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ABSTRACT. It must have been around 1966 when I first met Klaus Krickeberg 
at a conference in Greece. In my memory it was Konrad Jacobs who encouraged 
some young people from Erlangen to attend. I still remember when Klaus took us, 
M. Sieveking, J . Kohn and me, to a quite exciting tour by car on the Peloppenese. 
Later on, times were exciting too when I was around 1970 assistent to Klaus in 
Heidelberg. I also remember David G. Kendall at the Greece-conference, telling 
us about the Delphi method. About this I had forgotten until recently when 
writing this paper I noticed that my current work on opinion dynamics is related 
to the Delphi method. 

Dedicated to the 80th birthday of Klaus Krickeberg 

1. I N T R O D U C T I O N 

Markov chains represent an important tool used in mathematics, including statis-
tics and stochastics, as well as in many other fields, ranging from physics over biology 
to sociology. Mathematically, a Markov chain is a discrete-time dynamical system 

(1.1) x(t + 1 ) = Ax(t) for t = 0 , 1 , 2 , . . . and x(0) e An, 

where x(t) denotes the state vector at time t, An the simplex 

An = j y e R+ I ՜ք^ա = 1 j , R+ the first orthant in R n 

and A the transi t ion matr ix with a j > 0 for 1 < i,j < n and ^ n = 1 a i j = 1 for 
all j . The most relevant single result about Markov chains is the following Ergodic 
Theorem for primit ive Markov Chains (see [14], Theorem 4.2, p. 91) or Bas i c 
Limit Theorem for Markov Chains (see [13], Theorem p. 230) which states for a 
primit ive or regular matrix A, that is some power of A has all its elements (strictly) 
positive, that 

(1.2) lim A* = B. t— 
Thereby, all columns of matrix B are equal and given by the vector q e An uniquely 
determined by Aq = q. It is common to prove this theorem by considering Markov 
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chains as particular positive dynamical systems and applying the Perron-Frobenius 
Theorem on nonnegative matrices (see for example [13] and [14]). Instead of assuming 
A to be primitive it is sufficient to assume that a power of A is scrambling, where 
the latter means that any two rows have a (strictly) positive value in a joint column. 
Although it seems not to be widely known, this condition is sufficient and necessary 
for (1.2) to hold. Below the Basic Limit Theorem for Markov Chains will be featured 
as a special case within the general framework of compromise dynamics. 

In Section 2 Markov chains will be viewed as the special linear case of a so called 
GauBsoup. The question of a Basic Limit Theorem for GauBsoups will be raised and 
some answers will be given by referring to the literature. 

In Section 3 Markov chains and Gauss soups will be embedded into the general 
frame work of compromise dynamics. A Basic Limit Theorem will be presented which 
covers those for Markov chains and Gauss soups. 

In Section 4 open problems will be addressed which concern the dependence of 
the limit state vector on the initial state vector. Whereas for Markov chains this 
dependence is extremely simple it can be extremely difficult for Gauss soups. In 
the case of n = 2, the limit state vector which is given by the arithmetic-geometric 
mean depends on initial conditions via an elliptic integral, as was already observed 
by Gauss (see [2], [6]). 

2. F R O M M A R K O V C H A I N S T O G A U S S S O U P S 

For a Markov chain the entry aij of the transition matrix A is interpreted as the 
probability to change from state j to state i. The equation xi(t + 1) = J2 n=l aijXj(t) 
according to (1.1)then gives the probability for the system to be in state i at period 
t + 1 in dependence of the probabilities for the previous period. Consider for the 
transposed matrix AT the system dual to (1.1) 

(2.1) y(t + 1 ) = AT y(t) for t = 0 , 1 , 2 , . . . and y(0) e R+ . 

