - g(x) + an(f (xn) - f (x)) > an (f (xn) - f (x)). 

This implies f (xn) < f (x), hence xn G Sf (f (x)) for all n G ^ ^ s f* is bounded, it 

follows according to Theorem 4 that the sequence {xn} is bounded. Let now (xk) be 
x 0 



64 P E T E R KOSMOL AND DIETER MULLER-WICHARDS 

First we show that g'(x0) = 0, i.e. x0 e S . For y e X 

(y - xk,g'(y) - g'(xk)) + ak (xk - y, f(xk)) ՝ v ՛ 
>0 

=  (y  -  xk ,g' (y )  -  fk( xk՝ ) ) =  (y  -  xk ,g' (y ) ). 
=0 

For fixed y the expression (xk - y, f'(xk)) is bounded from below 

( xk  - y,  f ' ( x k ) ) = (xk  - y,  f ' ( x k )  -  f ' ( y ) ) + ( x k  - y,  f ' ( y ) )  
՝ ' 

>0 

> - u 'muxk - yn> C. 

Hence we obtain 

-Cak < ak(xk - y, f '(xk)) < (y - xk,g'(y)). 

On the other hand the weak convergence of xk ^ x0 implies: 

(y  -  xk, g' (y)) t—> (y  - x 0, g' (y )) k— 

and thus for all y e X 

(y  -  x0,g' (y)) > 0-

Let now t > 0,z e X ^e arbitrary and y = x0 + t z Then the continuity of t i—> 

(z, g'(x0 + tz)) = dg(x0 +tz) implies 0 < (z, g'(x0 +tz)) -—0(z, g'(x0)), hence g'(x0) = 

0, i.e. x0 e S. 

Now we show the strong convergence of (xk) to x0. Due to Lemma 8 the weak 

convergence and inequality (6.1) yield 

Tx0,f'(^0)^x0 - xk!) < (x0 - xk, f '(x0) - f'(xk)) 

= (x0 - xk, f '(x0)) + (xk - x0, f '(xk)) 
՝ v ' 

<0 
< (x0 - xk, f'(x0)) ^ 0. 

Hence xk ^ x0 and thus also xn ^ x0. 

x0 f S 

semi-continuity [82] of f' it follows with inequality (6.1) for x e S 

0 < (x - xn, f'(xn)) ^ (x - x0, f '(x0)). 

By the characterization theorem of convex optimization [31] the assertion of the 

theorem follows. 
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R e m a r k 8. the proof of above theorem easily carries over to semi-continuous mono-

tone operators (compare [43]J. 

T h e o r e m 44. Let (T, S , /л) be a Ծ-finite, essentially not purely-atomic measure space, 

Լ փ ( / ) be reflexive, and Փ be strictly convex and differentiable. Let either f : = f փ or 

f : = 11I ՚ 11(փ)  o r f : = 11I ՚ IIՓ  a nd g : Լ Փ ( / ) ^ M к convex, continuous, and 

Gateaux-differentiable and S : = M(g, Լ փ ( / ) ) = 0. 

Let now an be a positive sequence tending է о zero and f n : = anf + g. Let finally 

xn fn Լփ(ր). Then the sequence 

{xn} converges to the(uniquely determined) minimal solution of f on S. 

Proof: By Theorem 43 in conjunction with Theorem 41. 

6.2. R i t z ' s M e t h o d . The following method of minimizing a functional on an incre-

asing sequence of subspaces of a separable space is due to Ritz (compare e.g. [82]). 

T h e o r e m 45. Let X be a separable normed space, X = span { f i , i G N}, and Xn : = 

span {f i,..., f n } . Let further f : X ^ M be upper semi-continuous and bounded, 

from below. If d : = inf f (X) and, dn : = inf f (Xn) for n G N then l imn^T O dn = d. 

Proof: dn > dn+i for all n G N, hence dn ^ a G M. Suppose a > d. Let (d - a)/2 > 

e > 0 and x G X with f (x) < d + e. As f is upper semi-continuous, there is a 

neighbourhood U(x) with f (y) < f (x) + e for all y G U(x), in particular there exists 

ym G U(x^th ym G Xm. It follows that 

a < dm < f (ym) < f (x) + e < d + 2e. 

We came to a contradiction. 

