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AnvoTanus. The main objective of the authors is to characterize strong solva-
bility of optimization problems where convergence of the values to the optimum
already implies norm-convergence of the approximations to the minimal solution.
It turns out that strong solvability can be geometrically characterized by the
local uniform convexity of the corresponding convex functional (local uniform
convexity being appropriately defined). For bounded functionals we establish
that in reflexive Banach spaces strong solvability is characterized by the Fréchet-
differentiability of the convex conjugate. These results are based in part on a
paper of Asplund and Rockafellar on the duality of A-differentiability and B-
convexity of conjugate pairs of convex functions, where B is the polar of A.
Before we apply these results to Orlicz spaces, we turn to E-spaces introduced by
Fan and Glicksberg. Using the properties of E-spaces we can show that for finite
not purely atomic measures Fréchet differentiability of an Orlicz space already
implies its reflexivity. The main theorem gives - in 17 equivalent statements
- a characterization of strong solvability, local uniform convexity, and Fréchet
differentiability of the dual space, in case L2 is reflexive. It is remarkable that
all these properties can also be equivalently expressed by the differentiability of
P or the strict convexity of ¥. In particular, L2 is an E-space, if L2 is reflexive
and & is strictly convex.

We discuss applications that refer to

e Tychonov-regularization: local uniformly convex regularisations are suffici-
ent to ensure convergence. As we have given a complete description of
local uniform convexity in Orlicz spaces we can state such regularizing
functionals explicitly.

e Ritz method: it is well known that the Ritz procedure generates a minimiz-
ing sequence. Actual convergence of the minimal solutions on each subspace
is achieved if the original problem is strongly solvable.

o Greedy algorithms: the convergence proof makes use of the Kadec-Klee
property of E-spaces.

1. INTRODUCTION

In this introductory section we recall some properties of Orlicz spaces necessary

for what follows.
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Definition 1. An even, lower semi-continuous, nonirivial convez function ® : R —
R>q with ®(0) = 0, where 0 is an interior point of Dom(®) is called a Young function.
If #(s) > 0 for s > 0 then P is said to be definite.

Let (T %, 1) be an arbitrary measure space and let F be the set of all p-measurable
real-valued functions on T'. Then for a given Young function ® we can define a modular
f®:E—=Rhby

1) = | awin
T

Minimization w.r.t. this functional on subsets of p-measurable functions can be viewed
as generalizations of LP-minimizations, where ®(s) = |s|?/p.
The Minkowski functional of the level set S;+(1) is defined by pg : I/ — R where

pote -t oo [ () gue)

The Orlicz-space L®(u) is given by the subspace of E, where pg is finite:
L®(p) = {er‘ Ja >0 / Pax(t))dp < oo} :
tel

The above ps defines a norm on L®(u), called Luxemburg-norm, to be denoted by
| - [l(@). It is well known (s. e.g. [31] that (L®(u), || - [l(s)) is a Banach space.
Special cases:
e ®,(s) =|s|P/p then LT = LF (1 < p < o0).
o O (s) = o0 for [s] > 1 then L® = L=,
0 for |s] < 1
By M® (1) we denote the closure of the subspace spanned by the step functions with
finite support in L®(1).
If ® is finite, then f® : M®(u) — R is continuous, because f® is bounded on the
unit sphere of M® (1) (s. [31], p. 219).
The proof of the theorem that follows can be obtained by use of the two-norm
theorem (s. [39]).

Theorem 1. Let ¥ be not finite and u(T) < oo, then the following statements hold:

(1) L®(p) = L' (w),
2) || - (@) is equivalent to || - ||1,

(2)
(3) LY (p) = L™(n),
(4)

4) |- lcw) is equivalent to || - || o-
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The following well known growth conditions for Young functions are of central

importance for our discussion of the properties of Orlicz spaces:

Definition 2. We soy that o Young function satisfies the conditions

(1) Ag-condition if there is AeR, such that VseR: $(2s) < AP(s),
(2) AS°-condition if there is AeR and k > 0 such that Vs > k: $(2s) < AdP(s),
(3) A3-condition if there is AeR and k > 0 such that Y0 < s < k: ®(2s) < AD(s).

Let ¢® denote the Orlicz-sequence space. The following theorem can be found in
{52}

Theorem 2 (Lindenstrauss-Tsafriri). For a finite Young function ® the following
statements are equivalent
(a) ® satisfies the A-condition,
(b) 2 =m?
(c) ¢% is sepambel
)

(d) €* contains no subspace isomorphic to £>°.

For not purely atomic measure spaces the above isomorphy is in fact isometrical
(see {80])

Theorem 3 (Turett). Let ® be a finite Young function and let (1,3, 1) be o not
purely atomic measure space. Then the following statement holds: if ® does not satisfy

the A -condition, then L® () contains a subspace isometrically isomorphic to £>°.
The following theorem can be found e.g. in [39] (comp. also [47]):

Theorem 4. Let (1,3, 1) be a not purely atomic measure space with (1) < 0o and
P be finite. Then the following statements are equivalent:

(1) ® satisfies the AS° - condition,

(2) M® — L?

Remark 1. The above theorem also holds if © satisfies the Ao - condition and
w(T\A) = oo, where A denotes the set of atoms in T

If ® satisfies the Ag-condition, then convergence in the norm is equivalent to

convergence w.r.t. the modular (s. [39]):
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Theorem 5. If ® satisfies the Ao-condition and (), be a sequence in LE(p), then
fq)(xn)n::oO = |znll(a) njgoO.

This is also true for finite measure, if © is definite and satisfies the A -condition.
1.1. Duality.

Definition 3. Let ® be o Young function, ¥ be its convex conjugate. E be the space

of the equivalence classes of p-measurable functions. Then we define the functional

No : E—R by
/ v - udu‘
T
It turns out that Ng is a finite norm on L®: it is called Orlicz-norm:

N@(x)llxllésup{/mydu IIyII(mSl}
T

Thus the Orlicz-norm is the canonical norm of the dual space and (L®(u),] - ||e) is

Nog(u) :=sup {

vesf\uu)}.

isometrically embedded into the dual space of LY (u).

Luxemburg- and Orlicz-Norm are equivalent. Moreover, Holder’s inequality holds
(s. e.g. [47]):

Theorem 6. Let ® be the conjugate of ¥, then the following statements hold
1) llzlie) < llzlle < 2llzllce) for all zeL® (1),
(2) Hélder’s inequality: UTx : ydu‘ <zlle - |yl (w)-
As the conjugate of ¥ is again ®, one can exchange the roles of ® and ¥ and
obtains LY (1) as a subspace of L®(u)*.
A precise description of the dual space of M® () is given by the following well known

theorem, the proof of which for finite Lebesgue measure can be found in {47}, s. [39]:

Theorem 7 (Duality). Let (1,3, 1) be a o-finite measure space and let ® be finite,
then every continuous linear functional f on M®(u) is represented by a function

y € LY(p) via the formula
(0) = [ woettan, 2 L.
T
If M® (1) is equipped with the Luzemburg-norm then ||f|| = |ly||lv, i.e.:

(M), 11 ) = (L (), - llw) -

Examples



STRONG SOLVABILITY IN ORLICZ SPACES 31

1. For 1 < p < o0 and ®(s) = |s|P/p we have ¥(s) = |s]?/q, where 1/p+1/g =1,

while ® satisfies the As-condition and hence
(L2 - H)" = (E2 0, - o)
2. For ®(s) = |s| we have ¥(s) = $oo(s) and
(L0 )™ = (22 0 o)

To discuss Frechét-differentiability and reflexivity we need a duality theorem, which

states the conditions rendering Luxemburg- and Orlicz-norm changeable:

Theorem 8. If ® and ¥ are finite and M®(u) = L (), then
(1) (M¥ ()l o)™ = (L), - o)),
(2) (M¥ ()l o)™ = (L2 () ] - 1)

Proof: Let X := (M®(u), || - ||(a)), then according to the previous theorem X* =
(LY (), || - llw)- Let now U := (MY¥(u),]| - |l¢) and f € U*. Due to the equivalence of
Luxemburg and Orlicz norm there is - according to the duality theorem - a function
y € L®(u) = M®(p) with (f,u) = [ u-ydp for all u € U. Hence we obtain

M|w4@w

(1.1) = sup {/Tuy du

For 2z € Syu (1), we construct a sequence

we MY, |y < 1}

ue MY |lully < 1}.

2(t) for |2(t)] <nand t € B",
2n(t) = .
0 otherwise.

Since z, is bounded and has finite support, it can be approximated by step functions
as in the proof of the previous theorem, hence z, € MY (u). Due to the monotonicity

of the Orlicz norm by Fatou lemma:

/"Zydu‘éu/Izmduf£$n{/)knmduSup<fﬂzn|$gn(yﬁ
T T n T n

<sup [|flllznlle <[ 71I2]lw
n

and hence by equation (1.1),

|WW{MWM

We define (f,z) = fT zydp for z € LY. Because of Holder’s inequality, f is a

ze LY, |z|v < 1}~

continuous functional on LY. According to the duality theorem we have LY = X*,
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ie. f € X**. Due to {23] p.181, theorem 41.1 the canonical mapping [ : X — X**
with y +— [.(-)ydp is norm-preserving, i.e. || f|| = |ly/l(s). Hence 1. holds. Due to

(L) - Neey) ™ = (M), - llay)”™ = (LY (), 1 - )

we obtain 2.
1.2. Reflexivity. Reflexivity is closely related to the the Aj-condition.

Theorem 9. Let ® and ¥V be conjugate Young functions and let the measure space

be not purely atomic.

(1) If u(T) < oo, then L*(u) is reflexive if and only if ® and ¥ satisfy the
AS°-condition,

(2) if W(T) = oo with u(T\A) = oo (A set of atoms in T ), then L® (1) is reflexive
if and only if ® and ¥V satisfy the As-condition.