The equation yi(t + 1) = J2՝Ո=1 ajiyj(t) means because of ^ ГП=^ aji = 1 that the state 
yi(t + 1) is given as a weighted arithmetic mean of the states for the previous period. 
Considering the Basic Limit Theorem, property (1.2) is equivalent to l im t — T O(AT) t = 
BT. Thus, we may use (1.1) and think in terms of probabilities or we may use (2.1) 
and think in terms of averaging. In the latter case we obtain for an initial vector y(0) 
that 

(2.2) lim y(t) = lim (AT)4y(0) = BTy(0) = c 
t — t — 



MARKOV CHAINS, GAUSS SOUPS, AND COMPROMISE DYNAMICS 61 

where all components of vector c are equal. This can be interpreted as follows. 
Imagine a round of experts 1, 2, . . . , n who in discussing some issue revise opinions 
according to system (2.1). That is each expert forms his opinion by taking a weighted 
arithmetic mean of the opinions of all experts in the previous period. Equation 
(2.2) then says that under the assumption of the Basic Limit Theorem for Markov 
chains the round of experts will approach a consensus. (See [4] for this point of 
view. Related are the earlier debates about the various Delphi methods as well as 
the recent concepts of prediction markets.) This interpretation leads immediately to 
the following question: Why should experts average by weighted arithmetic means 
and not, say, by weighted geometric means? This leads to the following concepts of a 
G a u s s s o u p defined as a discrete-time dynamical system for 1 < i < n, t = 0, 1, 2, . . . 

(2.3) xi(t + 1 ) = fi(xi(t),...,xn(t)) for x1(0) > 0 , . . . , x n ( 0 ) > 0 

where for weights aij > 0 with ^ " = 1 aij = 1 either f i ( x 1 , . . . ,xn) = ^ " = 1 a i j x j or 
fi(x1,..., xn) = Пn=1 x j . An interesting question is under what conditions on the 
matrix A = (aij) a Basic Limit Theorem does hold, that is the system (2.3) does for 
any initial conditions converge to a consensus. Consider the following simple example 
for n = 2, studied already by Gauss in 1799 (see [2], [6]): 

x1(t + 1) = 2(x1(t) + x2(t)),x2(t + 1) = v /x1(t)x2(t) with x1(0) > 0,x2(0) > 0. 

It is easy to see that the system converges to a consensus c but it is not so easy to 
determine the arithmetic-geometric mean c in terms of initial conditions. A Gauss 
soup can be interpreted by saying that all experts average by a weighted arithmetic 
mean but whereas some possess a utility function which is just the identity others 
possess the logarithm as utility function. 

A system of type (2.3) has been considered in [5] and [7] for m e a n s of order r. 
Given real numbers pi > 0 with J2n=1 Pi = 1 the latter is defined as n=1 xp for 
r = 0 and as ( ^ n = 1 P x ) 1 for r e R, r = 0. 

The following result is obtained in [5] and [7] by different reasoning; there is no 
reference to [7] in [5]. 

Propos i t ion Let in (2.3) f i ( x 1 , . . . ,xn) be a mean of order ri for 1 < i < n. If 
pi > 0 holds for all i then 

lim xi(t) = c for all 1 < i < n 
t— 

where c may depend on the initial conditions. 
This proposition as well as a similar result for Gauss soups we will obtain in the 

next section as special cases within a much broader framework. 
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3. F R O M G A U S S S O U P S T O C O M P R O M I S E D Y N A M I C S 

The (dual) Markov chain of equation (2.1) and, more general, a Gauss soup as 
defined by equation (2.3) has been interpreted as a process of opinion formation 
among experts where each expert takes others into account by using a weighted 
arithmetic or geometric mean. One may think also of experts using means of order r. 
All these means can be looked at just as different ways of making a compromise. Up to 
now opinions were represented by real numbers but we may allow for opinions having 
several dimensions. Let S С R d , for d > 1, denote the set of all possible opinions. 
What then could a compromise mean in this setting? An obvious idea would be 
to model a compromise of opinions x 1,x 2,...,x n e S as a convex combination 
a1x 1 + a2x 2 + . . . + anx n with 0 < ai < 1 and ^Ո=ւ ai = 1. Thus, let S be a 
convex set and denote the set of all convex combinations by conv {x 1,... ,xn}. A 
map f : Sn ^ Sn is called a compromise m a p on S for n experts if the component 
maps f i of f satisfy the condition 

(3.1) c o n v { f i ( x ) , . . . , fn(x)} С conv{x\ . . . , xn} 

for all x = ( x 1 , . . . , xn) e Sn. 

If there holds already a consensus c, that is x1 = . . . = xn = c, then (3.1) im-
plies that f i ( x ) = . . . = fn(x) = c. A compromise map is called proper if in all 
other cases, that is for x 1,... ,xn not all equal, the inclusion in (3.1) holds properly, 
С but not = . The following result on compromise maps is obtained in [11]. 

