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"There is probably no more legitimate use of the instrument of statistics than its 
application to the study of epidemic diseases." 

Arthur Ransome (1868) 

1. INTRODUCTION 

Mathematical infectious disease epidemiology uses dynamic models with inter-
pretable parameters like contact rates and recovery rates to describe individual epi-
demics and their periodicities. There is a vast literature, scattered in mathematical 
and recently also in physical journals, which is concerned with the stability of equi-
librium points and the identification of threshold parameters for bifurcations. Most 
of these papers contain no empirical data at all. But for an applied science it is im-
portant to make predictions, which can be tested against observations. In view of my 
historic interests I shall concentrate on the first models, which have the advantage 
of being still simple while incorporating all the essential elements. Serfling (1952) 
concludes his historical review of epidemic theory as follows: "However, advance in 
epidemic theory depends also upon tests of hypotheses and a crucial test must be 
based on concrete and accurate data. In the past, these have been inadequate". 

Since the emergence of new infections like AIDS, SARS, vCJD and others, the 
field of mathematical infectious disease epidemiology has undergone a tremendous 
development. A search in PubMed in December 2008 for "mathem* model* infect* 
disease" yielded 1082 articles, among them 93 reviews. There is a remarkable trend 
towards the application of disease-specific models to local outbreaks. 

The credit for the first epidemic model is often given to Daniel Bernoulli who 
already in 1760 studied the potential effect of eradicating smallpox by inoculation on 
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the life expectancy (Dietz and Heesterbeek, 2002). However Bernoulli considered an 
endemic situation with a constant force of infection, i.e. a fixed value for the yearly 
incidence of a susceptible individual. He constructed the first so-called catalytic 
model in the sense of Muench (1934, 1959). For these models it is not necessary to 
interpret the force of infection as a function of the prevalence of the infection, i.e. the 
proportion of infective individuals in the total population. 

Catalytic models could also be applied to non-infectious diseases because they 
describe the age-specific proportion of individuals who have experienced a disease. 
Therefore they are excluded in the following. Also the attempts of Farr (1840) and 
Brownlee (e.g. 1909) to describe epidemics using implicitly the normal distribution 
or Pearson curves are not considered, because the parameters are not interpretable. 

Among the models with discrete time I shall concentrate on the chain-binomial 
models of En'ko (1889, 1989), of Reed and Frost (Frost, 1976) and of Greenwood 
(1931). The most important deterministic model with continuous time is proposed 
by Kermack and McKendrick (1927). Finally we shall consider the stochastic general 
epidemic model McKendrick (1926). After a brief introduction of each of these models 
I shall provide examples of fitting them to observed epidemics and shall discuss the 
problems of interpreting the estimated parameters, especially if several models are 
fitted to the same data. 

The first chain-binomial model is due to P. D. En'ko (1844-1916). A brief account 
of his life can be found in Dietz (1988) and Heyde and Seneta (2001). From 1874 he 
was the senior doctor at the St. Petersburg Alexander Institute where he gathered 
data on epidemics of measles and scarlet fever and in 1889 he published his remarkable 
paper on the course of epidemic diseases. His model can be expressed by the following 
equations: 

Here Ct denotes the number of infectious individuals at time t, St is the number of 
susceptible individuals at time t, and Nt is the total size of the population at time t. 

2. CHAIN BINOMIAL MODELS 

Nt+i = Nt - Ct. 
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The parameter к determines the number of contacts of a susceptible individual: 

At = kNt 

The probability 
Ct 

Nt - 1 
of making a contact with an infective in a homogeneously mixing population of size Nt 

is used to calculate the probability of making at least one contact with an infective if 
At contacts are made by one susceptible. The equation for the susceptible individuals 
gives the remaining numbers of susceptible individuals who have avoided contacts 
with cases. The equation for the total population takes into account that the size 
of the population is diminished during the course of the epidemic because cases are 
isolated. This aspect is quite remarkable in En'ko's model and has been ignored in 
later epidemic models. 