For sequence spaces a similar, but weaker theorem is available:

Theorem 10. If® and ¥ are finite then (* is reflexive if and only if ® and ¥V satisfy

the AS-condition.
1.3. Separability.

Theorem 11 (Lusin). Let T be a compact Hausdorff space, (1,>, 1) the correspon-
ding Bair measure space and let = be a measurable function. Then for every € > 0

there is a continuous function y on T such that

u({t € Tle(t) — y(t) £ 0}) <.

Furthermore, if ||z]|oc < 00 then y can be chosen to sotisfy ||y|loo < || co-

The next theorem is a consequence of Lusin’s theorem (compare [47]):

Theorem 12. Let T be a compact Hausdorff space, (T,%, 1) be the corresponding
Bair measure space and ® and ¥V be finite. Then the continuous on T functions are
dense in M® ().

Using the Stone-Weierstraf3-theorem we obtain

Theorem 13. If ® and ¥ are finite, T be a compact subset of R™ and p be the

Lebesgue-measure, then M® (1) is separabel.
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2. FLAT CONVEXITY
AND WEAK DIFFERENTIABILITY

Let X be a real normed space and f : X — R be a continuous convex function,
then the subdifferential

df (wo) == {d € X* [ d(a —wo) < fla) — f(x0)}
is a non-empty convex set (s. e.g. {31}]). For ¢ € df(x¢) the graph of [f(xo)+ ¢(- —z0)]
is a supporting hyperplain of the epigraph {(z,s) € X x R | f(z) < s} in (zq, f(z0)),
and each supporting hyperplain can be represented in such a way.
The right-handed derivative

f/+(107x) - ltifél f(zo H? — fl=o)

always exists and is finite (s.e.g. [31]) and the equation f’ (zo,z) = —f} (20, —2)
holds. By the theorem of Moreau-Pschenichnii |31]

"(zg,z) = max ¢(z), f (zo,z)= min x).
fi(zo, z) ¢68f(%)¢() fL(zo, 7) ¢68f(10)¢()

Definition 4. A convez set (with non-empty interior) is called flat, if every boundary

point has a unique supporting hyperplain.

The next theorem (s. ([35]) gives a characterization of flat level sets of a continuous

convex function:

Theorem 14. Let X be o real normed spoace and f: X — R be a continuous conver
function. Then for r > inf{f(z) | x € X} the following statements (a) and (b) are
equivalent:
(a) The convex set S¢(r) :={zx € X | f(z) <r} is flat.
(b) For all boundary points xo of Sy(r)
(i) [fi(zo, ) + [ (2o, )] € X¥,
(i) there exists a ¢ > 0 with
fL (o, ) = cf’ (zo, @)
for all = with f (x0,x) > 0.

In particular, S¢(r) is flat, if f Gateaua-differentiable in {z € X | f(z) =7}

Proof: Let f be not constant. Due to the continuity of f the set S;(r) has a non-

empty interior, and for every boundary point zo of S¢(r) one has f(zo) = r > inf f(=),
hence 0 ¢ df(xo).
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(a) — (b). Let H be the unique supporting hyperplain of S¢(r) in zo. For every
¢ € f(zq), zo + Ker ¢ is a supporting hyperplain, hence

zo+ Ker¢p = H.

If 9 € X* represents the hyperplain H, then ¢ = A¢g for a A € R. The theorem of

Moreau-Pschenichnii yields

Of(zo) = { Ao | A1 <A< Ao},

hence
Tl (wo, ) = Aago(x) . i

(2.1) J”Eﬂﬂomﬂ) = )\1¢OEx; } for ¢o(z) 20,
f/ $07ZE) — Al(bo x
fz(x()?x) — >\2¢O(x)} for ¢o(x) <0

We conclude (i):
[f(zo, )+ f(z0,)] = (A1 + A2) - do(-) € X*

It remains to verify (ii): as 0 ¢ 9f(zo), the relation sign A\; = sign Ay # 0 holds,

consequently
_1y\sign A
Fwo, ) = (Axg 1) ™ F (o, )

for  with f’ (zo,2) > 0.
(b} — (a). For ¢ € df(xp) we have

(2.2) filzo,z) = ¢(x) = fL (0, 2)
for all z € X and because of (ii)
(2.3) fizo, ) > d(x) > cf! (xo,z) = f (x0, )

for those = with f/ (zo,z) > 0. From ¢(x) = 0, (2.2), f!(xo,z) > 0 and (2.3) it

follows
filzo,z) = f' (z0,2) =0,
ie.
Ker¢ C Ker (f} + f') := Ho.
As fi(zo,-) 2 f/ (xo,-) and 0 ¢ 9f (=) it follows from (2.3) Hy # X and hence

Ker¢ = Hy.
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Let now H be a support hyperplain of S¢(r) in zo. Due to the Theorem of Mazur
[31] the affine supporting set H x {f(xo)} of the epigraph of f in (zo, f(x¢)) can be
extended to a support hyperplain in X x R, thus there exists ¢ € 3f(zq) with

H x {f(w0)} € {(z, f(w0) + d(w — ) | w € X}
Hence
Hc {x | ¢(xz — zq) :O} = zg+ Ker¢ = z¢ + Ho,
consequently
H=2x¢+ Hp.

Of particular interest is the positive homogeneous case (s. [35]):

Theorem 15. If f is nonnegativ and positively homogeneous, then S¢(r) is flat
convex if and only if f is Gdteauz-differentiable in {x € X | f(z) > 0}.

Proof: If S¢(r) is flat convex for an r > 0, then, because f is positive homogeneous,

all level sets Sy¢(r) are flat convex. Now we have
fzo +txo) — f(20)

fi(xo, o) = lim ; = f(zo)
- ltifg L —tﬂﬂ_oz —J (o) - fi(ﬂﬂoﬂﬂo)

Hence ¢ = 1 in (ii) and thus f’ (zo,z) = f’ (z0,z) for f (zo,z) > 0.
If f!(z0,2) <0, then

fixo, —x) > f/ (x0, —x) = —f) (z0,2) >0,
and with ¢ =1 in (ii) it follows that
filao, —2) = f/ (0, —2).
Therefore we obtain using (i):
2f (w0, ) = =2f" (x0, —x) = = (fi (w0, —2) + fL (20, —2))
= fi(wo,z) + f (w0, ).
Hence f! (zo,z) = f' (z0, ).
Definition 5. A normed space is called flat convex, if the closed unit ball is flat.

If f is a norm, the above yields the following theorem.

Theorem 16 (Mazur). A normed space X is flat convez if and only if the norm is
Gdteauz-differentiable in X \ {0}.
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3. FLAT CONVEXITY AND GATEAUX -DIFFERNTIABILITY
OF ORLICZ SPACES

Let & : R — R a finite Young function. Let (T, Y, 1) be a o-finite measure space,
and L® (1) be the Orlicz space determined via ® and u, equipped with the Luxemburg
norm || - [ o

We consider the unit ball in M®(u). If z € M®(u), then

(3.1) lellcs) = 1 if and only if /@(x)duzl.
T

According to Theorem 14 the level set Sy(r) is flat, if f is Gateaux-differentiable in
{re X | f(x)=r)
Lemma 1 ([41]). The right and left-sided derivatives of the modular f® : M®(p) — R
defined by
£2) = | el
T

for zg € M® (1) can be represented as follows:

(f*). (o, ) :/ xq);(xo)dqu/{Ko} @’ (zq)dp

(32) {I>O}
(f®Y (zo,z) :/ xq)L(xo)dqu/ P, (z0)dp.
{z>0} {z<0}

If @ is differentiable, then f® is Géteauz-differentiable and
(33) (7% (oo,0) = [ a®(an)dn
T

Proof: For the difference quotient we obtain:

F®(xo +712) — f(x0) _ / D(zo(t) + 72(t)) — @(xo(t))dM
T T T
[ ) v,
x(t)>0 Tz (1)
P(xo(t) + 72(t)) — Pa0(t))
+/z(t)<o ) z(t)dp.

By the monotonicity w.r.t. 7 of
D(sg+ 78) — P(s0)
T
for all so, s € R, the above representation (3.2) of (f®), and (f*)’_ follows. Let ® be
differentiable. According to (3.2) f/(zo, z) exists and we have (3.3).
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Lemma 2 ([41}). Let To,Th and Ty € X be disjoint sets with 0 < u(T;) < oo for
i =0,1,2. If there exists an so > O for which ®', (s0) # @' (s0) and ®(so) - u(Tp) < 1,
then M® (1) is not flat convez.

Proof: The set of discontinuities of a function, monotonically increasing on [a, b] is
at most countable (s. [64], S. 229). Hence there exists s; > 0 with ®', (s1) = ®’ (s1)

and
1= ®(s0)u(To) — B(s1)p(T1) > 0.
As ® is continuous, one can choose s € R such that
®(s0) - pu(To) +P(s1) - p(T1) + P(s2) - (1) = 1
For the functions
To = SOXT, T+ S1XTy + S2XT»,

L1 = XTy»

T2 = XTy

we have

0 < (f*) (o, 1) = p(T0) - ¥, (s0) # (f*) (2o, z1) = p(To) - ¥’ _(s0),
0 < (f®), (o, x0) = p(Ty) - ¥ (s1) = p(T1) - @ (s1) = (f*)" (w0, w2).

Hence condition (ii) of Theorem 14 is not satisfied, and thus M® () not flat convex.

Theorem 17 ([41]). Let p be not purely atomic. Then M®(u) is flat convex if and
only if O is differentiable.

Proof: follows from Lemma 2 and Theorem 1.