T h e o r e m For a proper and continuous compromise map f the compromise algo-
rithm given by the recursion 

(3.2) x i(t + 1) = f i ( x 1 ( t ) , . . . , x n ( t ) ) for 1 < i < n,t e {0,1, 2 , . . . } 

converges always to a consensus. That is, there exists c = c(x(0)) such that 

(3.3) lim x i(t) = c for all 1 < i < n, x(0) = ( x 1 (0 ) , . . . , xn(0)) e Sn. t— 

The theorem can be strengthened by the following 
A d d e n d u m Instead of assuming in the Theorem the compromise map f to be 

proper it suffices to assume that some iterate f k of f is proper. 
Proof . Obviously, f k is a compromise map, too. By the Theorem 

lim f k t(x) = C(x), C(x) = (c(x),...,c(x)), x = x(0). t— 

By continuity of f 

lim f k t + 1(x) = f(lim f k t(x)) = f(C(x)). t — t — 
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From (3.1) it follows that 

f (C (x)) = (f1(C (x)),..., fn(C(x))) = ( c ( x ) , . . . , c(x)) = C (x). 

By iteration 

lim f  k t + i(x) = C(x) for 1 < i < k - 1 and, hence, 
t— 

lim f s (x ) = C(x) . 
S— 

• 
For the special case of one dimension, d = 1, we obtain the following result. 
Coro l l a ry 1 Let S be an interval in R and f : Sn ^ Sn be a continuous map 

such that for 1 < i < n and x G Sn  

(3.4) min x j < fi(x) < max x j. 
1 < j < n 1 < j < n 

Suppose, for some iterate f k and given x = ( x 1 , . . . , x n ) with not all components 
equal at least one of the two inequalities in (3.4), with f i ( x ) replaced by f k (x), holds 
strictly for all 1 < i < n. Then the compromise algorithm for f converges always to 
a consensus. 

P roo f . With a(x) = min x j and b(x) = max x j we have that c o n v j x 1 , . . . , xn} 
1 < j < n 1 < j < n 

is the closed interval [a(x),b(x)]. Thus, (3.4) implies that f is a compromise map 
on S. Obviously, f k is a compromise map, too. By assumption for x with not 
all components equal fk(x) G]a(x),b(x)] for all i or fk(x) G [a(x),b(x)[ for all i. 
Therefore, f k is proper and the Addendum applies. • 

One verifies easily that all the means mentioned satisfy inequalities (3.4) (for S = 
R+) . Indeed, (3.4) describes what a mean "means". Such a mapping is called a 
generalized mean (or abstract mean) in [2]. 

There it is shown that for a mapping with components satisfying (3.4) the iterates 
converge to consensus, provided both inequalities in (3.4) hold strictly for x with 
not all components equal. The latter conditions is more demanding than the one in 
Corollary 1 as can be seen from the following example f : R + ^ R + , f 1 ( x 1 , x 2 ) = 
min{x1 ,x2} , f2 (x ! ,x2) = 1 (x1 + x 2 ) . 

Corollary 1 applies to the following joint extension of Gauss soups and mappings 
with components given by means of order r. Let f : R + ^ R + ( R + without 0) be a 
mapping where for each 1 < i < n the component mapping f i ( x 1 , . . . , xn) is given 
either by 

aij xji I or by . (3.5) aij xj I ЧУ I I xj 
U = 1 / j = 1 
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Thereby, for all i,j,ri = 0,0 < aij n=1 1. The matrix A = (aij) is called 
s c rambled if for any two rows i and j there exists a column k, such that aik > 0 
and ajk > 0 (see [14]). 

Corol lary 2 The compromise algorithm for the map f defined above by (3.5) 
converges always to consensus provided the matrix A = (aij) is scrambled. 

Proof . Obviously, the inequalities (3.4) are satisfied for each f i . To obtain the 
result from Corollary 1 we show that the equations f i ( x ) = min e x e and fj(x) = 
maxf x e for any two indices i and j imply that all components of x must be equal. 
We consider the case where 

f i ( x ) = E ՛ ihxh and f j (x) = n = 
Vh=1 

the other cases can be treated the same way. It follows 

E < 
h = 1 

ihxh min x l 

V e 

and П 
h=1 

and, hence 

h=1 

J2 aih(  x h - ( m e i n x t ) T i ) 
h = 1 ՝• ' 

n 
յ ՜ ՜ լ է  xh 

and 

h=1 
maxe 

1 . 