The model written as such is a heuristic approximation to a stochastic model 
because the first and the second equation are based on the binomial distribution, 
which is only valid if the exponent is an integer. This model therefore implicitly 
assumes that every susceptible makes exactly the same number of contacts with other 
individuals in the community. It is remarkable that En'ko compares the predictions 
of his model with the observations, which he collected over many years. In Table 1 the 
two epidemics are shown with the best fit together with the parameter values chosen 
by him. The goodness of fit is strikingly good. The appropriate test by Pearson was 
only published 11 years later (Pearson, 1900). En'ko was much ahead of his time. 
Since his work was published in Russian in a journal, which was not widely read, his 
work was nearly ignored until it was rediscovered some 100 years after its publication. 

Year of epidemic: 1874 1879 
Parameters and 
case numbers Observed Fitted Observed Fitted 

S0 133 50 
к 0.9 0.5 
N0 400 400 
C0 1 1 2 2 
C1 70 79 28 30 
C2 45 53 14 18 
C3 2 0 1 0 
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Observed and fitted number of cases of measles epidemics at institutions 
in St. Petersburg 

The next chain binomial model is due to the collaboration of Reed and Frost at 
the Johns Hopkins University. They used the model in jointly teaching epidemiology 
starting in 1925. It was only published much later because Frost did not consider it 
such an important contribution. The equation 

Ct+i = St(1 - qCt) 

describes the successive generations of an infectious disease in a closed community. 
The Reed-Frost model assumes, that the infectious period is rather short compared 
to the latent period so that subsequent generations of the epidemic can be identified. 
If one assumes that the number of contacts which one individual makes follows a 
Poison distribution, then the Reed-Frost model can be considered as a generalization 
of the En'ko model (Dietz, 1988). 

It took many years before the model was fitted to data by Helen Abbey (1952). She 
states: "Although there is considerable discussion in the literature of epidemic models, 
very little testing of the models on actual observations has been done, partly because 
the necessary data are difficult or impossible to obtain." Reed and Frost modified the 
Soper model (1929) to make allowance for the fact that only one new case would be 
produced if a given susceptible would have contact with two or more cases. One can 
write the Reed-Frost model in a deterministic way but also in a stochastic way by 
replacing the expectations with the full binomial distribution. Helen Abbey states: 
"Although there is a great deal of published data on the reported cases of infectious 
diseases, most of this is not useful in testing in adequacy of the model because of 
variable amounts of underreporting and of lack of information about the number of 
susceptibles." Because the model assumes uniform mixing among the members of a 
closed population, it is most applicable in institutions or within families. 

It is also important that there are no carriers, which means that it is assumed 
that every infection brings out clinical symptoms, which can be easily recognized 
and diagnosed. Therefore the model would be particularly appropriate for measles, 
rubella and chicken pocks. Helen Abbey uses epidemics, which were reported from 
the Medical Research Council Special Report "Epidemics in Schools". These are 
reports of the incidence of epidemic diseases in Naval and boarding schools in England 
during the years 1932 - 1939. She collects data from some 20 epidemics. In order to 
divide the daily observations of onsets of cases into generations of cases, one has to 
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make a certain assumption about the length of the incubation period, i.e. the time 
from the infection until the onset of symptoms. This already introduces a certain 
uncertainty about the number of cases in the different generations. Helen Abbey 
then uses a maximum likelihood estimate in order to estimate the contact parameter 
of the Reed-Frost model. 

Finally she compares the observed and the expected number of cases with the chi-
square test. She claims that the chi-square test is applicable because the expected 
numbers in each time period are calculated from the observed numbers in the pre-
vious period and are therefore independent of the previous expected numbers. In 
some cases the problem of a poor fit arises from the fact that the initial number of 
susceptible individuals, which enters into the model does not correspond to the actual 
epidemic. This is due to underreporting of infections in the past and she shows that 
the fit of the model can be extremely improved if one also estimates the initial number 
of susceptible individuals. For the reported number of susceptible individuals prac-
tically all chi-square values are so high that the corresponding P-Value is less than 
0.00001. With an estimated number of susceptible individuals, however, the number 
of epidemics, which yield an acceptable chi-square value, is considerably increased. 