The derivative of the norm ||-||() is defined as follows. Let zo € M® (1) and ||zol|(s) =
1. The graph of the function = — (f®)(xo, z—x0)+ f®(x0) is a supporting hyperplain
of the epigraph of f® in (zo, f®(x0)) = (w0,1) € M® x R. This means that the
hyperplain {z € M® | (f®)'(z0,z — x¢) = 0} supports the unit ball of M® in zo. If
we denote || - [|(s) by pe then pj(xo, o) = 1 ( compare proof of Theorem 15) and
P70, ) is a multiple of (f®)'(x0,-). Taking into account that

/T(I’/(ﬂﬂo)ﬂﬂodu > / P(zo)dp =1,

T
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we obtain that

/xq)/(xo)du
(3.4) wr— G, |lzolle) = L,
J/ 2o®' (z0)dp

is the derivative of || - [|(s) (in M?®).

If the measure p is purely atomic, then the differentiability of ® is not a necessary
condition for flat convexity of M®(u).

In the sequel let S = {s € R| ® in s not differentiable}.

Theorem 18 ([41}). Let (T, %, 1) be purely atomic and consist of more than 2 atoms.
Then M®(u) is flat convex if and only if for all s € S and all atoms A €

B(s) - pl(4) = 1,

Proof: Necessity follows immediately from Lemma 2.
Let zo € M®(u) and |lzo(sy = 1. According to Lemma 1 and the condition
O(s) - p(A) > 1, it is sufficient to consider zg = x4 for an atom A € ¥ and r € S.
As @(r) - u(A) = 1 we have &, (r) # 0.
As 0 ¢ S and 9'(0) = 0 it follows from Lemma 1 that
(9, (o) = |

P’ (z0)dp +/ x® (20)dp
{z>0}

{z<0}
~@ ) [ wexadut ) [ eadn
{z>0} {z<0}
and in in the same way

() (0, 2) = B (1) /

xadp + P (r) / xxAdp.
{z>0}

{z<0}
Hence we obtain (i) with f/ (zo,z) + f' (@0, z) = p(A)[®/ (r) + &’ (r)]z |4, where A
is an atom, i.e. x is a constant on A. This implies

@ fi(2o,2) + f (20, 2) = p(A)[® (r) + ' (r)]z |a€ (M®)".

(ii) If > 0 on A, then [ (zg,z) = ii—g;fﬂxm x), because in that case

/ z-xadp=0 and @ (r)>0.
{z<0}

If, however, z < 0 on A, a suitable multiplyer is iig:; with @, (r) < 0. From Theorem
14 it then follows that M®(y) is flat convex, and the proof is complete.
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4. LOCAL UNIFORM CONVEXITY, STRONG SOLVABILITY AND
FRECHET-DIFFERENTIABILITY OF THE CONJUGATE

There are several different ways to generalize the notion of uniform convexity of
functions {50] by allowing for different convexity modules at different points of the

space.

Definition 6. A monotonically increasing function 7 : Ry — Ry with 7(0) = 0,
7(s) > 0 for s > 0 and 7(s)/s—=00 is called a convexity module. A continuous

function f : X — R, where X is o normed space, is called locally uniformly convez if
(a) for all z € X a convexity module 7, exists, such that for all y € X

S+ ) 2 £ (ZH) 4 malle — ol

(b) for all z € X and all z* € Of(z) a convexity module T, o+ exists, such that
forallye X

fly) = flz) 2y —2,2%) + oo (|2 — yl);

(¢} for oll x € X a convexity module 7, exists, such that for all y € X

%(f(x +y)+ fle—y) > flz)+m(yl)

It is easily seen that: a) = b) and b) = c¢). If the function f satisfies &), then by
the subgradient inequality

S+ 1) 2 1 (5 )+l -l

2 gy (4 =) 4 e i)

defining 7, o+ (s) 1= 27,(s), and the property b) follows. If a function f satisfies b),
then by the subgradient inequality:

%ﬂx+w>l«%fy+ﬂ@+mmwmm>

)
(f(@) = fla—y) + f(@) + Tou (ly])),

>
8) = Taa+(8)/2.

DN | =

hence the property (¢) for 7,

~—~

The converse, however is not true, because the function f(z) = ¢* satisfies (¢) using

the convexity module 7,(s) := ¢*(cosh(s) — 1), yet does not have bounded level sets,

hence cannot satisfy b).
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The strictly convex function f(z) := (& + 1)log(z + 1) — = satisfies property (b),

because for h > 0, due to the strict convexity of f

0 < 2 (f(z +h) — flz)— ['(x)h)

h
T+ h+

1 h41 r+h+1
= — Nlog——— +hl{log—— —1 — 0.
h<(x+ Jlog z+1 + (og r+1 >>h~>OOOO

However, it violates (a) at the origin, because

lim (%f(y) —f (g)) - %logZ < 0.

In the sequel we will mean by locally uniformly convex functions always those with

property (b).

Remark 2. Lovaglia in [53] investigates locally another lass of uniformly convex
norms. The squares of these norms are, however, locally uniformly convex in the
sense of (b), {45].

Definition 7. A function f has o strong minimum ko on o subset K of a Banach
space X, if the set of minimal solutions M(f, K) of f on K consists of {ko} and if
for every sequence {k,}5° 1 C K with

lim f(kn) = f(ko) it follows that: lim k, = ko.

n—oo

The problem of minimizing f on K is then called strongly solvable.

Lemma 3 ({45]). Let X be a reflerive Banach space and let f : X — R be convex

and continuous then the following statements are equivolent:

(1) f has a strong minimum on every closed hyperplain and on X ;
(2) f has a strong minimum on every closed half-space and on X ;

(3) f has a strong minimum on every closed convex subset of X.

Proof: Without loosing generality we can assume that f(0) = 0 and f(z) > 0

for  # 0. Otherwise we can consider g(z) = f(zo — 2) — f(z0), where f(aq) =
min{ f(z)|z € X}.
1. = 2. Let Gy = {z|{z},z) > a}. f 0 € G,, then go = 0 is the strong minimum
of fon Go. If 0 € G, then it follows that o« #£ 0. Let = be an interior point
of G, then f(z) > 0 and with z) = (1 = X) -0+ Az for A € (0,1) it follows
that f(zx) < Af(z) < f(z). Hence x cannot be a minimum of f on G,. Let gy be
the strong minimum of f on H, = {z|[{z},z) = «}. Then by reasoning as above
flgo) = inf{f(g)lg € Ga}.
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Let now f(gn) — f(go) with g, € G,. Then {(x},g9,) — a. To prove it assume
there is € > 0 and a subsequence (), gn,) > o+ ¢. Then g, € Gaye, but we have
for every € > 0

min {f(z)|(af, 2) 2 o+ e} > fg0).
Let f(ge) = inf{f(g)|g € Guye, then we obtain in the same way as above {(z{, g.) =
a+ . As 0 is the strong minimum of f on X, the mapping A — f(Ag.) is strictly
monotonically increasing on [0, 1]. The mapping A — ¢(A) = {z§, Ag:) is continuous
on [0,1] and we have: ¢(0) = 0 and ¢(1) = a + . Hence there is a A, € (0,1) with
d(Aa) = o, ie. go = Ange € H,. Therefore we obtain

£(g0) < f(ga) < flge) = min {f(2) (x5, 2) > o+ e}

hence f(gn,) > f(g:), a contradiction.

Since a/{xf, gn) < 1 we have

f << >gn> < <x,67gn>f(gn) — f(g0)-

z4, gn

Moreover

(8%

Wgn € {a|(zf, z) = a},

0rdIn
and hence f(go) < f (m{ﬁgn). We conclude that {mgn} is a minimizing
sequence of f on H,, and hence

(8%
9n — g0,
(8, gn) "

thus g, — go.

2. = 3. If K is convex and closed, 0 ¢ K and » := inf f(K), then » > 0 and the
interior of S¢(r) is non empty. According to the separation theorem of Eidelheit [31],
there is a half space G, with K C G, and G, NInt (S¢(r)) = 0. If go is the strong
minimum of f on G, then f(go) < r, but f(go) < r is impossible, because in that
case go would belong to the interior of S¢(r). Thus go is the minimal solution of f on
K and because K C G, it is also the strong minimum.

If0 e K and (k,) is a sequence in K with f(k,) — 0, we can assume that K is a
subset of a half-space G. The point 0 is a minimum and hence the strong minimum

of f on G and therefore also the strong minimum of f on K.

Definition 8. A convex function is colled bounded, if the image of every bounded set

18 bounded.
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In order to establish a relation between strong solvability and local uniform conve-

xity, we need

Lemma 4. Let X be a reflexive Banach space and f : X — R be conver and

continuous.
||(x||) | = h0ld57 U and only if the convez conjugate f* 18 bounded.
x x| —00

Proof: Let f* be bounded. Suppose there is a sequence {z, }2° | with ||z, || — oo

n—oo

for which always f(xy)/||zn] < M for some M € R. Then there is a sequence
{eadnii € X¥ with lz)l =1 and (25, zn) = |lzn].-
However

fr(2Ma}) = sup {2M(z}, ) — f(2)}

> e (2M <x Zn >— ! (’5")) > Ml
Teull) ~ Tenl

and because of the boundedness of f* we get a contradiction.

Conversely let ||z*|| < r, then there is ¢ € R, such that f(z)/||z] > r for ||z]| > .

Therefore

i) = sup {loat) = ) < sup { (= 450 ) el

zeX zeX ||ZE||

o () 2 )

< HSIHIE {rllel = f(2)} <ro—inf f({z | [z] < o}).

In order to estimate —inf f({z | ||lz|| < o}) from above, let finally 2} € 9f(0), then
f@) = f(0) = [lz[l|l=3]l = f(0) — pll2f]| and thus
—inf f({z | |lz]| < o}) < pllz5]l — £(0).

Lemma 5. If X is a reflexive Banach space, f : X — R is continuous and convexz,
and f* is bounded, then for every closed convex set K the set of minimal solutions

M(f, K) # 0.

Proof: As f* is bounded, then according to Lemma 4 all level sets of f are bounded.
So due to the theorem of Mazur-Schauder (s. e.g. {31]) M(f, K) # 0 for an arbitrary

closed convex set K.

The following lemma can be found in [74}:
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Lemma 6. Let f: X — R be convexr and bounded, then f is Lipschitz-continuous on

bounded sets.

