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ABSTRACT. In gratitude to Klaus Krickeberg who introduced the author t o Shan-
nons information theory, this contribution is devoted t o certain basic consider-
ations which are consistent with, yet carry you beyond Shannons original ideas 
f rom 1948, cf. [13]. Fact is that since Shannons pioneering work – t o a great 
extent centred around the notion of entropy – a jungle of alternative entropy 
measures have been suggested. Philosophical speculation will lead us through 
this jungle and lay out a narrow path of special entropy measures, the so-called 
Tsallis entropies, thereby providing these entropy measures with special credi-
bility. 

Dedicated to the 80th birthday of Klaus Krickeberg 

1. I N T R O D U C T I O N 

Undeniably, modern information theory started sixty years ago with Shannons 

path-breaking paper [13]. Twelve years later, Krickeberg, then guest professor at the 

University of Arhus, introduced a small group of students, including the author, to 

the fascinating new world. Emphasis was on interpretations. The students should 

see that Shannons concepts were "just the right ones" . 

Since Shannons pioneering work, a multitude of other concepts, mainly measures 

of entropy and divergence, have been suggested and applied in many fields of science. 

This development is technically intriguing and of some fascination. However, for 

many of the new concepts there are no convincing arguments to the effect that these 

concepts too are "just the right ones" to work with. 

Different areas of science have different needs. We shall have the needs of sta-

tistical physics in mind. A key feature of the all-important notion of what is there 

often referred to as Boltzmann-Gibbs-Shannon entropy is its additivity (additivity over 

independent subsystems). However, there is a need for other quantities since exper-

imental evidence has shown that for certain phenomena, classical thermodynamics 
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does not lead to agreement with observation. It was suggested by Tsallis in 1988, cf. 

[15], that by basing the thermodynamic considerations on a new class of entropies, 

now known as Tsallis entropies, satisfactory agreement with data was possible in 

cases where the classical theory had failed. The interested reader is referred to the 

comprehensive documentation in the "Tsallis literature" which can be traced through 

the bibliography maintained by Tsallis, cf. [15]. 

The class of Tsallis entropies, which comprises Shannon entropy as a special case, 

have received much attention in the statistical physics literature, but also been met 

with criticism due mainly to a lack of transparent interpretations. In our approach, we 

shall focus on three concepts, truth held by "nature" , belief as expressed by man and 

experience acquired through observation by man. Based on the hypothesis that there 

is a functional relationship between the three concepts and on a natural variational 

principle, classical- as well as non-classical measures of entropy and other essential 

quantities are derived. The approach aims at a genuine interpretation, rather than 

relying on formal mathematical analogies or on axiomatic characterizations. 

Our approach is philosophical or speculative, if you wish, and we shall use the ex-

cuse of the "Festschrift atmosphere" to surpass certain technical difficulties. Instead, 

the contribution is an introduction, with focus on the ideas. It will be followed-up 

by a more comprehensive and technical publication. As it is, the contribution is an 

appetizer which may, so is the intention, be enjoyed by the Festschrift readers. 

2. C O N T E M P L A T I N G 

Let us put ourselves in the shoes of the physicist who is planning to set-up ex-
periments and to engage in associated observations. Borrowing terminology from 

philosophy, the physicist operates in a certain world and is interested in studying 

particular situations from this world. The physicist might argue as follows: 

1: I find that truth, belief and experience are concepts of key importance on the 

way to information. I seek the truth, am restricted in my planning of experiments by 

my beliefs and after observation, I will know by experience through the data observed 

how truth manifests itself to me. Thinking about it, I ask why should not what I see 

in terms of data depend not only on truth but also on belief? Accepting this idea, I 

introduce a functional relationship z = П(х, y). Here, x, y and z represent, respec-

tively a truth instance, a belief instance and an experience- or data instance. These 

instances are objects associated with any particular situation I may be interested in. 
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The function П is the global interactor. It is a characteristic of the world of which I 

am a part. 