However there remain epidemics, which do not fit according to this criterion. Helen 
Abbey then goes into an investigation about the possible reasons for the lack of fit. 
At first she makes a sensitivity analysis with respect to the choice of the incubation 
interval. She finds that the chi-square values are very sensitive to this choice but 
concludes that the lack of agreement of the theory from the observations is not due 
to a particular choice among the intervals. She then examines the possibility that the 
total population consists of two subpopulations with different contact probabilities. 
By introducing this extra variation she can improve considerably the fit to the data. 
In summary, the Reed-Frost theory fails to fit the observations if one takes into 
account the reported number of susceptible individuals. If one estimates also the 
initial number of susceptible individuals, then the fit can considerably be improved. 
In most cases the total number of cases observed equals the estimated number of 
susceptible individuals. 

Another possibility of improving the fit is to assume that the contact rates decline 
with time during the epidemic. She comes to the remarkable conclusion that "the 
evidence in this paper does not suggest that any of these factors are likely to be 
important sources of the discrepancies between the theory and the observations". 
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The main reason for the lack of fit was probably the fact that she had considered 
epidemics in too large communities for which the assumption of uniform mixing was 
violated. 

The approach of using the chi-square test by Abbey has been examined in detail 
by Almond (1954). She comes to the conclusion that for sufficiently large numbers 
of susceptible individuals the approximation is acceptable provided that one reduces 
the degrees of freedom if the contact parameter is estimated from the data. 

Finally the chain binomial model of Greenwood (1931) is considered. This model is 
similar to the Reed-Frost model but it is assumed that the actual number of infective 
individuals does not matter for determining the infection probability as long as there is 
at least one case in the household. The Greenwood assumption would be appropriate 
when the household is saturated with infectious material even if only one case is 
present. 

Wilson et al. (1939) criticise Greenwood because he lumps chains of infections 
together. Wilson et al. have independent data from Providence, which they analyze 
according to the Greenwood model and find significant discrepancies (see Table 2). 
The example given is concerned with households of size three with one initial case 
and two initial susceptible individuals. In the first column, the number of cases in 
each generation specifies the epidemic chains. For initially two susceptible individuals 
and one initial case the Greenwood model and the Reed-Frost model are not distin-
guishable. If one lumps the last two chains together, as was done by Greenwood, 
then one obtains a perfect fit. One reason for the lack of fit of the two models could 
be the assumption of homogeneous mixing with the same infection parameter for all 
416 households. In later attempts to describe such observed chain frequencies, one 
has assumed that the contact parameter follows a beta distribution and thereby has 
improved the fit considerably (Bailey, 1975; Becker, 1989). 

The data set, which has been analyzed in greatest detail, has been published by 
Heasman and Reid (1961). The observations are based on a two-year surveillance of 
some sixty households with respect to the common cold. All households consist of 
three children together with their parents. For single introductory cases 16 different 
chains are possible. They are listed with their observed frequencies in Table 3. The 
corresponding probabilities for the two classic models Reed-Frost and Greenwood are 
given in the subsequent columns. The next column gives the observed frequencies. 
The last two columns contain the expected frequencies. The problem with applying 
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the chi-square goodness-of-fit test is the large number of cells with small expected 
values. Schenzle (1982) calculates the P-values by combining the expected values 
according to three rules: P\ is calculated by pooling the cells according to the total 
number of cases, P2 according to the length of the chain and finally P3 according 
to the number of cases in the first generation. The table contains the corresponding 
P-values for these three types of grouping. In contrast to the analysis by Heasman 
and Read he concludes that even the Reed-Frost model does not provide an adequate 
fit. The Greenwood model yields smaller P-values for all three modes of grouping. 
Schenzle produces 6 other models some of which give a much better fit than the 
classical models by Reed-Frost and Greenwood. 