Proof: Let B be the unit ball in X, € > 0, and S be a bounded subset of X. Then
S+ eB is bounded. Let oy and a9 be lower and upper bounds of f on S+ <B. Let
z,y € S with z #£ y and \ == EH;ﬂLH. Writting further z ==y + Hyf—zu(y —z), then
z€S+eBand y= (1 — Xz + Az From the convexity of f we obtain:

Fly) < X=X f(@) + Af(2) = fl@) + M[f(2) = f=2),

and hence

fly) = f(z) S ANow —ay) =

Qo — £ Qo — 0y
ly —=| <
e etfy—=

ly —=[.

Exchanges the roles of  and y, one obtains the Lipschitz-continuity f on S.

Theorem 19. Let X be a reflexive Banach space and f : X — R a strictly convex and
bounded function, whose conjugate f* is also bounded. Then f has a strong minimum

on every closed convex set, if and only if f* is Fréchet-differentiable.

Proof: Let f* be Fréchet-differentiable. According to Lemma 3 it suffices to show
that f has a strong minimum on every closed hyperplain and on X. By [3] f* is
Fréchet-differentiable at «*, if and only if the function f—{(z*, -} has a strong minimum
on X. As f* is differentiable at 0, f has a strong minimum on X.

Let H = {z|(z},z) = r} for 2} # 0. By Lemma 5 we have M(f, H) # (. Let
ho € M(f,H). According to [31] there is a =] € Jf(ho) with (a7, h — hg) = 0 for
all h € H. Due to the subgradient inequality {(z},z — ho) < f(z) — f(ho). Setting
fi = f—{z7, ), it follows that fi(z) > fi(ho) for all x € X. As f* is differentiable
at =7, ho is the the strong minimum of f; on X. In particular hg is also the strong

minimum of f on H, due to
FIH = (f1 + (27, ho))|[H
because for all h € H we have:
Fi(h) + (&7, ho) = f(h) = (&1, b) + (@1, ho) = f(h) = (21, h — ho) = f(R).

In order to prove the converse let zf € X*. According to 3] we have to show that
f1 = f—{z},) has a strong minimum on X. As f{(z*) = f*(zf+=*) for all z* € X*,
apparently fi is bounded and hence f; has, according to Lemma 5, a minimum zg

on X. If 2} =0, then fi; = f and hence ¢ is the strong minimum of f; on X.
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Let 2§ £ 0 and fi(x,) — fi(zo). For e > 0,
Ki = {z € X|(z},z) > (z8,z0) + £}, Ko:={z e X|(z},z) < (zf,z0) —¢},
because of the strict convexity of fi:
min { min(f1, K1), min(f1, K2)} > fi(xo).

It follows {zf, zn) — (2§, z0) (otherwise there is a subsequence {z,, } in K, or Ko,
contradicting fi(zn) — fi(zo)).
For H = {h|{z}, x0) = (z§, h)} by Ascoli formula [31]
55, 7} — (&, 70)]
5l
For hy, € M(||xy, — ||, H) we conclude that =, — h,, — 0. The level sets of f are

bounded due to Lemma 4, hence so are the sequences (x,) and (hy,).

min {Jfon — bllh € 11} — L

According to Lemma 6, f is Lipschitz-continuous on bounded sets, i.e. there is a

constant L such that
|f(zn) = f(hn)] < Ll|lzn — byl — 0.

We obtain:

J1(hn) = f(hn) — (5, hn)
= (f(hn) - f(xn)) + (f(xn) - (958795”}) — (x5, hn — xn) — fi(=o).

On H the functions f and fi differ only by a constant. As f has a strong minimum
on H, this also holds for fi, hence h,, — z¢ and thus z,, — xg. This completes the

proof.

Theorem 20. Let X be a reflexive Banach space and [ be a conbinuous conver
function on X. If f is locally uniformly convexr and f* is bounded, then f has a

strong minimum on every closed convex set.

Proof: Let f be locally uniformly convex. As f* is bounded, then due to Theorem
4 all level sets of f are bounded and hence according to Lemma 5 M (f, K) # 0 for an
arbitrary closed convex set K. Let now kg € M(f, K), then by the characterization
theorem of convex optimization [31] and the theorem of Moreau—-Pschenitschnii there

exists

at € Of(ko) with (k—ko,2}) >0 forall ke K.
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If 7 is the convexity module of f belonging to k¢ and z{, then for an arbitrary

minimizing sequence {k,} we have
f(kn) = f(ko) = (kn = ko, zg) + T(|lkn — koll) = 7(|[kn — koll).

Thus limy,—,c0 &y, = ko, and the proof is complete.

Corollary 1. Let X be a reflexive Banach space and f and g be continuous convex
functions on X. If f is locally uniformly convex and f* is bounded, then f+ g is

locolly uniformly convex and has a strong minimum on every closed convex set.

Proof: First we show that f 4 ¢ is locally uniformly convex. Let x € X and
zy € Of (z), then there is a convexity module Ta,ats such that for all y € X:

o) = 1@) 2 (y =z 25) + o2y (2 = wl).

If 2 € dg(x), then by the subgradient inequality:

Fw) +9ly) = (f@) +g9(x) 2 (v —z, 27 +25) + 7oz (lz —yl).

Having established the local uniform convexity of f + ¢ we now show that (f + ¢)* is
bounded. According to Theorem 4 this happens if and only if
f(x) + g(z))
[zl el
Now for =} € 9g(0) we have g(x) —g(0) > (z —0,z}) > —[|z[|||lz}], hence g(z)/||z| >
9(0)/||zll = ||z}l = c € R for [|z|| > 7 > 0. Therefore

flz) +g(a)) _ fla)

(|| I ]| — o0

and the proof is complete.

In [45] the main statement of the theorem that follows is proved for f?, without
requiring the boundedness of f*. For the equivalence of strong solvability and local

uniform convexity we need in addition the boundedness of f.

Theorem 21. Let X be a reflexive Banach space, and f : X — R be a bounded,
strictly convex function, whose conjugate f* is also bounded. Then f has o strong

minimum on every closed convex set, if and only if f is locally uniformly convez.

Proof: If f islocally uniformly convex, then strong solvability follows from Theorem
20.
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Conversely, let f have the strong minimum property. Then by Theorem 19 f* is
Fréchet-differentiable. If x}; is the Fréchet-gradient of f in x, then f(-) — (-, z}) has
[3] the global strong minimum at zg. We write

T(s) = H;ﬂlis {f(zo+y) = f(xo) = (v, 25) }-
In fat 7(0) = 0 and 7(s) > 0 for s > 0, and 7 is monotonically increasing. Let
sy > s1 > 0 and 2| = s1, and y := £z due to the monotonicity of the difference
quotient

flzo+ 2Ly) — flao)

81/82

< flzo +y) — fl=o),

hence

flao+2) = flwo) — (z,28) < j—;mxo +y) = flwa) = (y,75))
< flzo+y) — flxo) — (y,z8).

Finally, using Theorem 4

() Jlao) [Tty Ly
s +yfs{ < >}

- T ¥o
lyll [yl

S S
> LE0 gy e (L5 o
s lyll=s [l s—v00

On a reflexive Banach space the conjugate of a bounded convex function does not
have to be bounded.

Example 1. Let f : 1> — R be defined by f(z) =3 | pi(z®), where ; : R — R is
given by
— for |s| < 1.
wils) =9 % aa 1—
Z'+—1|S i+ m
f is bounded, because f(x) < ||z||3 for all x € I>. The conjugate function of f is

for |s] > 1.

o0 “ 52 /2 for |s| <1
* == \I/l g 5 h \I/l = i+l  — 1
(x) Z: (z\"),  where (s) |s| d for |s| > 1.
=1 i+1 20+ 1)

Writing e; for the i-th unit vector in I°, we obtain
2it1 1—1
) =gt s o™

so f* is continuous on [ and Géteauz-differentiable.
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4.1. E-Spaces. Following Holmes [26], we summarize a number of characterizations
of a particular class of Banach spaces, the so-called E-spaces, where all convex norm-

minimization problems are strongly solvable.

Definition 9. Let (Q,d) be a metric space and Qo be o subset of Q. Qq is called
approximatively compact, if for each © € Q every minimizing sequence in Qg (i.e.
every sequence {x,} C Qq, for which d(x,z,) — d(z,Q0) holds) has a point of

accumulation in Q.

Definition 10. A Banach space X is an E-space, if X is strictly convex and if every

weakly closed subset is approximatively compact.

Such spaces were originally introduced by Fan and Glicksberg [18].

The next theorems can be found in [26}:

Theorem 22. A Banach space X is an E-space if and only if X is reflexive, strictly

convez and from xy,x € S(X) with x, — x it follows that ||z, — x| — 0.
The E-space property is closely related to the Kadec-Klee property:

Definition 11. The Banach space X has the Kadec-Klee property, if from z, — x

and ||z,|| — ||| 4t follows that ||z, — z| — 0.

A strictly convex and reflexive Banach space with Kadec-Klee property is thus an
E-space. The E-space property can be characterized by the strong differentiability of

the dual space.

Theorem 23 (Anderson). A Banach space X is an E-space if and only if X* is
Fréchet-differentiable.

Theorem 24. A Banach space X is an E-spoce if and only if for every closed convex

set K the problem min(|| - ||, K) 4s strongly solvable.

5. FRECHET-DIFFERENTIABILITY AND LOCAL UNIFORM
CONVEXITY IN ORLICZ SPACES

In this section we prove that in a reflexive Orlicz space strong and weak differentia-
bility of Luxemburg and Orlicz norm, as well as strict and local uniform convexity

coincide.
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5.1. Fréchet-Differentiability of Modular and Luxemburg norm. If ® is dif-
ferentiable, then f® and | - ||(s) are Gateaux-differentiable and for the Géteaux-

derivatives we have (s. Lemma 1):
(52 o) = [ 2@ (o),
T

and (see (3.4))

(Jaolayo) — (L2002
" (fo(yo)rya)

where yo = zo/||zol|(s) for zo # 0. If the conjugate function of ® satisfies the Ap-

condition we can prove the continuity of the above Gateaux-derivatives.