Corollary 3. Let dn : = inf f (Xn), and (Sn) be a sequence of positive numbers tending 

to zero. If xn G Xn is chosen in such a way that f (xn) < dn + Sn, then (xn) is a 

f X 

X 

X = span { f i , i G N}, Xn : = span {f i,..., f n } . 

f g X f 

convex and f* be bounded. Let d : = inf(f + g ) ( X ) and dn : = inf(f + g)(Xn) for 

n G N (^n) be a sequence of positive numbers and xn G Xn be chosen to have 

f (xn)+g(xn) < dn+6n. Then the minimizing sequence (xn) converges to the (uniquely 

determined) minimal solution of f + g on X. 
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Proof: Corollary of 3, with Theorems 1 and 20. 

R e m a r k 9. The above theorem, enables to regularize the minimization problem min 

g, X) af 

one replaces the above problem by min(af + g, X) (compare with Theorem, 43). 

T h e o r e m 47. Let (T, S , / ) be a Ծ-finite, essentially not purely-atomic measure, 
Լփ(/) be separable and, reflexive, Փ be strictly convex. Let Լփ(/) = span {Mi,i G N} 

|2փ) or f := | | . | | | and Xn : = span {MI, ..., Mn} Let either f := Ր or f := || • ||շփ) or f := || • ||ф and 

g : Լփ(/) ^ R be convex and continuous. 

If d := inf(f + g)(L'^(/)) a,nd, dn := inf(f + g)(Xn) for n G N (^N) A sequence 

of positive numbers tending to zero and xn e Xn is chosen to have f (xn) + g(xn) < 

dn + Sn, then the minimizing sequence {xn} converges to the (uniquely determined) 

minimal solution of f + g on Լփ(բ). 

Proof: Theorems 46 and 41. 

6.3. A G r e e d y A l g o r i t h m in Orlicz S p a c e . For a compressed approximate repre-

sentation of a given function in L 2 [a, b] by harmonic oscillations it is reasonable to 

take into account only the frequencies with dominating Fourier-coefficients. This leads 

to nonlinear algorithms, whose generalization to Banach spaces was considered by V. 

N. Temlyakov. We will discuss the situation in Orlicz spaces. 

Definit ion 13. Let X be a Banach space, then DC X is called a dictionary if 

(1) M = \forallV eD; 

(2) from M e D it follows that -M G D ; 

(3) X = span (D). 

We consider an algorithm from the class of nonlinear m-term algorithms [78]. In 

[76] it is called Weak Chebyshev Greedy Algorithm (WCGA). 

X convex and т — (tKwith 0 < tK < 1 for 

all k G N. Leէ x e X be arbitrary, and Fx e S(X*) be a functional with Fx(x) = ||x||. 

Given x G X\{0}, seէ r0 := x, and for m > 1 

(1) choose MM G D with 

FRm-1  (MM) > TM SUp{FRM-1  (М՝)\М  G D } 

(2) for Um := span {MJ ,j = 1,... ,m} let xm be the best approxima tion of x 

w.r.t. UM, 
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(3) Set rm : = x - xm and m ^ m + 1 , goto 1. 

If X is flat convex, then FX is given by the gradient V||x|| of the norm at x (s. Mazur's 

Theorem 16). Apparently: ||FX|| = 1. 

For the case T = (t) with 0 <t < 1 we denote the corresponding algorithm by GA. 

The following theorem is proved by V. N. Temlyakov in [76]: 

X 

GA 

for every dictionary D and every x G X. 

The above theorem can be restated: 

X GA 

converges for every dictionary D and every x G X. 

X 

complete. 

In Orlicz-spaces the above theorem assumes the following formulation: 

T h e o r e m 49 ((Convergence of GA in Orlicz spaces)). Let (T, S , / ) be a Ծ-finite, 

essentially not purely-atomic measure space, Փ be a differentiable, strictly convex 

Young function, and Լփ(/) be separable and reflexive. Then GA converges for every 

dictionary D and every x in Լփ(բ). 

Proof: If Փ is the conjugate of Փ, then Փ is differentiable. Hence by Theorem 41 

( Լ փ ( / ) , || ՚ ||(փ)) and ( Լ փ ( / ) , || ՚ ||փ) resp. are Frechet-differentiable. Due to Anderson's 

Theorem 23 (Լփ(ր), || ՚ ||(Փ)) and (Լփ(ր), || ՚ ||փ) resp. are E-spaces, whose norms are 

by Theorem 41 Frechet-differentiable. 

R e m a r k 10. Depending on the measure, reflexivity of Լփ(/) can be characterized by 

appropriate Д 2 conditions (see Theorem, 9). 
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