Fitting the Greenwood model to observations of measles in households 
with one primary case and two susceptible individuals 

Type of chain Probabi- Obser- Obs.lumped Expectations Exp.lumped 
lities vations 

{1} q 2 51 51 51.2 51.2 
{1 - 1 } 2 p to

 

67 67 66.5 66.5 
{1 - 1 - 1} 2p2q 36 298 123.0 298.3 

{1 - 2} 
2 p 2 262 175.3 
1 416 416 416.0 416.0 

Fitting the Reed-Frost model and the Greenwood model to 664 indi-
vidual chains of c ommon cold in households of five individuals 

Schenzle comes to the conclusion that the data do not allow discriminating between 
the models, probably because the data are lumped together. Despite the fact that 
this data set has been analysed and reanalysed several times, it does not provide much 
epidemiological insight. For drawing meaningful conclusions one would need to know 
more about the sources of heterogeneity among the various household epidemics, i.e. 
reference to season and to the identity of the individual household. 

From these examples one can conclude that the classical chain binomial models are 
too simple to describe the data in a realistic way. Later analysis have shown that one 
has to add variability among parameters and/or time dependence in the parameters. 
In spite of these shortcomings the classical models provide important building blocks 
for more realistic models if the data are available in sufficient detail. 
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Chain Reed-Frost Greenwood Observ. Pred 
(R-F) 

Pred 
(G) 

{1} q4 q 4 423 405.2 400.0 
{1 - 1 } 4pq6 4pq6 131 147.1 147.8 

{1 - 1 - 1} 12p2q7 12p2 q7 36 45.3 46.5 
{1 - 1 - 1 - 1} 24p3q7 24p3q7 14 10.5 11.1 

{1 - 1 - 2} 12p3q6 12p3q5 8 6.0 7.1 
{1 - 2} 6p2q6 6p2 q4 24 25.6 34.0 

{1 - 2 - 1} 12p3q5(1 + q) 12p3q4 11 12.7 8.1 
{1 - 1 - 1 - 1 - 1} 24p4q6 24p4q6 4 1.4 1.5 

{1 - 1 - 1 - 2} 12p4q5 12p4q5 2 0.8 0.8 
{1 - 1 - 2 - 1} 12p4 q4(1 + q) 12p4q4 2 1.7 1.0 

{1 - 1 - 3} 4p4q3 4p4q3 2 0.3 0.4 
{1 - 2 - 1 - 1} 12p4 q4(1 + q) 12p4q3 3 1.7 1.1 

{1 - 2 - 2} 6p4q2(1 + q)2 6 p 

to
 

1 2.0 0.6 
{1 - 3} 4p3q4 4p3q2 3 2.5 3.5 

{1 - 3 - 1} 4p4q(1 + q + q2) 4p4q 0 1.1 0.5 
{1 - 4} p 4 4 p 4 0 0.1 0.1 

Pi 
P2 
P3 

0.059 
0.012 
0.351 

0.001 
0.003 
0.176 

3. THE KERMACK-McKENDRICK MODEL 

Kermack and McKendrick (1927) proposed the following epidemic model for the 
spread of an infection in a homogeneously mixing population: 

dx 
dt 
dy 
dt 
dz 
dt 

—Kxy, 

кху — YV, 

1У• 

Here x, у and z denote the number of susceptible, infective and immune individuals. 
The parameter к is the contact rate and the parameter Y is the recovery rate, i.e. the 
rate of transfer from the infective into the immune state. Implicitly the model assumes 
an exponentially distributed time in the infective state. Kermack and McKendrick 
originally described a more complicated model for which the distribution of the time in 
the infective state is arbitrary, but in simplifying the assumptions, they come up with 
the present equations, which often are simply referred to as the Kermack-McKendrick 
model ignoring that this is just a special case of a more general approach. Kermack 
and McKendrick noticed that there is no explicit time-dependent solution for this 
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non-linear system of differential equations, but they derive an approximate solution 
by using a Taylor expansion up to the second degree of the exponential function, 
which occurs in the solution for the third equation. 