The following theorem was proved in a different way by Krasnosielskij [47] for the

Lebesgue measure on a compact subset of the R™.

Theorem 25. Let (T,%, 1) be a o-finite measure space,  a differentiable Young
function. If its conjugate function ¥ satisfies the Ao-condition, then the Gdteauz-

derivatives of f® and || - ||(s) are continuous mappings from

M®(u)  resp. MP(u)\{0} to L¥(p).

Proof: Let (z,)°°, be a sequence in M®(p) with limz, = z. First we show
that in LY () the relation lim, .o ®(z,) = ®(zo) holds. As ¥ satisfies the Ao-
condition, convergence in the norm is equivalent to convergence w.r.t. the modular

1Y (s. Theorem 5), i.e. we have to show that

lim FY P (z,) — @' (z0)) = 0.

Let now T be represented as a countable union of pairwise disjoint sets T;, 1 = 1,2, .. .,

of finite positive measure.

We define

k
Sy =JT Sp={teT||z)] <k}, Dip:=S,nS,
i=1
and finally

We show that ka 2o®' (20)dp —§ o0 0. As |zo(t)] > k on Ry, we obtain:

0o > / 2P (x0)dp Z/ 2o®' (x0)dp > p(Ri)k®' (k).
T Ry

Since k®'(k) > ®(k) — _, it follows that p(Ry) — 0. As Dy C D1, the sequence

{xo®(x0)xp, } converges monotonically increasing pointwise almost everywhere to
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2o®'(x0). With ka ao® (x0)dp — [ 2o’ (x0)dy it follows that ka 2o’ (wo)dpy —

k—oo

0. For given £ > 0 we now choose k large enough to have

(5.1) / 20® (z0)dp <= and  p(Dy) > 0.

Ry,
As @’ is uniformly continuous on I := [—k — 1,k + 1], there exists a 6 € (0, 1), such
that

|®'(s) = @'(r)| < ¥ <@>

for |s —7| < éand s,r € I.

According to {47], p. 71, the sequence {x,}5° ; converges to xg in measure, i.e. there

is & sequence of sets (@)% with lim, oo (@) = 0, such that

lim  sup |zo(t) — z,(t)| = 0.
n—oo tET\Qn

In particular there is a natural number N, such that for n > N
|2, (t) —zo(t)| <6 for t€T\Q,
and

(5.2) w(@Qn) <

Thus we obtain

/T\(QnURk) \Ij(q)/(x") - (I)/(xo))dM = /T\(QnURk) v (qjl (M(;k)>> s

o M(T\(QnURk)E c
(5:3) B (Dk) -

According to [82] the derivative of a continuous convex function is semi-continuous

>0
n CODverges

x-weak to ¢’(wp). According to the uniform boundedness theorem of Banach (s. e.g.

if the sequence {w,}2° | converges to wy in M®(p), then {®'(w,)}

[31]) the sequence {q)/(wn)}zozl is bounded in LY (u), and we obtain
/ wnq)/(wn)du—/ wo®’ (wo)dp
T T

:/(wn—wo)q)/(wn)dqu/ wo(q)/(wn) —q)/(wo))du.
T

T
By Holder’s inequality

/ wn® (10,)dp — / wo<1>/(wo)du‘ < Y — woll o |2 ()
T T

+

/ wo(q)/(wn) — q)/(wo))du ,
T
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where the last expression on the right hand side converges to zero because of the weak
convergence of ®'(w,,) to ®’'(wp). In this way we obtain the relation
(5.4) lim [ w,® (wy,)dy = / wo®’ (wo)dp .

If wy = XQ.URy * Tn, Wo = XRy, - To, and vy, = XQ,UR, - To. Then we obtain:
Wy, — Wy = Wy, — Uy + Uy — W0 = (Ty, — Z0)XQ,UR, + Zo(XQnURE — XRy)-

We have |z, — z0] > |25 — Z0|X0,.URs, S0 using the monotonicity of the Luxemburg
norm, we obtain |z, — 2o|xq,ur, —= 0. Using (5.2)

£ £
[ = 00l = xq, mu ool < Xeu -k < s < g o0

as W is in particular finite. We conclude that w,, — wy. Taking into account
/ T, ® (2, )dp —/ xoq)/(xo)du+/ 2o® (z0)dp —/ 2o® (z0)dp
QnURy Ry Ry, QnURy

([ oyt — [ ant'twnsan) + ([ oot ooyt [ 0,0 0n)a0)

it follows using (5.4)

lim (/ T ® (2, )dp —/ xoq)/(xo)du> =0.
e \JQnURy, QnURy

The Aj-condition for ¥ together with Young’s equality almost everywhere yields
(@ () — ¥ (20)) < 5 (VP () + V2P (20))
< %(\If(qﬂ(xn)) + (P (x0))
< 5 (n® () + 0 (20).

Therefore for n sufficiently large

/ U (D' (z,) — ' (20))dp
QnURy

A
< = (/ T ® (2, )dp +/ xoq)/(xo)du>
2 QnURE QnURE

<A (/ xoq)/(xo)dquE) .
QnURK
Using (5.1) and (5.2), we obtain

/ 2o® (xo)dp = / 2o® (z0)dp +/ 2o® (z0)dp < 2¢.
QrURg Ry, Qn\Rg

Together with (5.3) the first part of the statement follows.
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Let now zo € M%)\ {0} and (,,)5; be a sequence that converges in M® (1) to
xg.

Writing yn = 2n/||znl/(e) for n € NU {0}, then (yn);2, converges to yo, i.e.
limy, 00 @' (yn ) = P'(yo) and, because of (5.4) we get

lim yn<1>/(yn)du:/yo<1>/(yo)du~
T T

n—oo

Remark 3. To prove in a similar way the above Theorem 25 for the sequence space

1%, only the AS-condition for ¥ is required.

Remark 4. If T in Theorem 25 has finite measure, only the A3 -condition for ¥ is

needed.

Proof: ® is differentiable, hence W is strict convex, and in particular definite.

Let now ¥(2s) < A¥(s) for all s > sqg > 0. For Dy, := S}, and k large enough
€
Rp)y<——mF ——
MR S S a1
furthermore [, xo®'(z0)du < e and ¥(2s0)/kP'(k) < 1.

If we set
P, = {t € QnURL|® (z,(1)] < so}7
P;L L= {t € QnU Ry | |(I>/(:Eo(t))| < 80}7

then as in Theorem 25 for n sufficiently large

/ V(' (zn) — ®'(z0))dp
QnURg

= ( /Q V)t /Q n ‘I’(2q’/($o))dﬂ>

%(/Pn\l/(qu/(xn))du+/ V(20 (2,))dp

(QnURk)\Pn

i /p,a et /(QnURk)\P{L \1;(2@/(950))@)

(W(250)(p(Pr) + p(F,))

A / an)/(xn)dqu/ 2o® (z0)dp
(QnURk)\Pn (QnURk)\P-r/x

s%(u(Rk) + 1(@n)) ¥ (250) + A </@

This completes the proof.

<

+

2o® (zo)dp + £> <e(1+ 3A).

nURE
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Now our purpose is to demonstrate that for a finite, not purely atomic measure
space the following statement holds: if (L®(u), | - |l(#)) is Fréchet-differentiable, then
(L®(u), || - lle)) is already reflexive.

Lemma 7. Let (T, %, p) be a o-finite, not purely atomic measure space. If (L (1), |-
(@) is Fréchet-differentiable, then ¥ is finite.

Proof: Let ¥ not be finite, then ®’ is bounded on R, i.e. there are positive numbers
a,b, ¢ such that a(s —¢) < ®(s) < bs for s > ¢. I T has finite measure, then Theorem
1 implies

(1) L®(p) = L*(p), and the norms | - [|1 and || - [|(s) are equivalent;
(2) LY (p = L>°(u), and the norms || - ||~ and || - ||¢ are equivalent.
Clearly ® satisfies the AS°-condition, hence M®(u) = L®(u) (see Theorem 4).
Therefore
(L7, ) = (L2, - llea)
Let now A be the set of atoms in T and let A := p(T'\ A), then we choose disjoint
sets Gy in T\ A with u(Gy) = 27* X for k = 1,2,... [85]. We take sy € R large
enough
/ 80
P e ((% N /L(A))il) >0,

and define the functions z,, on T by

1— Ly teGy, k=1,2,...
xn(w;{( eliso for 1€ G k=12,

1 otherwise

forn=1,2,... and put

0 0 for teGy, k=1,2,...,
x =
0 1 otherwise.

The sequence {x,} converges to =g in the L'-norm. To see this we observe

o0 o] 1 rn
/ |zg — 2 |dp = Z/ |zo — @y |dp = Asg 2271‘“71 (1 — —> .
T k=1 Gr k=1 k

Given £ > 0, we choose a natural number 7 such that 37, 27kl < /2. Then

1 rn r
To — Zn|ldu < Asg 1—- 27]”“71+E < sgAe
i
T r et 2

for sufficiently large n, hence x,, — zo in the L'-norm.