As extreme examples, I point to the classical world where experience is a genuine 

reflection of truth. This world is characterized by the global interactor П(х, y) = x. 

And, as another extreme, I can think of, I mention a black hole characterized by the 

global interactor П(х, y) = y. In such a world, I can only get out what I myself put 

in. 

2: I am interested in many quite different situations and in my overall planning 

I will, just as did Shannon, focus on concepts which are independent of semantic 

content. Therefore, I apply probabilistic reasoning across semantic differences. In this 

way I will also enable quantitative reasoning. Thus, instances x, y and z related to 

truth, belief and experience in a specific situation will be probability vectors ( x i ) i e A , 

(yi)ieh and (zi)ieA with A, the alphabet, a set of indices which identify the various 

basic events associated with the situation in question. I will concentrate on discrete 

distributions. To me, they are the more fundamental ones. 

I assume that the global interactor acts locally, i.e. is of the form n(x, y) = 

( n ( x i , y i ) ) i e A for some real valued function n defined on [0,1] x [0,1]. This function 

is the local interactor or ju s t the interactor. 

As examples, the local interactor corresponding to the classical world is the pro-

jection (x, y) ^ x on the first coordinate whereas the local interactor corresponding 

to a black hole is the projection (x,y) ^ y on the second coordinate. 

3: I must be prepared for other forms of interaction than those connected with 

either a classical world or a black hole, but will always assume that the interactor is 

sound, i.e. that n(x, x) = x for all x G [0,1]. Stronger conditions should be considered 

and in this connection, it appears sensible to impose conditions of consistency: I will 

call the interactor weakly consistent if, for any pair (x, y) of probability vectors, 

x = (x i ) i £ A and y = (yi)ieA, 2 i e A Zi = 1 with zi = n ( x u y i ) for i G A. If, with 

the same assumptions on x and y, it can be concluded that z = ( z i ) i e A is in fact a 

probability distribution, I will say that n is strongly consistent. 

4: Any event I may observe entails a certain effort on my part. This effort I 

shall also refer to as the local description cost. Before setting up experiments, I will 

determine the effort I am willing to or have to devote to any event I may be faced with. 

It can only depend on the assigned belief-value yi and is denoted n(yi). The function 
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к : у ^ к(у), defined on [0,1] and with values in [0, то], I refer to as the descriptor. 
As 1 represents certainty, к(1) = 0 must hold. I do not want to distinguish between 

descriptors that only differ by a scalar factor, and therefore introduce an assumption 

of normalization. As к(1) = 0 and as I do not want to assume that к(0) is finite, I 

impose the condition к'(1) = —1 as the natural normalization condition. 

5: I will apply a principle of separability and consider my total effort related to 

observations in a given situation to be the sum of local efforts associated with the basic 

events. In so doing, I must take into account the weights with which I will experience 

the various basic events. The total effort I also refer to as the total description cost or 

simply the description cost. This cost, denoted by the letter Ф, is thus the weighted 

sum of individual contributions, i.e., with x for truth- and у for belief instances, 

(2.1) Ф(х ,у ) = ^ n ( x i , y i ) K ( y i ) . 
ieA 

6: I will attempt to minimize description cost and shall appeal to the variational 

principle that the smallest value is obtained when there is a perfect match between 

truth and belief, i.e. when у = x. This principle I call the perfect match principle. 
The quantity 

(2.2) J ^ n ( X i , y i ) K ( y i ) XiK(Xi ) 
i£A i£A 

represents my frustration, as it compares the actual description cost with the smallest 

possible cost, had I only known the truth. The perfect match principle may, therefore, 

also be formulated by saying that frustration is the least, in fact disappears, when 

y = x. 

Theoretically, if I knew x = ( x i ) i e A , minimal description cost is what I would aim 

at. It is an important quantity. In anticipation, I call it entropy and denote it by the 

letter H: 

(2.3) H(x) = inf Ф ^ , у) = V ՝ ՝ x i K(x i ) -1 

У=Ш^А i E A 

The quantity (2.2) also appears important. It is tempting to call it "frustration" but, 

again in anticipation, I better call it divergence. I shall denote it by the letter D: 

( 2 . 4 ) D ( x , y ) = Ф^,у) — H(x) . 