This quadratic function can be solved explicitly. If one assumes that initially there 
is one infective individual, no immune individuals and XQ susceptible individuals, then 
one can express the solution in terms of the basic reproduction number —Q which 
is the number of secondary cases which one infective could infect in a completely 
susceptible population. This number is the key threshold parameter in epidemic 
theory. Heesterbeek (2002) describes the intricate path until this insight became 
common knowledge among infectious disease epidemiologists. The incidence of new 
infections is given by the following equation: 

d = 2 — c i s e c h 2 ( c i Y - c 2 ) � 

ci = J (—Q - 1)2 + 2 R 0 2 : 
У XQ 

c2 = t a n h � 1 ( —Q 
c i 

Observed and fitted weekly incidence of pneumonic plague in Harbin 
1910/1911. The fit is based on the classical Kermack-McKendrick model. 

weeks 
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Here the function sech is the inverse of cosh. The advantage of this explicit solution 
over the fitting of the epidemic curve by the normal distribution or some other Pearson 
curve is the interpretability of the parameters. Kermack and McKendrick fit their 
model to the number of deaths from plague "in the island of Bombay over the period 
17 December 1905 to 21 July 1906". The observed numbers on the ordinate represent 
the number of deaths per week and the abscissa denotes the time in weeks. They give 
the numerical values for the three parameters in this model from which one could 
deduce that XQ = 7722, — Q = 1.32 and the average duration of the infectious period 
is 5.6 days. Here they refer to bubonic plague, i.e. they are aware that this is not a 
direct transmission from man to man. 

Therefore they are very cautious and say: "A close fit is not to be expected and 
deductions as to the actual values of the various constants should not be drawn." 
Figure 1 shows the fitting of this model to an epidemic of pneumonic plague in 
Harbin (International Plague Conference, 1912). Here transmission is from man to 
man and the parameters can be interpreted: they are XQ = 2985, RQ = 2.00 and a 
mean infectious period of 11 days. The last estimate is biologically realistic if one 
takes into account that a more detailed model would break this interval down into a 
latent and an infectious period. This approach is obviously superior over the fitting 
by curves with non-interpretable parameters. 

3.1. The general stochastic epidemic in a finite population. In a seminal 
paper McKendrick (1926, 1997; Dietz 1997) introduced a stochastic model with con-
tinuous time for the spread of an epidemic in a finite population. It took more than 
twenty years until this model was analysed mathematically in more detail by Bartlett, 
Bailey and others and another twenty-five years until it was first fitted to a smallpox 
epidemic in Abakaliki, Nigeria, which took place in 1967 in a religious group that 
refused vaccination. The first attempts to fit the model were based on the infor-
mation that 30 cases occurred in a homogeneously mixing group of 120 susceptible 
individuals. The following formula allows to estimate the basic reproduction number 
RQ if one knows the initial and the final proportion of susceptible individuals SQ and 
si, respectively: 

ln SQ - ln Si 
RQ = 

SQ - s i 

Assuming that initially all members of the community were susceptible, one arrives 
at a surprisingly low basic reproduction number for smallpox of 1.15. If, however, 
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a certain proportion of the individuals were already immune at the beginning, then 
the basic reproduction number would be higher. The low estimate of the basic repro-
duction number has been found in many papers because the detailed report about 
this epidemic had been ignored. In the meantime this report is available from the 
homepage of WHO (Thompson and Foege, 1968). Eichner and Dietz (2003) have 
reanalysed this data set taking into account the following details: the vaccination 
history of members of this community; the distribution of the time between infection 
and the onset of fever and the distribution of the prodromal period. One important 
result is that the infectivity is estimated to be much higher during the period of rash 
compared to the prodromal period. Altogether the basic reproduction number for 
this community is estimated to be 6.87 (95 % CI: 4.52, 10.1), i.e. much higher than 
the previous value of 1.15. 

4. CONCLUDING REMARKS 

The last example shows clearly that parameter estimates are highly dependent on 
the underlying model assumptions. Therefore one has to be cautious in interpreting 
numerical estimates. Ideally two aspects must be fulfilled: a reliable documentation 
of the events and a realistic model for the description of the observed process. The 
sophistication of statistical methods has increased considerably. Lately Markov Chain 
Monte Carlo methods, martingales and Bayesian analyses have been applied to the 
problem of estimating key epidemiological parameters. Much remains to be done. 
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