STRONG SOLVABILITY IN ORLICZ SPACES 53

Thus the number sequence {||z, /(o) } converges to ||zol| (). Since zq is the characte-
ristic function of T\U}Z , we obtain, because of >, pu(Gy) = A/2,
1
o1 (34 n(4) )

We now set ¥y, == /|2yl (@) for n =0,1,2,.... The Gateaux-gradient of || - [|(s) at

Izoll(e) =

T, 18
Yn
J7 9n® (yn) d
We first consider the sequence {®'(y,)}52 in L™ (u). Because of the monotonicity
of " and the choice of s, for n sufficiently large we obtain
[ (yn) — ®'(30)|| o, = ess sup |/ (yn (1)) — @' (w0 (1))

3 ((1 - 1/n)"80> > @ ( e ?sp > -
llznl (@) - llzoll (@)

{/ ynq)/(yn)du} converges to /yoq)/(yo)du7
T T

n=1

because apparently {®’(y,)|n € N} is uniformly bounded in L™ and we have

[ @) - ®wode= [ (@) - )i
T

T\Uiozle
1 1 1 A
e () 7 () G )
zoll (@) lznll(e) zoll (@) 2
Thus the Géateaux-derivative of || - ||() is not continuous in yo and therefore || - || ()

according to [66] is not Fréchet-differentiable. If T has infinite measure, then we
choose a not purely-atomic subset Ty of T with finite measure.

If 3y is the subalgebra of 3, that consists of the elements of > contained in Tp,
then we denote the restriction of p to g by . In the same way as above we can
construct a sequence (y,) of elements of the unit sphere of L®(uo) converging to yo
in L® (), for which the sequence {®'(y, )} does not converge to ®'(yo) in L¥ (u0). In
fact L®(uo) and LY (o) are subspaces of L () and LY (i) resp., so the restriction of
the Luxemburg norm of L®(u) to L® (o) and of the Orlicz norm of LY (p) to LY (uo)
is equal to the Luxemburg norm on L®(uo) and equal to the Orlicz norm on LY (o)
resp. Thus for ¥ not finite and (7)) = oo the Luxemburg norm || - |3y is also not
Fréchet-differentiable on L®(p) \ {0}, and the proof is complete.

Theorem 26. Let (T3, 1) be a o-finite, not purely-atomic measure space. If (L* (1),
Il - l¢wy) s Fréchet-differentiable, then ® satisfies AS°-condition.
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Proof: Assume that ® does not satisfy the A3°-condition, then L® contains accor-
ding to Theorem 3 a subspace, which is isometrically isomorphic to €. But > is
not Fréchet-differentiable, because otherwise ¢! (according Anderson’s Theorem 23)

is an E-space, hence in particular is reflexive. We came to a contradiction.

Theorem 27. Let (T, %, 1) be a finite, not purely-atomic measure space. If (L®(u), ||-
| (ay) is Fréchet-differentiable, then (L* (), || - ||(s)) is reflezive.

Proof: According to Theorem 26 & satisfies the A5°-condition. Then, due to Theo-
rem 4 we have L®(u) = M®(u). Therefore, if || - ||(s) is Fréchet-differentiable on
L®(1)\ {0}, then ¥ is finite, according to Lemma 7, hence by Theorem 8 (MY (), || -
llw)* = (L®(w), ||]l(#y) and thus, according to the theorem of Anderson 23, (MY (u), |-

|lz) is an E-space, hence in particular reflexive. Using Holder’s inequality we obtain

(L7 (), - Nle) € (L2 11 llay) ™ = (M (), ] - )
and so we conclude LY (p) = MY (p).

We are now in the position to characterize the Fréchet-differentiable Luxemburg

norms.

Definition 12. Let A be the set of atoms. We call the measure space (T,%, 1)
essentially not purely-atomic, if w(T\A) > 0, and for p(T') = o0 holds p(T\A) = .

Theorem 28. Let (T3, 1) be a o-finite, essentiolly not purely-atomic measure space,

and (L® (), || - l¢)) be reflezive. Then the following statement are equivalent

(a) (Lé(ﬂﬁ Il - ||(<1>)) is flat convex;

(b)

(©) || - ll(ay is continuously Fréchet-differentiable on L*(u)\ {0};
(d) ® is differentiable.

b) fo is continuously Fréchet-differentiable on L®(p);

Proof: a)= b) and c¢). According to Theorem 17 flat convexity for a not purely-
atomic measure space implies differentiability of ® and by Mazur’s Theorem 16 the
Gateaux-differentiability of || - [|(s).

By Theorem 9, reflexivity of (L% (u), || - |l(s)) implies Ay or A3°® condition for ®
and ¥, if T has infinite or finite measure respectively, because otherwise L?® has a
(closed) subspace, isomorphic to £°°, which according to {25] is also reflexive, meaning

a contradiction. We conclude, using Theorem 4 M®(y) = L® ().
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By Ay or A for ¥ and Theorem 25 and Remark 4 it follows that the Gateaux-
derivative of f® is continuous on M® (), and as in Theorem 25, the corresponding
property for ||-||(s) holds. By [66] continuous Géteaux-differentiability and continuous
Fréchet-differentiability are equivalent.

(a) <= (d). According to Theorem 17 flat convexity for a not purely atomic
measure is equivalent to differentiability of ®.

(b) = (a). Due to Theorem 14 the level set Sy (1) is flat convex. On the other
hand S (1) is identical to the unit sphere of M® = L®. Hence (L%, || - ||(s)) is flat
convex.

(¢c) = (a). If || -||(a) is Fréchet-differentiable on L*®(u)\ {0}, then (L® (1), || - [l(s))

is flat convex due to Mazur’s Theorem 16.

For the sequence space [® the above theorem can be proved in somewhat weaker form.

Theorem 29. Let the Young function ® be finite and [® be reflexive. Then the

following statements are equivalent

(a) (1%, | ll(a)) is flat convez;
(b) |l - llay is Fréchet-differentiable on 1*\ {0};
(c) ® is differentiable for all s with |s| < ®71(1).

Proof. The equivalence of (a) and (¢} follows from Theorems 18 and 10. Let now
(1%, - ll¢s)) be flat convex. The left-sided derivative & of ® in (1) is finite. If
we continue ®’_ in a continuous, linear, and strictly increasing way beyond ®~1(1),
and denote that primitive function which is zero at the origin by ®, then ® is a
differentiable Young function. Apparently (® = 1% and - llay =1 - ll@)- If ¥ is the
convex conjugate of ® then by construction ¥ is finite. & and hence ® satisfies the
Af-condition, because otherwise (I%,]| - ||(#)) contains, according to the theorem of
Lindenstrauss-Tsafriri a subspace isomorphic to £°°, in contradiction to the reflexivity
of (I*,]]]l(e))- It follows that m® = ¢%. Due to Theorem 8 we have (l‘i7 I-ls)" = (l‘i’7 II
ll(3))- The equivalence of the norms implies that (l‘i7 Il - lls) is also reflexive. Hence
- ll¢3); the dual space of a reflexive space, is also reflexive. As demonstrated
above the AY-condition for ¥ follows. Using Remark 3 we obtain (b). By Theorem
15 a) follows from (b).

5.2. Frechet-differentiability and local uniform convexity of Orlicz spaces.

We need a characterization of strict convexity of the Luxemburg norm on M®(p).
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Theorem 30. Let (1,3, 1) be o not purely atomic measure space and let © o finite
Young function. Then ® is strictly conves, if and only if (M® (1), || - |l(a)) is strictly

CONVET.

Proof: Let A be the set of atoms of T'. If ¢ is not strictly convex, then there are

different positive numbers s and ¢, such that

+ 1
o2 = Z(D(s) + B(1)).
2 2
We choose pairwise disjoint sets T4, T5,T5 € ¥ of finite measure with

(T\ A) 1 )
3 2(d(s) + (1)

0 < u(Th) = u(Ty) < min (“
and
0 < p(Ts) < (T A) = 2u(Th).
We put

- (1 — u(T)(@(s) + <1><t>>> |
w(T5)
The functions z := sx, +txm, +uxr, and y = txr, + sy, +uxr, are then elements

of the unit sphere, because we have

[ @ = p(T)8(0) + p(T)800) + (TP

— W(T)R(s) + W(TR0 + p(T)(w) = | Bly)du— 1.
T
Now, the properties of s,¢,Ty and T imply

/Tcp (x;y> dp — (T (%”) b ul(T)d (%”) (T D) — 1.

Conversely, let ® be strictly convex, and =1, z2 be elements of the unit sphere
[[(z1 + 22)/2[|(#) = 1. Then

1/Tq>(x1)du/Tq>(x2)du/Tq><#> d.

Because of convexity of ®, we obtain

(w1 +22)/2) — P(21) — P(z2) =0

almost everywhere. Due to the strict convexity x1 = x9 almost everywhere, i.e. the

Luxemburg norm is strictly convex on M®(y) .

Corollary 2. Let (T, X%, 1) a not purely atomic measure space and ® be o finite Young
function. If f® strictly convex, then ® is strictly convex (because then also M® is

strictly convez).
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The next theorem (compare with [30] p. 350) describes the duality between strict

and flat convexity:

Theorem 31. If the duol space X* of a normed space X is strict or flat convez, then

X itself is flat or strict convex respectively.

The norm of the dual space {or more precisely its square) of a normed space X

can be interpreted as the convex conjugate of the square of the norm in X:

Remark 5. (|31]) Let & : R — R be convez with $(0) =0 and (X,||-||) be a normed
space. We consider the convex function [ X — R, given by f(z) = ®(||z||). Its
conjugate f* : (X*|| - |la) = R is given by

I"(y) = 2*(llylla),

RN
2 2

Conjugate Young functions lead to conjugate modulars as is stated in the next
theorem (see [39]):

i particular

Theorem 32. Let ® be a Young function and U its conjugate. Then for arbitrary
ze L®(u)

@)= sup { / xydu—f%)}(f@)*(x).

yeLT (1)

The modulars f% is bounded if ® satisfies a As-conditions (see [39]):

Theorem 33. If O satisfies Ao condition (or for p(T) < oo the AS® condition), then
F®:L*%(u) — R is a bounded function.

Proof: Let ® satisfy the Ay condition, M > 0 and = € K4)(0, M). If 2" > M,
then

Fola) < [ (%x) < A fP (%) <A™

Let now T be of finite measure and ® satisfy merely the AS° condition. We set

Th = {t S T|% > 80}
to obtain
rotw) - [ e [ R [ (3 s+ w0

< /T @ () dut HDR(Ms0) £ X4 ()P s0).
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A similar statement holds for sequence spaces:

Theorem 34. If ® is finite and ® satisfies the A condition, then f€ : {® =R is a

bounded function.