1In order to allow a singular case – the case q = 0 of Theorem 1 below – to fit into the framework, 
the inflmum should be restricted to run over probability distributions y with a support which contains 
the support of x . 
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I may leave it to further technical discussion how divergence should be defined in 

cases with infinite entropy - or I may neglect this possibility as it cannot represent 

any physical reality. 

3. C O N C L U D I N G 

T h e o r e m 1. With assumptions and definitions as introduced above, assuming only 

that the interactor is weakly consistent, the number q = n(1, 0) must be non-negative 

and, to each q G [0, there is only one interactor and one descriptor which fulfill 

the conditions imposed. These functions, denoted by nq and Kq, are determined by 

the formulas 

( 3 . 1 )  nq ( x , y ) = qx + ( 1 - q)y, 

(3.2) Kq ( y ) = l n q 1 , 
y  

where the q-logarithm is given by 

(3.3) lnq x = Հ x i - q _ 1 
ln x if q = 1 , 

- - if q = 1 • 

It is assumed implicitly that the interactor and the descriptor satisfy suitable 

regularity conditions related to continuity and differentiability. 

Regarding the proof, we shall here only give a brief outline: The formula (3.1) is 

readily derived from the assumption of weak consistency. Then, the only possible 

form for the descriptor, (3.2), follows from pretty standard variational arguments. 

Indeed, introducing Lagrange multipliers, one is soon led to the differential equation 

(3.4) (1 - q)K(x) + XK'(X) = - 1 , 

and (3.2) follows in view of the normalization condition K'(1) = - 1 . The final step 

of the proof, that with (3.1) and (3.2) the perfect match principle holds, follows 

from (3.10) below or, alternatively, one may observe the close tie to entropy- and 

divergence- measures as derived by an approach due to Bregman, cf. the recent 

papers [14] and [12]. 

Note that strong consistency holds if and only if 0 < q < 1. 

The accompanying quantities, description cost, entropy and divergence are denoted 

Фq , Hq and Dq, respectively. They are given through (2.1), (2.3) and (2.4), i.e. 

( 3 . 5 ) ф  ( x , y ) = ^  nq  ( x i , y i ) K q  ( y i ) , 

ieA 
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( 3 . 6 ) Hq ( x ) = ^ 2 XiKq ( x i ) , 

ieA 

( 3 . 7 ) Dq (X, y) = ^ (я-q ( X i , yi)Kq ( y i ) - XiKq ( x H ) ) . 

ieA 

For q = 1 we obtain Shannon type quantities: Kerridge inaccuracy, Shannon entropy 
and Kullback-Leibler divergence, cf. [9] and the standard reference [4]. For q = 1 , the 

formulas above may be written in a number of ways. The following forms are useful: 

( 3 . 8 ) $ q ( x , y) = £ ( - ^ X i y f 1 + yq - ֊ Xi) , 
i e A 1  -  q 1  -  q  

(3.9) Hq(X) = ^ 1 ֊ £ ( x ? - Xi) = ^ 1 ֊ ( £ Xq - l ) , 
-  q i e A  -  q i e A 

(3.10) Dq(X,y) = £ ( ֊ ^ i - 1 + y,q - Y ^ - X f ) . 
ieA 1  -  q 1  -  q  

In (3.8) the linearity in X is evident. This is important as it leads to a relatively easy 

approach to key optimization problems. For an indication of this, see [14] and [12]. In 

(3.9) we recognize the family of Tsallis entropies, cf. [15]. Note the special case q = 0 

corresponding to a black hole where the entropy only depends on the number n of 

elements in the support of X, indeed, H 0 (x ) = n - 1. In (3.10) the main convenience 

of the formula is due to the fact that the summands are non-negative. This can be 

exploited to give an easy proof of the "q-version" of the fundamental inequality of 

information theory: Dq(x, y > 0 with equality if and only if x = y. This is valid for 

any q > 0. For q = 0, one finds that D 0 = 0. The formula (3.10)also points to a 

possible extension to go beyond the case of discrete distributions. 