By assumption there exists k such that aik > 0 and ajk > 0. The former implies that 
xk — (mine x e y T = 0 and the latter that = 1. Thus mine x e = xk = maxe x e  

which means that all xe must be equal. • 
The Proposition stated in Section 2 is a special case of Corollary 2 by observing 

that the matrix A having all its rows equal to the vector (p1,... ,pn) is strictly positive 
and, hence, scrambled in a trivial way. 

Since a Markov chain is a special case of the system given by (3.5), Corollary 2 
applies to Markov chains, too. But in this case we can obtain a sharper result from 
Corollary 1. 

Corol lary 3 The Basic Limit Theorem for a Markov chain given by the matrix 
A holds provided some power of A is scrambled. 

Proof . The map defined by f i ( x ) =J2n=1 aijxj satisfies (3.4) and f k satisfies the 
assumptions made in Corollary 1 by the same argument as in the proof of Corollary 
2 when applied to the power Ak. • 

a ij 

ajh 
h 

T 
ajh max x h 

0 

maxf x 
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Thus, looking from Corollary 3 back at the Theorem and its Addendum in Section 
3 the latter may be viewed as an extension of the Basic Limit Theorem for Markov 
Chains to the more general compromise maps. 

There are many more consequences of the Theorem on compromise dynamics. It 
can be applied to a nonlinear model of opinion dynamics developed in [9] and [10] 
and also to a model of collective dynamics in [12] where experts are equipped with 
utility functions. 

4. O P E N P R O B L E M S 

A quite natural question with respect to the compromise algorithm of the Theorem 
is the question of how the consensus c(x(0)) does depend on the initial conditions x(0). 
For the case of a Markov chain where the compromise map is given by f (y) = ATy 
this question is easily answered. For A scrambling from (2.2) we have that 

lim y(t) = lim (AT)4y(0) = BTy(0). 
t — t — 

Since all columns of B are given by the vector q G An given uniquely by Aq = q it 
follows for the consensus that 

n 

(4.1) c(y(0)) = £ qjy(0)j. 
j = 1 

In particular, the consensus is a linear function of the initial conditions. 
What about nonlinear compromise maps, in particular Gauss soups? Consider 

the simple case of the Gauss soup given by f 1 ( x 1 , x 2 ) = X1++ X2, f 2 ( x 1 , x 2 ) = v / x 1 x 2 . 
Gauss proved that 

n 
c(xi(0),x2(0)) = -

d( 

\Jx1(0)2 cos2 ( + x 2(0) 2 sin2 (f 

Surprisingly, the dependency of the consensus on initial conditions is quite involved. 
What about a Gauss soup with other weights in case of n = 2, that is 

f i ( x i , x 2 ) = a x i + (1 — a)x2, f2(xi , x 2 ) = x^x^,՜" ? 

I do not know of any explicit formula for c(x 1(0) ,x 2(0)) . 
What about n = 3, Gauss soups with three experts? I simply do not know. Gauss 

himself and many mathematicians following him explored a lot of special cases. For 
example for n = 2 the proper compromise map given by 

, , Հ x i + x2 xi + x2 
f i ( x i , x 2 ) = , h(xi,x2) = \ x2 

1 
n 

0 
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or for n = 3 the proper compromise map given by 
x1 + x2 + x3 

f1 (x1,x2,x3) 2 

x x + x1x3 + x2x3 
(4.2) f2(x1,x2,x3) = W 3 

f3 (x1,x2,x3) = ^xYx^x^. 
For n = 4 Borchardt extended Gauss' formula (4.2) for the proper compromise map 
with components given by 

(4.3) 4(x1 + x 2 + x 3 +x4) , 2 ( ^ x 1 x 2 + ^ x 3 x 4 ) , 2 ^ x 1 x 3 + ^ x 2 x 4 ) , 

(For these and many more examples see [1], [2], [3].) 
Open problems abundant also for compromise maps covered by Corollary 2, for 

example the following variation of the simplest proper Gauss soup 

/ x r —|— x r \ r 

(4.4) f1 ( x b x 2 ) = ( - — — , r = 0, f2(x1,x2) = л/ x1x2. 

Except for r = 1, I do not know of any explicit formula for c(x 1(0) ,x 2(0)) . 
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