Proof: Let ® satisfy the A condition on every interval [0,a] let M > 0 and
z € K4y(0,M). Then 37 ®(2;/M) < 1 and hence |z;|/M < ®7'(1). Let further
2" > M, then for a := 2"® (1)

7

row) < 1o (3e) <3t () = X

and the proof is complete.

We are going to characterize reflexive and locally uniformly convex Orlicz spaces

w.r.t. the Orlicz norm.

Theorem 35. Let (1,3, 1) a o-finite, essentially not purely atomic measure space

and L®(1) be reflevive. Then the following statements are equivalent:

Proof: The reflexivity implies in particular that ® and ¥ are finite.

(a) = b): If ® is strictly convex, then its conjugate ¥ is differentiable. Then due
to Theorem 17 (LY (), || - || w)) is flat convex, hence (L® (1), || - ||¢) is strictly convex
(see Theorem 31).

(b) <= (¢): If (L*(p), ]| |l#) is strictly convex, then (L¥ (u), |- |lcv)) is flat convex (see
Theorem 31). Hence due to Theorem 28 || - [|?5,/2 is Fréchet-differentiable. As || - [|5/2
is the conjugate function of || - ||%\112) /2 (see Remark 5), then, according to Theorems
19 and 21 || - ||% is locally uniformly convex. Apparently (c) follows immediately from
(b).

(b) = (d): From flat convexity of (LY(u), || - |l(v)) and reflexivity it follows by
Theorem 28 that f¥ is Fréchet-differentiable. ® and ¥ satisfy the A, or the A
condition respectively, depending on (1) being infinite or finite (see Theorem 9).
Thus fY and its conjugate f® are bounded (see Theorems 32 and 33). Due to

Theorems 19 and 21 this implies the local uniform convexity of f®.

(d) = (a): This follows immediately from Corollary 2.
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Remark 6. Milnes in [60], page 1482) gives an example of a reflexive and strictly

convex Orlicz space w.r.t. the Orlicz norm, which is not uniformly convex (compare.

For the sequence space [® the above theorem can be proved in a somewhat weaker

version.

Theorem 36. Let ® and ¥ be finite and let [* be reflexive. Then the following
statements are equivalent:
(a) (1% |le) is strictly convex;

() || - 1% is locally uniformly convex.
Proof: As in Theorem 35 by use of Theorem 29.

5.3. Fréchet-Differentiability of the Orlicz norm and local uniform convexi-
ty of Luxemburg norm. Using the relationships between Fréchet-differentiability,
local uniform convexity and strong solvability presented in the previous section, we

describe the Fréchet-differentiability of the Orlicz norm.

Theorem 37. Let (T,%, 1) be an essentially not purely atomic, o-finite measure

space, and let L* (1) be reflexive. Then the following statements are equivalent:

(L (). |l o) is flat conves;

P is differentiable,

| - llo is Fréchet-differentiable on L® () \ {0};
| - llo is Fréchet-differentiable on L®(u)\ {0}.

(a
(b
c

(¢

Proof: (a) = (b): Let ¥ be the conjugate of ®. If (L®(u), || - |¢) is flat convex,

then (LY (p), || - l¢w)) is strictly convex. Due to Theorem 30 ¥ is strictly convex and

e

hence ® is differentiable.

(b) == (c): From the differentiability of ® it follows by Theorem 28 that f< is Fréchet-
differentiable. As in the proof of Theorem 35, the local uniform convexity of f¥
follows. Strong and weak sequential convergence agree on the set S := {z | f¥(z) = 1}

because from z,, — z for z,, = € S it follows for =* € 9f¥ (x):
0=f"(xn) = [P (@) 2 (@n —z,2%) + 7(|lz — 2ll(1)),

where 7 is the convexity module of f¥ belonging to = and z*, and thus z,, — =. As S
is the unit sphere of LY (x) w.r.t. the Luxemburg norm, (L¥(u), ||- ||(w)) is an E-space

according to Theorem 22, hence || - || (g has a strong minimum on every closed convex
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set due to Theorem 24. Apparently, this also holds for || - ||%\11) /2. Theorems 19 and 21
then imply the Fréchet-differentiability of || - |3 /2 and hence of || - || in L® () \ {0}.

(¢c) = (a): Follows from the theorem of Mazur, and the proof is complete.

It is now a simple task to characterize the locally uniformly convex, reflexive Orlicz

spaces w.r.t. the Luxemburg norm.

Theorem 38. Let (1,3, 1) be o-finite, essentially not purely atomic measure space

and L®(1) be reflevive. Then the following statements are equivalent:

(a) P is strict convex;
(b)Y (L®(w), | - l(a)) is strictly convez;

() || ||?<I>) is locally uniformly convez.

Proof: Because of M®(u) = L®(u) the equivalence of a) and b) follows from
Theorem 30. If (L®(1), | - l()) is strictly convex, then (L¥(), | - |w) is flat convex
and therefore due to Theorem 37 || - || v is Fréchet-differentiable. Theorems 19 and 21
now imply (c).

(¢c) = (b) is obvious. This completes the proof.

The theorems corresponding to Theorems 37 and 38 for [® can be stated in the wealker

form.

Theorem 39. Let [® be reflexive, ® differentiable and ¥ finite, then ||-||o is Fréchet-
differentiable on [®\ {0}.

Proof: Because of Theorem 10 ¥ satisfies the A condition. Hence f® is, due
to Remark 3, Fréchet-differentiable. The remaining reasoning follows the lines of
Theorem 37, (b) = (c).

Remark 7. If the conditions of Theorem 39 are satisfied, then strong and weok

differentiability of the Orlicz norm on [* agree.

Theorem 40. Let I be reflexive, ® be strictly convex and ¥ be finite. Then || - ||%<I,)

is locally uniformly convex.

Proof: ¥ is differentiable and hence || - ¢ according to Theorem 39 Fréchet-
differentiable. By Theorems 19 and 21 the statement follows.
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5.4. Summary. We now describe Fréchet-differentiability and local uniform conve-

xity by a list of equivalent statements.

Theorem 41. Let (T3, 1) be a o-finite essentially not purely atomic measure space,
® be a Young function and ¥ its conjugate, and L* (1) be reflexive. If K is a closed

convex subset of LY (1), then the following statements are equivalent:

(a)  is differentiable;

(L) (LE2(w), || - |le) is flat convex;

(e) (L*®(u), || - ll(@)) is flat convex;

(d) || - |l& is continuously Fréchet-differentiable on L® (1) \ {0};
e) || - ll(e) is continuously Fréchet-differentiable on L*(u) \ {0};

(
() fo is continuously Fréchet-differentiable on L (u);
g is strictly convez;
h
(i

(j

(
(

v

LY(p), || - lw) is strictly convez;
LY (), || - ll¢wy) is strictly convez;
|

| - I3 is locally uniformly convez;

(k) | - ||(\I, is locolly uniformly convez;
() fY is locally uniformly convex;
(m) || - |lv has a strong minimum on K;

n) |- |lcw) has a strong minimum on K;

v

o} has a strong minimum on K;

p

q

)
)
)
)
)
)
)
)
)
)
)
)
)
) f

) L¥ (), || - ll¢w)) is an E-space;
)y LY

(
(
(
( (1), |l - llw) is an E-space.

Proof: (a), (c), (e} (f) are equivalent according to Theorem 28; (a), (b), (d)
according to Theorem 37; (g), (h), (j), (1) according to Theorem 35; (g), (i), (k)
according to Theorem 38. The equivalence of (a) and (g) is well known, the equivalence

of (j) and (m), (k) and (n) as well as of (1) and (o) follow from Theorem 21. Equivalence
of (m) and (q) and of (n) and (p) follows from Theorem 24, and the proof is complete.

Theorem 42. Let ® be differentiable, ¥ finite and let [ be reflexive. Then the
following statements hold:

(@) || - |lo s continuously Fréchet-differentiable on 1*\ {0};

(b) |l - lle is continuously Fréchet-differentiable on I®\ {0};

(c) f® is continuously Fréchet-differentiable;

(d)

|- 1% is locally uniformly convez;
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| Iy is locally uniformly conve;
1Y is locally uniformly convex;

|-l has a strong minimum on K;
|

| - [lwy has a strong minimum on K;

for every closed conver subset K of 1.

Proof: (b) follows from Theorem 29, (d) by Theorem 40, (a) by Theorem 39. From
reflexivity we obtain using Remark 3 (namely, its statement (c)) and using Theorems
19 and 21 thereby (f). Finally (e) follows from (a). The statements (g), (h) and (i)

follow from Theorems 19 and 21.

6. APPLICATIONS

We discuss

e Tychonov-regularization: this method was introduced for the treatment of ill-
posed problems. The convergence of the method was proved by Levitin and
Polyak for uniformly convex regularizing functionals. We show that locally
uniformly convex regularizations are sufficient for that purpose. As we have
given a complete description of local uniform convexity in Orlicz spaces we
propose such regularizing functionals explicitly.

e Ritz method: the Ritz method plays an important role in many applications
(e.g. in FEM-methods). It is well known that the Ritz procedure generates
a minimizing sequence. Actual convergence of the minimal solutions on each
subspace is only achieved if the original problem is strongly solvable.

e Greedy algorithms have drawn a growing attention and experienced a rapid
development in recent years (see e.g. Temlyakov). The aim is to arrive at a
‘compressed’ representation of a function in terms of its dominating “frequen-
cies”.

In the convergence proof of the Tychonov regularization method we make explicit use
of local uniform convexity. The convergence of the Ritz method follows from strong
solvability, whereas the convergence proof of the greedy algorithm follows from the

Kadec-Klee property. So three different aspects of E-spaces come into play.