The general formulas (2.1), (2.3) and (2.4) indicate that for the determination of 

the quantities involved one needs to know the interactor n as well as the descriptor 

K. Two facts - to be discussed more thoroughly in a planned publication - should be 

emphasized. Firstly, through the perfect match principle, the descriptor is uniquely 

determined from the interactor. Therefore, in principle, only the interactor needs to 

be known. Secondly, different interactors may well determine the same descriptor. 

Thus, knowing only the descriptor, you cannot determine divergence or description 

cost. But you can determine the entropy function. 

It is instructive to consider the family (Kq)o<q<TO of descriptors. This is a descend-

ing family of decreasing functions on [0,1]. The largest descriptor, K0(x ) = 1 - 1 , 
is 

associated with a black hole. For 0 < q < 1, the descriptors are convex and assume 

the value то for x = 0. For q = 1, we find the descriptor K1(x) = ln 1 associated 
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with the classical world. Then, for 1 < q < 2 the descriptors are convex and finite 

valued, also for x = 0. The special descriptor K2(x) = 1 — x is affine. For 2 < q < <x 
we find descriptors which are concave with K'q(0) = 0. The zero function is not a de-

scriptor covered by Theorem 1. It may be conceived as a limiting case corresponding 

to q = то. 

4. HINTS T O T H E L I T E R A T U R E 

The formula (3.9) for a measure of entropy first appeared in the mathematical 

literature in Havrda and Charvat [6] and, independently, in Daraczy [5]. The latter 

author emphasized the characterization via functional equations, cf. also [1] and the 

more recent reference work [3]. The first appearance in the physical literature is due 

to Lindhard and Nielsen [11], where the property of composability - the ability to 

determine the entropy of a combined system from the entropies of its component 

subsystems - was the motivating principle. Subsequently, Lindhard gave a careful 

treatment of aspects of the measuring process, cf. [10]. 

The trend-setting publication [15] from 1988 by Tsallis marks the efficient pro-

motion within the physical community of the new entropy measures. The paper 

triggered much research as also witnessed by the more than 2000 entries in the data-

base maintained by Tsallis. At the time of publication, Tsallis was unaware of the 

earlier research. Regarding [11] and [10], these papers were largely unnoticed, proba-

bly due to their mathematical and somewhat lengthy style. However, there is a casual 

reference to Lindhard's work in one of Jaynes' papers, [8]. 

The success of Tsallis in launching the entropy measures which now bear his name 

is due to the direct approach and the fact that when combined with Jaynes Maximum 
Entropy Principle, cf. [7], main problems of statistical physics lead to power laws, a 

class of distributions which was and still is very popular as the basis for modelling 

when heavy-tailed distributions are involved. The present approach appears to be 

original, though inspired by and in line with earlier game theoretical considerations, 

cf. [14]. Because of a relation to Bregman divergences, we also point the reader to 

[12] and works referred to there. 

F I N A L R E M A R K S . The essence of our findings is that the family of Tsallis en-

tropies can be derived based on two principles, the essential principle which allows 

for an interaction between truth, belief and experience and then a more innocent and 
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natural variational principle, that optimal performance is obtained when there is a 

perfect match between truth and belief. 

It should be emphasized that though these principles may be viewed as axioms, 

they are intended as key elements of an interpretation behind the quantities they lead 

to, typically entropy, divergence and description cost. 

Further research on the fundamental nature of the quantities characterized is much 

desired. In particular, we need to understand the mechanisms behind interaction and 

also, there is a need for a more complete interpretation of descriptors, ideally as clear 

and convincing as the coding interpretation of the classical quantities due to Shannon, 

cf. [13]. In this connection, Ahlswede [2] and references there may be relevant. 
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