6.1. Regularisation of Tychonov Type.
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Lemma 8. Let X be o Banach space, f : X — R a continuous locally uniformly
convex function, then for all z,y € X, oll z* € 3f(x) and all y* € 3f(y):
Toer (2 —yl) < (@ -y, 2" —y")

where T, o+ denotes the convexity module belonging to [ ot =, z*.

Proof: As f is locally uniformly convex we have:

Tz,z*(”x - y”) + <y - :E7ZE*> < f(y) - f(:l?)

On the other hand the subgradient inequality yields: (z —y,v*) < f(z) — f(y), i.e.

Tewr (|2 —yl]) + {y —z,2%) < (y —2,y")

as claimed.

Theorem 43. Let X be o reflexive Banach space and f and g be continuous, Gateauz-
differentiable convex functions on X. Let further f be locally uniformly convex with
bounded conjugate f* and S := M (g, X) # 0.

Let now o, be a positive sequence tending to zero and f, = a, f+g. Let finally x,,
be the (uniquely determined) minimal solution of f, on X. Then the sequence {x,}

converges to the (uniquely determined) minimal solutions of [ on S.

Proof: By Theorem 1 f, is locally uniformly convex and f;; is bounded, hence
M(fn, X) consists of the unique element z,.

For z € S, because of monotonicity of the derivative of g

(@n — 2,9/ (2n) = g'(2)) + an(zn — 2, ['(z0))

>0
=@y, —z, 0 f'(2n) + ¢’ () — g'(x)) = 0.
—
=0 =0
It follows
(6.1) (Tn —x, f'(2,)) 0.

For z € S arbitrary

This implies f(z,) < f(z), hence x, € S¢(f(z)) for all n € N. As f* is bounded, it

follows according to Theorem 4 that the sequence {z, } is bounded. Let now (z4) be

a subsequence converging weakly to zg.
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First we show that ¢'(zq) =0, i.e. zg € S. Fory € X

(v — 1, 9'(y) — g'(xr)) + arlzr —y, f(xr))
>0

=y — a1, g (y) — filzw) = {y — 21, 9'(9)).
=0
For fixed y the expression {z} — vy, f/(z)) is bounded from below
(@ =y, f'(@e)) = (en — v, f'(@e) = ') Haw —y, f(y)

>0
—1f" Wl —yll = €

Y

Hence we obtain

—Coy, < ak<xk - Y, f/(fk)> < <y - $k79/(y)>~

On the other hand the weak convergence of z;, — z¢ implies:

(v =2k, 0' () — (v —20,9'(¥)

and thus for ally € X
(y —0,9'(y)) 2 0.
Let now ¢ > 0,2 € X be arbitrary and y = zo + ¢2. Then the continuity of ¢ —
(2,9 (wo+t2)) = Frg(wo-+tz) implies 0 < (z,¢'(wo+2)) —>(2,¢'(w0)), hence g'(wo) =
0,ie zg€S.
Now we show the strong convergence of (zg) to zo. Due to Lemma 8 the weak

convergence and inequality (6.1) yield

TIva/(IO)(”xO - xk”) < <:Eo — Tk, f/(ZEO) - f/(xk)>

= (zo — zp, f/(x0)) + (xx — 20, ['(24))
<0
S <:Eo — Xk, f/(xo)> — 0.

Hence x — zo and thus also z,, — xo.
It remains to be shown that zg is the minimal solution of f on S. Because of the

semi-continuity {82] of f’ it follows with inequality (6.1) for z € §
O S <ZE - xn7 f/(xn)> - <ZE - ZEO7 f/($0)>

By the characterization theorem of convex optimization [31] the assertion of the

theorem follows.
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Remark 8. the proof of above theorem easily carries over to semi-continuous mono-

tone operators (compare {43]).

Theorem 44. Let (T3, 1) be a o-finite, essentiolly not purely-atomic measure space,
L® (1) be reflexive, and ® be strictly convex and differentiable. Let either f = f® or
f= 3" ||%<I>) or f =4 |3 and g : L®(n) — R be convez, continuous, and
Gateaux-differentiable and S := M (g, L®(p)) # 0.

Let now o, be a positive sequence tending to zero and [, = anf + g. Let finally
x,, be the (uniquely determined) minimal solution of f, on L®(u). Then the sequence

{z,} converges to the(uniquely determined) minimal solution of f on S.
Proof: By Theorem 43 in conjunction with Theorem 41.

6.2. Ritz’s Method. The following method of minimizing a functional on an incre-

asing sequence of subspaces of a separable space is due to Ritz (compare e.g. [82]).

Theorem 45. Let X be a separable normed space, X = span {¢;,7 € N}, and X,, .=
span {1, ..., on}. Let further f : X — R be upper semi-continuous and bounded
from below. If d = inf f(X) and d,, := inf f(X,,) for n €N, then lim,,_,o d,, = d.

Proof: d,, > dy+1 for all n € N, hence d,, — a € R. Suppose a > d. Let (d—a)/2 >
e > 0and z € X with f(z) < d+ e. As f is upper semi-continuous, there is a
neighbourhood U(z) with f(y) < f(z)+¢< for all y € U(z), in particular there exists
ym € U(z) with y,, € X,,. It follows that

a <dp < flym) < flz)+e < d+ 2e.
We came to a contradiction.
Corollary 3. Let d,, == inf f(X,,), and (8,,) be a sequence of positive numbers tending

to zero. If x, € X, is chosen in such a way that f(x,) < dy, + 6., then (z,) is a

minimizing sequence for the minimization of f on X.
Theorem 46. Let X be a separable reflexive Banach space with
X =span {g;,1 € N}, X, :=span {¢1,...,0n}

Let f and g be continuous convex function on X. Let further f be locolly uniformly
convezr and f* be bounded. Let d = inf(f + ¢)(X) and dy, := inf(f + ¢g)(X,,) for
n € N, (6,) be a sequence of positive numbers and z, € X,, be chosen to have
flan)+alzy) < dnt6,. Then the minimizing sequence (xy,) converges to the (uniquely

determined) minimal solution of [+ g on X.



66 PETER KOSMOL AND DIETER MULLER-WICHARDS

Proof: Corollary of 3, with Theorems 1 and 20.

Remark 9. The above theorem enables to regularize the minimization problem min
(9, X) by adding a positive multiple of of o locally uniformly convex function, i.e.

one replaces the above problem by min(af + g, X) (compare with Theorem 43).

Theorem 47. Let (T,%, 1) be a o-finite, essentiolly not purely-otomic measure,
L®(1) be separable and reflexive, ® be strictly convex. Let L® (1) = span {¢;,i € N}
and X, = span {@1, ..., pnt. Let either f = f® or f :=| - ||%<I,) or f:=|-1% and
g: L®(p) — R be convex and continuous.

If d == 1inf(f + g)(L®(w)) and dy, := inf(f + g)(X,) for n € N, (6,,) is a sequence
of positive numbers tending to zero and x,, € X,, is chosen to have f(z,) + g(a,) <
dp + 0n, then the minimizing sequence {x,} converges to the (uniquely determined)

minimal solution of f + g on L®(u).
Proof: Theorems 46 and 41.

6.3. A Greedy Algorithm in Orlicz Space. For a compressed approximate repre-
sentation of a given function in L?[a,b] by harmonic oscillations it is reasonable to
take into account only the frequencies with dominating Fourier-coefficients. This leads
to nonlinear algorithms, whose generalization to Banach spaces was considered by V.

N. Temlyakov. We will discuss the situation in Orlicz spaces.

Definition 13. Let X be a Banach space, then D C X is called o dictionary if
(1) llell =1 for all ¢ € D;
(2) from ¢ € D it follows that —p € D;
(3) X =span (D).

We consider an algorithm from the class of nonlinear m-term algorithms [78]. In
[76] it is called Weak Chebyshev Greedy Algorithm (WCGA).

Algorithm (WGA) Let X be strictly convex and 7 = (t)7°, with 0 < t; <1 for
all k € N. Let x € X be arbitrary, and Fp € 5(X*) be a functional with Fy(z) = ||z||.
Given z € X\{0}, set ro .=z, and for m > 1

(1) choose oy, € D with

Frpi(pm) 2 tmsup{Fr,._, (p)lp € D},

(2) for Up = span {p;,j = 1,...,m} let z, be the best approzimation of z

w.r.t. Uy,
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(3) Setry, ==z —zm and m — m+ 1, goto 1.

If X is flat convex, then F, is given by the gradient V||z|| of the norm at = (s. Mazur’s
Theorem 16). Apparently: ||F,| = 1.
For the case 7 = (1) with 0 < ¢ < 1 we denote the corresponding algorithm by GA.
The following theorem is proved by V. N. Temlyakov in [76]:

Theorem 48. Let X be o sirict convex and reflezive Banach space with Kadec-Klee
property (s. Theorem 22), whose norm is Fréchet-differentiable. Then GA converges

for every dictionary D and every z € X.
The above theorem can be restated:

Corollary 4. Let X be an E-space, whose norm is Fréchet-differentiable. Then GA

converges for every dictionary D and every z € X.

Proof: According to Theorem 22 X has the Kadec-Klee property and the proof is

complete.

In Orlicz-spaces the above theorem assumes the following formulation:

Theorem 49 ((Convergence of GA in Orlicz spaces)). Let (1,3, 1) be a o-finite,
essentially not purely-otomic measure space, ¢ be o differentiable, strictly convex
Young function, and L®(p) be separable and reflexive. Then GA converges for every

dictionary D and every = in LE(p).

Proof: If ¥ is the conjugate of ®, then ¥ is differentiable. Hence by Theorem 41
(LY (1), 1 ll¢wy) and (LY (), || -||w) resp. are Fréchet-differentiable. Due to Anderson’s
Theorem 23 (L®(u), | - ||(#)) and (L*(u), || - ||) resp. are E-spaces, whose norms are
by Theorem 41 Fréchet-differentiable.

Remark 10. Depending on the measure, reflexivity of L®(u) can be characterized by

appropriate Ao conditions (see Theorem 9).
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